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e overall objective of this work was to develop and evaluate computer vision and machine learning technique for classi�cation
of Huanglongbing-(HLB)-infected and healthy leaves using �uorescence imaging spectroscopy. e �uorescence images were
segmented using normalized graph cut, and texture features were extracted from the segmented images using cooccurrencematrix.
e extracted features were used as an input into the classi�er, support vector machine (SVM). e classi�cation results were
evaluated based on classi�cation accuracies and number of false positives and false negatives. e results indicated that the SVM
could classify HLB-infected leaf �uorescence intensities with up to 90% classi�cation accuracy.ough the �uorescence intensities
from leaves collected in Brazil and the USA were different, the method shows potential for detecting HLB.

1. Introduction

In recent years, there has been an increasing use of machine
vision and learning approaches in the domain of agriculture
applied towards detecting and classifying various diseases on
trees and fruits [1–3]. Such techniques need to be developed
for sustainable agriculture and to prevent great economic
losses. Major citrus diseases such as citrus canker (Xan-
thomonas axonopodis pv. citri) and Huanglongbing (HLB)
or citrus greening (Candidatus Liberibacter asiaticus) are
a serious threat to citrus production worldwide including
regions in Brazil and Florida. e citrus industry in both
these countries, Brazil and the USA is making continuous
efforts to control and contain these citrus diseases. e
disease management practices include insect vector (Asian
citrus psyllid/Diaphorina citri Kuwayama) control through
pesticide application and eradication of symptomatic trees.
erefore, there is a need for a reliable diagnostic tool to
identify the disease symptoms and consequently eradicate

these trees (source of inoculum) to prevent further spread
of the diseases. However, the process of identifying diseased
tree through scouting, the process of frequent �eld inspection
for recognizing symptoms, followed by laboratory diagnosis
using polymerase chain reaction (PCR) analysis is time-
consuming and expensive. Amachine vision technique offers
an alternative for disease detection under �eld conditions
and thus better control of such diseases. Machine vision can
aid in the scouting process and complement PCR analysis.
Moreover, fewer samples can be sent for PCR analysis,
thereby reducing the disease detection costs.

Pydipati et al. [4] used machine vision to identify citrus
diseases such as greasy spot, melanose, and scab in leaves
under controlled laboratory conditions. e researchers
applied the color cooccurrence matrix (CCM) features to
detect citrus diseases using the features recommended by
Haralick et al. [5]. e authors were able to outline very
important properties of disease detection such as color and
texture. ough there have been applications of machine
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vision for citrus disease detection under laboratory condi-
tions, there is a need for a sensing technique that can be
applied under �eld conditions. e �uorescence imaging
spectroscopy (FIS) has a potential to obtain spatial and
spectral (�uorescence) information than regular imaging
techniques. With rapid development and miniaturization
of new light sources and detectors in the last decade, its
application under �eld conditions is growing.

In this paper, we present the development and evaluation
of machine vision technique for detection of HLB in citrus
leaves using FIS under �eld conditions. e present research
results in a unique comparison of the performance of the FIS
system for HLB detection in leaves from Brazil and Florida.

2. Material andMethods

2.1. Leaf Sample Collection. Fluorescence data were col-
lected from HLB-infected citrus leaves in Brazil and the
USA. In Brazil, twenty citrus trees from six different orchards
(four municipalities in São Paulo State) were evaluated. e
HLB-infected leaf samples were collected from trees ofCitrus
sinensis (L. Osbeck). e images were collected from both
symptomatic and nonsymptomatic leaves from each �eld
plant. A total of 100 samples of HLB-symptomatic leaves
and 55 nonsymptomatic leaves (con�rmed as healthy) were
collected. It should be noted that in order to avoid any
detachment time effect, the �uorescence measurements were
performed within �ve minutes aer the leaves were collected
from each plant [6]. e data were collected between June 18
and July 2, 2009. Aer the onsite measurements, the leaves
were transported in closed styrofoam boxes to the laboratory
to con�rm the presence of HLB using the laboratory method
(PCR analysis). In the USA, leaf samples were collected from
eight citrus trees at Citrus Research and Education Center’s
citrus orchard in Lake Alfred, Florida from 14 to 17 July 2011.
e leaf samples were collected from the same cultivar of
citrus trees as from Brazil. A total of 68 symptomatic (HLB-
infected) and 17 non-symptomatic (healthy) leaf samples
were collected. Fluorescence data were collected from HLB-
infected samples in Brazil and the USA, to evaluate the
applicability of �uorescence imaging spectroscopy under
different conditions. Once infected with HLB, citrus leaves
develop symptoms such as botchy mottle, yellowing and
thickening of veins or the entire leaf.e time period between
theHLB-infection and the appearance of symptoms varywith
age, time of infection, cultivar, and physiological status of the
tree.

e �uorescence spectroscopy imaging system was
a portable custom-designed unit, which comprised of
a monochromatic charged couple device camera (CCD)
(model mvBlueFOX120a, Matrix Vision, Germany) that uses
a USB communication port, a �lter wheel (model CFW-
1-8, Finger Lakes Instrumentation, USA) that holds up to
eight optical �lters and uses a USB communication port,
four bandpass optical �lters (models FB570-10, FB610-10,
FB690-10 and FB740-10, orlabs, USA; 570, 610, 690, and
740 nm emission wavelengths), an objective lens, high power
light emitting diodes (LEDs) at different wavelengths (365,
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F 1: Schematics of the FIS system. (1)Monochromatic charged
couple device camera (CCD), (2) objective lens, (3) �lter wheel with
up to eight optical �lters, (4) base for high power LEDs at different
wavelengths (365, 405, 470, and 530 nm) for excitation.

405, 470, and 530 nm) as excitation sources, and a standard
laptop computer. Figure 1 shows a schematic diagram of the
portable FIS system with major components that operates on
car batteries. All the parts of the FIS system, except the laptop,
were placed inside a closed box. e CCD and �lter wheel
were computer controlled using a program.

2.2. Fluorescence Imaging Spectroscopy System.

2.3. Segmentation. edata analysis procedures were written
in MATLAB (ver. 7.6, e MathWorks Inc., Natick, MA).
Figure 2 presents a sample �uorescence image at 690 nm
emission wavelength using excitation light at 530 nm. It
can be observed from Figure 2 that the image texture of
healthy andHLB-infected samples was different, with healthy
samples having a more uniform texture than those of the
HLB-infected leaves. e �rst step in data analysis is the
segmentation to identify leaf areas within an input image. In
this step, the pixels are grouped into clusters.

ere are several techniques for segmentation. Some of
the methods tested in this study were 𝑘𝑘-means clustering,
histogram thresholding, Markov random �eld (MRF), graph
cuts, and 2D histograms. Histogram thresholding and 𝑘𝑘-
means clustering did not produce immaculate boundaries.
MRF, graph cuts, and 2D histograms represent a higher
order statistics [7]. Following segmentation, the leaf pixels
were separated as rectangular areas, as shown in Figure 3.
ese rectangular regions were further processed for feature
extraction and classi�cation.

2.4. Feature Selection. e features of texture (such as auto-
correlation, contrast, and energy) were extracted from the
segmented image based on co-occurrence matrix [4, 5].
A cooccurrence matrix (or a gray tone spatial dependence
matrix) is a matrix distribution that is de�ned over an image
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(a) (b)

F 2: Fluorescence intensity at 690 nm of healthy (a) and HLB-infected leaves (b).

(a) (b)

F 3: Segmented images from Brazil (a) and the USA (b).

to be the distribution of cooccurring values at a given offset.
From this matrix, four metrics are computed from the image
segment as shown in following equations:

Uniformity or Angular Second Moment =
𝑁𝑁𝑔𝑔󵠈󵠈𝑖𝑖𝑖𝑖𝑁𝑁𝑔𝑔󵠈󵠈𝑗𝑗𝑖𝑖󶀦󶀦𝑝𝑝 󶀡󶀡𝑖𝑖𝑖 𝑗𝑗󶀱󶀱𝑅𝑅 󶀶󶀶2

Contrast =
𝑁𝑁𝑔𝑔−𝑖󵠈󵠈𝑛𝑛𝑖𝑛 𝑛𝑛2󶀂󶀂󶀊󶀊󶀚󶀚 󵠈󵠈󶙡󶙡𝑖𝑖−𝑗𝑗𝑖𝑛𝑛󶙡󶙡󶀦󶀦𝑝𝑝 󶀡󶀡𝑖𝑖𝑖 𝑗𝑗󶀱󶀱𝑅𝑅 󶀶󶀶󶀃󶀃󶀋󶀋󶀛󶀛

Correlation =
∑𝑁𝑁𝑔𝑔𝑖𝑖𝑖𝑖∑𝑁𝑁𝑔𝑔𝑗𝑗𝑖𝑖 󶁡󶁡𝑖𝑖𝑗𝑗𝑝𝑝 󶀡󶀡𝑖𝑖𝑖 𝑗𝑗󶀱󶀱 /𝑅𝑅󶁱󶁱 − 𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

Homogeneity =󵠈󵠈𝑖𝑖 󵠈󵠈𝑗𝑗 𝑝𝑝 󶀡󶀡𝑖𝑖𝑖 𝑗𝑗󶀱󶀱𝑖 + 󶙡󶙡𝑖𝑖 − 𝑗𝑗󶙡󶙡 𝑖
(1)

where, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦, 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦 are the means and standard deviations
of marginal distributions associated with 𝑃𝑃𝑃𝑖𝑖𝑖 𝑗𝑗𝑃/𝑅𝑅. 𝑃𝑃𝑃𝑖𝑖𝑖 𝑗𝑗𝑃 is
thematrix of relative frequencieswithwhich twoneighboring
resolution cells are separated by distance “𝑑𝑑” on the image,
one with gray tone “𝑖𝑖” and other with gray tone “𝑗𝑗.” 𝑅𝑅 is
the number of neighboring resolution cell pairs used in

computing a particular gray tone spatial dependence matrix.
e descriptors (uniformity, contrast, correlation, and homo-
geneity) were computed for each offset corresponding to
eight-point neighborhood. Following that, the mean value
was calculated for a single descriptor over each offset. us,
for an eight-point neighborhood, the number of feature
dimensions was four.

e extracted texture features were used
as an input in the classi�er support vector machine (S�M).
e classi�cation of the data was performed with 20 sample
data in the training dataset (10 healthy and 10 diseased).
e S�M classi�er works on the concept of decision planes
that de�ne decision boundaries. A decision plane is a hyper-
plane that separates between a set of objects that belong
to different classes. A support vector machine [8] creates a
plane in 𝑛𝑛-dimensions to separate 𝑛𝑛-dimensional points lying
in different classes. For a new point, the class is predicted
based on which side of the plane the point lays. For the
nonlinear separable data, a nonlinear mapping function is
used to map the data into a higher dimension feature space.
e decision function is based on dot product of the input
features with support vectors, and the mapping of data into
higher dimensional feature space is not needed upon use of
kernel [9]. Some commonly used kernels are Gaussian radial
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F 4: Precision-recall and ROC curves for the support vector machine classi�er.

basis functions and polynomial and hyperbolic tangent. e
radial basis function and polynomial kernel were used in this
study.

e classi�cation of the data was performed using the
SVM classi�er. e classi�er was used on the �uorescence
data collected from Brazil and USA separately. e per-
formance of the classi�er was evaluated using classi�cation
accuracies, precision recall (PR) and receiving operating
characteristics (ROC) curves. e ROC curve is a plot of
false positive rate (FPR) on the 𝑥𝑥-axis and the true positive
rate (TPR) on the 𝑦𝑦-axis. e FPR measures the fraction of
negative samples that are misclassi�ed as positive, while the
TPRmeasures the fraction of positive samples that are labeled
correctly. e PR curve is the plot of recall on 𝑥𝑥-axis and
precision on 𝑦𝑦-axis.e goal in the ROC curve is to have low
false positive rates [10].

3. Results and Discussion

3.1. Image Preprocessing. During the preprocessing of the
�uorescence images, the data were segmented using nor-
malized graph cuts in preference to other segmentation
methods (𝑘𝑘-means clustering, histogram thresholding, MRF,
and 2Dhistograms).enormalized cuts algorithm results in
smooth spatial consistency in comparison to other methods
such as 𝑘𝑘-means clustering in color space and color histogram
thresholding, which do not have high order information
about spatial layout. In normalized graph cuts, the image is
treated as a graph partitioning problem. e “cut” criterion
measures both the total dissimilarity between the different
groups as well as total similarity within the groups. e
texture features such as uniformity, contrast, correlation, and
homogeneity were extracted from the eight-point neighbor-
ing pixel of the segmented image. ese features were used
in SVM classi�er. Preliminary evaluation of �uorescence
bands indicated higher discriminatory power at 690 nm

emission wavelength with ��0 nm excitation. e �uores-
cence at 690 nm that was measured represents chlorophyll
�uorescence. As the disease affects plant physiology including
chlorophyll �uorescence, this wavelength will be a useful
in HLB detection. erefore, the segmentation and feature
selection results from the �uorescence images at 690 nmwere
used as an input in the classi�er SVM.

3.�. ��assi�ca�ion. e classi�cation results are presented in
Table 1. An increase in the training sample size of higher
than 20 samples did not improve the classi�cation accuracies.
erefore, training was performed with 20 samples. e
overall accuracies of SVM were 90% and 61% during the
classi�cation of data collected from Brazil and the USA,
respectively. e PR and ROC curves on the Brazil data are
shown in Figure 4.e classi�cation accuracy was high (90%)
for Brazil leaf samples with very low false negatives (9%).
For selection of a suitable classi�er, it is more important to
have a low false negative rate than false positive rate, because
the HLB-infected samples should not be classi�ed wrongly as
healthy. e false positive rate was also low (Table 1).

�hen the USA leaf samples� �uorescence intensities
were compared, it was found that the leaf samples emitted
�uorescence at a very low intensity under same illumination
and detection conditions, with about 20% of �uorescence
intensity as those of leaf samples from Brazil. e cause for
this difference is under investigation. e possible reason for
this observation could be due to variation in plant physiology
resulting from soil differences in these two areas, Florida
and S�o Paulo. Due to very low �uorescence intensity of
USA samples, the SVM classi�cation accuracy was much
lower (61%) than that of Brazil samples. e false positive
as well as negative rates were also higher. Other possible
reasons for variable classi�cation accuracies could be effect
of seasonal variation in leaf symptoms, effect of sample size,
and variation in growing conditions among others [11, 12].
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T 1: Classi�cation results from support vector machine classi�er.

Data False positives
(number of misclassi�ed healthy samples)

False negatives
(number of misclassi�ed diseased samples)

Total
accuracy

Healthy and HLB samples from Brazil 12% 9% 90%
Healthy and HLB samples from the
USA 35% 40% 61%

Variability of symptoms has also been observed by a
number of researchers [11, 13, 14]. e irregularity in the
appearance of symptoms can also occur within a tree, due
to irregular distribution of the bacterial inoculum [11].
Chamberlain and Irey [13] stated that variation in symptoms
can occur periodically during a year, also from grove to grove
and tree to tree at a given period of time. is signi�es the
importance of calibrating the sensing systems under different
conditions prior to �eld application. ese �ndings also
suggest the need for such sensing techniques to improve the
scouting detection efficiencies.

4. Conclusions

e present study explores the potential of �uorescence
sensing as a means for rapid identi�cation of HLB infection
in citrus orchards. A custom-designed �uorescence imaging
sensor was evaluated with leaf samples collected from citrus
trees in Brazil and the USA. e data were segmented using
normalized graph cuts and texture features were extracted
using cooccurrence matrix during data preprocessing. e
extracted features were used as an input in the classi�er,
support vector machine. e classi�cation results indicated
that though the classi�er accuracy was low (61%) for USA
samples, the accuracy was good (90%) when it came to
classifying leaf samples from Brazil. e probable reason
for this observation could be the low �uorescence intensity
of leaf samples from the USA. e false negative rate for
classifying Brazil samples was low, indicating 91% accuracy
while classifying HLB-infected leaf samples. Our future
studies will involve assessing other �uorescence features for
HLB detection in citrus orchards and comparison of the FIS
technique on other stress conditions (nutrient de�ciencies
and other diseases).
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