
A comparative study on ASIC, FPGAs, GPUs and general purpose processors in the
O(N2) gravitational N -body simulation

Tsuyoshi Hamada∗, Khaled Benkrid†, Keigo Nitadori‡ and Makoto Taiji‡
∗ Nagasaki Advanced Computing Center, Nagasaki University,

1-14, Bunkyo-machi, Nagasaki, 852–8521 Japan
Email: hamada@cis.nagasaki-u.ac.jp

† School of Engineering, The University of Edinburgh
Email: K.Benkrid@ed,ac.uk

‡ RIKEN – The Institute of Physical and Chemical Research,
61-1 Ono, Tsurumi, Yokohama, Kanagawa 230-0046, Japan

Email: {keigo,taiji}@riken.jp

Abstract—In this paper, we describe the implementation
of gravitational force calculation for N -body simulations in
the context of Astrophysics. It will describe high performance
implementations on general purpose processors, GPUs, and
FPGAs, and compare them using a number of criteria including
speed performance, power efficiency and cost of development.
These results show that, for gravitational force calculation and
many-body simulations in general, GPUs are very competitive
in terms of performance and performance per dollar figures,
whereas FPGAs are competitive in terms of performance per
Watt figures.

Keywords-N -body simulation; GPGPU; High Performance
Computing

I. INTRODUCTION

Many-body simulations have widespread use in scientific
and engineering applications. Among such applications we
can name the problem of investigating the formation and
evolution of astronomical systems e.g. planetary systems,
globular clusters, galaxies, and clusters of galaxies [1], [2],
molecular dynamics simulation [3]–[6], fluid mechanics [7]–
[11], acoustics and electromagnetic simulations [12]. Central
to many-body simulations is the calculation of interaction
forces between all bodies or particles in the system. In
the context of astrophysical simulations, we numerically
evaluate interactions between the particles e.g. planets, and
advance the particles according to Newton’ s equation of
motion. In this case, and since the gravity is a long-range
interaction, the calculation cost is O(N2) per time-step,
where N is the number of particles in the system. This
complexity can be reduced O(N log N), by using some
approximation algorithms, such as the Barnes-Hut tree-code
[13], albeit with a large scaling coefficient. Nonetheless,
the size of the many-body simulation (i.e. N) is always
limited by the available computational resources, and with
increasing need for larger system simulations arises the need
for ever more high performance and efficient computational
platforms for many-body simulations [6], [14]–[22].

Computational solutions to this problem vary from spe-
cial purpose ASIC-based platforms [1], [2] to off-the-shelf
programmable platforms [18]. The Grape (”GRAvity piPE”)
project [1], [2] for instance built ASIC-based supercom-
puter solutions for gravitational force calculations where
the calculation of pairwise interactions was implemented in
an ASIC chip in the form of a fully pipelined hardwired
processor dedicated to gravitational force calculation. The
total number of floating-point operations for each pairwise
interaction force calculation in the case of gravitational
forces is 20, which are pipelined in hardware. Moreover,
since each particle interacts with all other particles in the
system, instruction-level as well as data-level parallelism can
be exploited. Furthermore, data cashing techniques can be
used to reduce the required memory bandwidth.

However, ASIC solutions suffer from their lack of flex-
ibility as they can’t be reprogrammed to implement new
algorithms. Moreover, the cost of building new ASIC chips
with state-of-the-art fabrication technologies is becoming
increasingly high, especially for relatively moderate vol-
umes. Hence, programmable solutions are set to become
more attractive. General purpose processor (GPP)-based
solutions have the advantage of being off-the-shelf and less
expensive. However, higher power and area consumption and
lower speed performance, compared to dedicated hardware
solutions, are possible disadvantages.

More recently, new emerging technologies that can ad-
dress some of the above disadvantages of both ASICs and
GPPs have been proposed for many-body simulations [17],
[19], [23]. Among these we name Field Programmable Gate
Array (FPGA)-based solutions [18], [24], [25] and Graphics
Processing Unit (GPU)-based platforms [26]–[28]. In this
paper, we will assess the advantages and disadvantages of
these technologies in the context of many-body simulations,
by presenting comparative implementation results of grav-
itational force calculations on FPGAs, GPUs, ASICs and
GPPs.

2009 NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3714-6/09 $25.00 © 2009 IEEE

DOI 10.1109/AHS.2009.55

447

The remainder of this paper is organized as follows.
Section 2 will present background information on gravi-
tational force calculation and many-body simulation. The
following section will present our hardware implementation
of a generic force calculation pipeline. After that, we will
present our hardware implementation results on FPGA, and
compare them with other implementations on various GPU
boards and GPPs as well as ASIC implementations. These
results will then be discussed before conclusions are drawn.

II. BACKGROUND

As mentioned in the introduction section, the basic oper-
ation in many-body simulations consists in calculating the
interaction force between pairs of particles. The accumula-
tion of the forces acting on a single particle by all other
particles in the system dictates its behaviour i.e. position,
velocity and acceleration in the next time step. In the case
of gravitational forces, the accumulated force is given by:

f i = mi

∑

j

mjrij

(r2

ij + ε2)3/2
, (1)

where ri and mi are the position and mass of particle i.
rij = rj − ri, and ε is a softening parameter.

Other interaction forces are described in a more generic
way as:

f i =
∑

j

G(ri, rj), (2)

where G is a user-defined function. In the case of gravita-
tional forces:

Gi =
mjrij

(r2

ij + ε2)3/2
, (3)

where rij = rj − ri.
It is worth mentioning at this stage that unlike ASICs,

FPGAs allow us to plug-in any function G through recon-
figuration, hence resulting in a more generic implementation.
FPGAs can also allow for various arithmetic types and
precision levels to be used and experimented with on the
same hardware platform.

 Host
Computer

Interaction
Pipeline
(on FPGA)

Programmable GRAPE

Interface
Unit
&
Particle
Memory

Position etc.

Force etc.

Figure 1. Basic structure of a hardware-accelerated many-body simulation
system

Figure 1 shows a basic structure of a hardware accelerated
solution for many-body simulations. It consists of a host
computer and an acceleration coprocessor for force calcula-
tion. An interface unit controls communication between the
programmable host computer and the acceleration hardware.

The latter could consist of a number of FPGA chips on
which the interaction pipelines are implemented. The host
computer performs all other calculations e.g. position and
velocity update. In addition to the FPGA hardware, a particle
memory local to the coprocessor caches all particles involved
in a particular round of interaction force calculation with
a particular particle i. The particle information stored in
memory includes particle position, velocity and mass in the
case of gravitational force calculation.

pipeline
unit

special-purpose pipeline processor

j-particle
memory

i-particle
register

force
accum.
register

I/O & control logic

Figure 2. Basic structure of a the hardware accelerator

Figure 2 gives a block architecture of a hardware accel-
erator instance e.g. implemented on a single FPGA chip.

Xj

Yj

Zj

Mj

Xi Yi Zi

Σ

Σ

Σ

wait

ε

R

R
2

3

Memory

f to l

f to l

f to l

shift

shift

shift

wait

R

Figure 3. Block diagram of the pipeline for gravitational force

Figure 3 shows a fully pipelined hardware architecture
for gravitational force calculation [15], [18], [29]. Here, the
position data for both particle i and particle j are in fixed-
point format, while mj is in logarithmic format. The position
vector ri is expressed in its three Cartesian components
xi, yi, zi (the same applies to position vector rj). After
subtraction, xj −xi, the results are converted to logarithmic
format, and all subsequent calculations are performed in
logarithmic format too.

The following sections will give implementation results
of the above gravitational force calculator on various FPGA
chips, as well as comparative implementation results on GPU
accelerators and GPP-based solutions.

III. FPGA IMPLEMENTATION

We have implemented the force calculation pipeline
described in Figure3, on a three FPGA platforms: the
Virtex2Pro-based for Bioler-3 system 4 [20]–[22], [30],

448

Figure 4. Photograph of Bioler-3.

Figure 5. Photograph of PROGRAPE-4.

the Virtex-Pro-based Cray XD1 system [30], [31] and the
Spartan3-based PROGRAPE-3 system5. Figure 6 and 7 and
8 give the hardware architectures of the Boiler-3, Cray XD1
and PROGRAPE-3 systems respectively.

Table I
MODEL

Model Position Internal(exponent, mantissa) Accumulation

G3 20bit fixed 14(7,5)bit log 56bit fixed
G5 32bit fixed 17(7,8)bit log 64bit fixed
G5+ 32bit fixed 20(7,11)bit log 64bit fixed

Table I gives different accuracy levels implemented on
FPGAs. Here, G3 refers to the accuracy used in the ASIC-
based GRAPE-3 system, G5 to the accuracy used in the
ASIC-based GRAPE-5 system, while G5+ refers to a more
accurate G5 version.

Table II presents area and speed implementation re-
sults of these pipeline variations on two FPGA chips,
namely Virtex2Pro-5(XC2VP70-5) chip and Spartan3-5
(XC3S5000-5) for different number of pipeline stages. At
this stage, it is worth mentioning that increased pipelining in
FPGAs comes at little logic (LUT) overheads at the expense
of an increased use of flip-flops. FPGAs are however rich in
flip-flops and their use comes at no extra slices cost (if the
slice LUTs are used for the combinatorial path) in contrast
to ASICs where flip-flops are very costly.

XC2VP70-5 XC2VP70-5 XC2VP70-5 XC2VP70-5

64-bit local bus

XC2V1000-5

64-bit PCI bus

Bioler-3

DDR-SDRAM
(256MByte)

DDR-SDRAM
(256MByte)

DDR-SDRAM
(256MByte)

DDR-SDRAM
(256MByte)

Figure 6. Bioler-3 Hardware Architecture.

Opteron 248 Processor
FPGA

(XC2VP50)

Opteron 248

DDR SDRAM

DDR SDRAM

RapidArray
Processor

RapidArray
Processor

RapidArray Switch

RapidArray Switch

CPU-module board (x6)

Application Acceleration Module
(Optionally)

QDR2
SRAM

Hyper
Transport

Figure 7. Cray XD1 Hardware Architecture.

Table II presents area and speed implementation re-
sults of these pipeline variations on two FPGA chips,
namely Virtex2Pro-5(XC2VP70-5) chip and Spartan3-5
(XC3S5000-5) for different number of pipeline stages. This
shows that increased pipelining in FPGAs comes at the
expense of an increased use of flip-flops with little logic
(LUT) overheads. FPGAs are however rich in flip-flops and
their use comes at no extra slice cost (if the slice LUTs are
used for the combinatorial path) in contrast to ASICs where

Table III
PERFORMANCE OF GENERATED PIPELINES (VIRTEX2PRO)

Model fmax Size Memory Multiplier Stage
(MHz) (LUT) (bit) (18x18MULT)

G5 150.5 2690 108k 3 42
G3 154.6 2020 108k 0 37
G5+ 150.5 3097 432k 3 42

449

Table II
PERFORMANCE OF THE GENERATED PIPELINE (MODEL G5)

Virtex2Pro (-5) Spartan3 (-5)
stage size fmax(MHz) stage size fmax(MHz)

LUTs FFs LUTs FFs

10 3338 940 47.1 10 3366 940 33.1
12 3402 1089 57.1 12 3411 1089 51.6
13 3276 1225 78.4 13 3302 1243 67.4
15 3297 1360 78.8 14 2889 1207 60.0
16 2878 1324 81.3 16 2886 1321 80.2
17 2883 1351 89.7 18 2888 1428 79.4
18 2889 1477 85.0 19 2889 1554 77.5
19 2871 1564 88.8 20 2889 1572 70.7
21 2860 1659 108.4 21 2861 1659 73.3
22 2754 1747 107.0 22 2754 1747 90.8
23 2860 1826 110.3 24 3021 1875 86.6
24 3015 1875 110.7 25 3033 1950 92.0

XC3S5000-5 XC3S5000-5 XC3S5000-5 XC3S5000-5

64-bit local bus

XC2V1000-6

64-bit PCI-X bus

PROGRAPE-4

Figure 8. PROGRAPE-4 Hardware Architecture.

flip-flops are very costly.

IV. COMPARATIVE IMPLEMENTATION RESULTS

In an attempt to compare our FPGA implementations
with alternative technologies, table IV shows implemen-
tation results of our gravitational force pipeline, with G5
accuracy, using ASIC, GPU and GPP technologies. Compar-
ison criteria include speed performance, power consumption,
performance in Gflops per chip, performance in Gflops
per Watt, in addition to other information such as chip
technology and year of development.

In the performance maesurement, we use a O(N2) of
leap-flog scheme for time integration, in which the ratio
of computation time for the access to the host or off chip
becomes less than 1 such as the hierarchical tree algorithm
or individual time-step scheme, the results strongly depend
on the performance of host computer and communication
speed or memory bandwidth, and the performance analysis
becomes more complex than that described in this paper.

In the power maesurement, we use difference between idle
and computing conditions. Firstly we measure the power of
a system in the idle condition, and nextly we measure again
the power of the system in computing, finally we obtain
the power consumption by subtractiong the power values
between the first and next conditions.

It is of course extremely difficult to perform totally fair
comparisons between different technologies and there are
various technologies ranging from 500 nm to 45 nm. How-
ever, if we accept that ASIC solutions for many-body sim-
ulations are extremely difficult to justify with the spiralling
cost of state-of-the-art ASIC fabrication, then programmable
and reconfigurable technologies are the implementation plat-
forms of choice for these types of applications. We first note
that GPU implementations offer the highest Gflops perfor-
mance (the G92 GPU implementation is 11x faster than the
Spartan3-based FPGA implementation), with the optimized
Q6600 Core2Quad implementation (using SSE instructions,
the Phantom-GRAPE implementation1) performing slightly
better than the Spartan3-based FPGA implementation. How-
ever, if we adjust for the chip technology used (90nm vs.
65nm) we can expect state-of-the-art FPGA solutions to
perform better than general purpose processors, although
not by much. Given the relatively higher cost of FPGAs
as well as their low level programming model (all of our
designs were captured in VHDL), GPP solutions look more
advantageous. However, the performance per Watt figure
of the Core2Quad Q6600 implementation is 34x less than
the Spartan3-based FPGA implementation. The performance
per Watt figure of the G92-based GPU implementation is
also 15x less than the Spartan3-based implementation. This
means that for very high performance, large scale, many-

1http://progrape.jp/phantom/

450

Table IV
IMPLEMENTATION RESULTS (GRAPE-5 AND G5 MODEL)

GRAPE-5 Bioler-3 Cray XD1 PROGRAPE-4 ASUS MSI Core2Quad Atom
EN8800GTX N9800GTX+ Q6600 230

Device Chip ASIC FPGA FPGA FPGA GPU GPU CPU CPU
300k gates XC2VP70-5 XC2VP50-7 XC3S5000-5 G80 G92 SSE SSE

Development Year 1997 2004 2004 2006 2007 2008 2007 2008
Chip technology 500 nm 130 nm 130 nm 90 nm 90 nm 65 nm 65 nm 45 nm

Chips/board 8 4 1 4 1 1 1 1
Pipelines/chip 2 16 10 16 N/A N/A N/A N/A
Frequency (MHz) 80 133.3 120 100 1350 1890 2400 1600
Gflops/chip 24.3 81 45.6 60.8 470.8 687.1 70.3 6.35
Gflops/board 48.6 324.2 45.6 243.2 470.8 687.1 70.3 6.35
ratio of performance 1.0 6.7 0.9 5.0 9.7 14.1 1.45 0.13
(against GRAPE-5)
Cost($) per board N/A 15000 N/A 2400 790 268 200 74
Mflops per Cost N/A 21.6 N/A 101 596 2663 352 85.8
Power Consumption 80 W 30 W N/A 5 W 148 W 122 W 49 W 3.1 W

per board
(without host)
Power Consumption 8 W 7.5 W N/A 1.3 W 148 W 122 W 49 W 3.1 W

per chip
Gflops/Watt 0.61 11 N/A 49 3.2 5.6 1.43 2.05

body simulations, FPGAs could be a viable solution on an
energy cost basis. Nonetheless, GPUs are much cheaper than
FPGAs and have a relatively easier programming model.
One could also argue that GPUs could well be clocked down
to reduce their energy consumption, at a relatively lower
performance penalty. We will conduct such experiments in
future work.

V. CONCLUSION

Many-body simulations are characterised by a high degree
of data and instruction parallelism as well as data locality.
The use of parallel computing technologies in the form
of FPGAs and SIMD architectures can thus lead to very
large speed-ups compared to implementations running on
sequential single processors. However, these technologies
vary in their cost, programming abstraction level, and power
consumption. Our experiments in the context of gravitational
force calculations in many-body simulations showed that
GPUs are very competitive in performance and performance
per cost figures as they led to the highest performance
figures. This combined with their lower cost and higher
programming abstraction level, makes them a very attrac-
tive implementation platform for many-body simulations.
Nonetheless, the performance per Watt figure favoured FP-
GAs with a factor of 15 to 1 compared to GPUs and 34
to 1 compared to GPPs. As such, we anticipate the use
of FPGAs for large scale high performance simulations,
where power consumption is a bottleneck, to be a possible
niche market for FPGAs. Future work consists in extending
the experiments conducted in this research through the use

of dynamic frequency scaling for GPU and GPP imple-
mentations, as well as extending our hardware pipeline to
molecular dynamics simulations where calculations are more
complex than those involved in astrophysical applications
and accuracy levels are higher.

REFERENCES

[1] D. Sugimoto, Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, and
M. Umemura, “A Special-Purpose Computer for Gravitational
Many-Body Problems,” Nature, vol. 345, pp. 33–+, May
1990.

[2] J. Makino and M. Taiji, Scientific Simulations with Special-
Purpose Computers — The GRAPE Systems. New York:
John Wiley and Sons, 1998.

[3] T. Fukushige, M. Taiji, J. Makino, T. Ebisuzaki, and D. Sug-
imoto, “A Highly Parallelized Special-Purpose Computer for
Many-Body Simulations with an Arbitrary Central Force:
MD-GRAPE,” vol. 468, pp. 51–61, Sep. 1996.

[4] R. Susukita, T. Ebisuzaki, B. G. Elmegreen, H. Furusawa,
K. Kato, A. Kawai, Y. Kobayashi, T. Koishi, G. D. Mc-
Niven, T. Narumi, and K. Yasuoka, “Hardware accelerator
for molecular dynamics: MDGRAPE-2,” Computer Physics
Communications, vol. 155, pp. 115–131, Oct. 2003.

[5] T. Narumi, R. Susukita, T. Ebisuzaki, G. D. McNiven, and
B. G. Elmegreen, “Molecular dynamics machine: Special-
purpose computer for molecular dynamics simulations,”
Molecular Simulation, vol. 21, pp. 401–415, 1999.

[6] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga,
N. Takada, and A. Konagaya, “Protein Explorer: A Petaflops
Special-Purpose Computer System for Molecular Dynamics

451

Simulations,” in Proc of Supercomputing ’03, Nov. 2003, (in
CD-ROM).

[7] R. A. Gingold and J. J. Monaghan, “Smoothed particle
hydrodynamics - Theory and application to non-spherical
stars,” vol. 181, pp. 375–389, Nov. 1977.

[8] J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual
review of astronomy and astrophysics, vol. 30, pp. 543–574,
1992.

[9] M. Steinmetz, “GRAPESPH: cosmological smoothed particle
hydrodynamics simulations with the special-purpose hard-
ware GRAPE,” Mothly Notice of Royal Astronomical Society,
vol. 278, pp. 1005–1017, Feb. 1996.

[10] R. Klessen, “GRAPESPH with fully periodic boundary con-
ditions - Fragmentation of molecular clouds,” vol. 292, pp.
11–+, Nov. 1997.

[11] G. R. Liu and M. B. Liu, Smoothed Paricle Hydrodynamics
— a meshfree particle method. Tuck Link: World Scientific,
2003.

[12] C. A. Brebbia, The Boundary Element Method for Engineers.
London: Pentech Press, 1978.

[13] J. Barnes and P. Hut, “A Hierarchical O(NlogN) Force-
Calculation Algorithm,” Nature, vol. 324, pp. 446–449, Dec.
1986.

[14] S. K. Okumura, J. Makino, T. Ebisuzaki, T. Fukushige, T. Ito,
D. Sugimoto, E. Hashimoto, K. Tomida, and N. Miyakawa,
“Highly Parallelized Special-Purpose Computer, GRAPE-3,”
PASJ, vol. 45, pp. 329–338, Jun. 1993.

[15] A. Kawai, T. Fukushige, and J. Makino, “$7.0/Mflops Astro-
physical N -Body Simulation with Treecode on GRAPE-5,”
in Proc of Supercomputing ’99 (Gordon Bell Prize winner),
Nov. 1999, pp. 197–206.

[16] S. Warren, M, K. Salmon, J, J. Becker, D, P. Goda, M, and
T. Sterling, “A 55 TFLOPS Simulation of Amyloid-forming
Peptides from Yeast Prion Sup35 with the Special-purpose
Computer System MDGRAPE-3,” in Proc. Supercomputing
97, in CD-ROM. IEEE, Los Alamitos, CA, 1997.

[17] T. Hamada, T. Fukushige, A. Kawai, and J. Makino,
“PROGRAPE-1: A Programmable Special-Purpose Computer
for Many-Body Simulations,” Apr. 1998, pp. 256–257.

[18] ——, “PROGRAPE-1: A Programmable, Multi-Purpose
Computer for Many-Body Simulations,” vol. 52, pp. 943–954,
Oct. 2000.

[19] G. L. Lienhart, A. Kugel, and R. Männer, “Using Floating
Point Arithmetic on FPGAs to Accelerate Scientific N-Body
Simulations,” Apr. 2002, pp. 182–191.

[20] N. Nakasato and T. Hamada, “Astrophysical Hydrodynamics
Simulations on a Reconfigurable System,” Apr. 2005.

[21] T. Hamada and N. Nakasato, “Massively Parallel Processors
Generator for Reconfigurable System,” Apr. 2005.

[22] T. Hamada, N. Nakasato, and T. Ebisuzaki, “A 236 Gflops As-
trophysical Simulation on a Reconfigurable Super-Computer,”
in SuperComputing 2005, Seattle, Nov. 2005.

[23] T. Hamada, T. Fukushige, A. Kawai, and J. Makino,
“PROGRAPE-1: A Programmable Special-Purpose Computer
for Many-Body Simulations,” in ASSL Vol. 240: Numerical
Astrophysics, 1999, pp. 427–+.

[24] T. A. Cook, H. Kim, and L. Louca, “Hardware acceleration of
n-body simulations for galactic dynamics,” in Proc. of SPIE
Field Programmable Gate Arrays (FPGAs) for Fast Board
Development and Reconfigurable Computing, Oct. 1995, pp.
115–126.

[25] K. Tsoi, C. Ho, H. Yeung, and P. Leong, “An Arithmetic
Library and its Application to the N-body Problem,” Apr.
2004, pp. 68–78.

[26] L. Nyland, M. Harris, and J. Prins, “N-body simulations on
a GPU,” in Proc of the ACM Workshop on General-Purpose
Computation on Graphics Processors, 2004.

[27] M. Harris, “GPGPU: General-Purpose Computation
on GPUs,” in SIGGRAPH 2005 GPGPU COURSE.
(http://www.gpgpu.org/s2005/), 2005.

[28] T. Hamada and T. Iitaka, “The Chamomile Scheme: An Op-
timized Algorithm for N-body simulations on Programmable
Graphics Processing Units,” 2007, astro-ph/0703100 (March
2007).

[29] T. Ito, J. Makino, T. Fukushige, T. Ebisuzaki, S. K. Okumura,
and D. Sugimoto, “A Special-Purpose Computer forN-Body
Simulations: GRAPE-2A,” vol. 45, pp. 339–347, Jun. 1993.

[30] T. Hamada and N. Nakasato, “PGR : A Software Package for
Reconfigurable Super-Computing,” Aug. 2005, pp. 366–373.

[31] L. Zhuo and V. Prasanna, K, “High Performance Linear
Algebra Operations on Reconfigurable Systems,” in Proc of
Supercomputing ’05, Nov. 2005, (in CD-ROM).

452

