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Abstract 

Background:  Discharge medical notes written by physicians contain important information about the health condi-
tion of patients. Many deep learning algorithms have been successfully applied to extract important information from 
unstructured medical notes data that can entail subsequent actionable results in the medical domain. This study aims 
to explore the model performance of various deep learning algorithms in text classification tasks on medical notes 
with respect to different disease class imbalance scenarios.

Methods:  In this study, we employed seven artificial intelligence models, a CNN (Convolutional Neural Network), a 
Transformer encoder, a pretrained BERT (Bidirectional Encoder Representations from Transformers), and four typical 
sequence neural networks models, namely, RNN (Recurrent Neural Network), GRU (Gated Recurrent Unit), LSTM (Long 
Short-Term Memory), and Bi-LSTM (Bi-directional Long Short-Term Memory) to classify the presence or absence of 16 
disease conditions from patients’ discharge summary notes. We analyzed this question as a composition of 16 binary 
separate classification problems. The model performance of the seven models on each of the 16 datasets with vari-
ous levels of imbalance between classes were compared in terms of AUC-ROC (Area Under the Curve of the Receiver 
Operating Characteristic), AUC-PR (Area Under the Curve of Precision and Recall), F1 Score, and Balanced Accuracy as 
well as the training time. The model performances were also compared in combination with different word embed-
ding approaches (GloVe, BioWordVec, and no pre-trained word embeddings).

Results:  The analyses of these 16 binary classification problems showed that the Transformer encoder model per-
forms the best in nearly all scenarios. In addition, when the disease prevalence is close to or greater than 50%, the 
Convolutional Neural Network model achieved a comparable performance to the Transformer encoder, and its train-
ing time was 17.6% shorter than the second fastest model, 91.3% shorter than the Transformer encoder, and 94.7% 
shorter than the pre-trained BERT-Base model. The BioWordVec embeddings slightly improved the performance of 
the Bi-LSTM model in most disease prevalence scenarios, while the CNN model performed better without pre-trained 
word embeddings. In addition, the training time was significantly reduced with the GloVe embeddings for all models.
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Background
Unstructured medical notes such as discharge summa-
ries are valuable health records that contain rich clinical 
information about patients’ health conditions. Some of 
the disease details may not be reflected in the structured 
data fields. Many studies have been carried out to extract 
additional information from unstructured medical notes 
and make mortality predictions based on these data alone 
[1–4]. This study aims to explore the model performance 
of various deep learning algorithms in text classification 
tasks on medical notes to help point the attention of the 
research community to the potentials of text classifica-
tion and the behaviors of various NLP (Natural Language 
Processing) algorithms on medical notes data in different 
class imbalance scenarios. The algorithms compared in 
this study include traditional recurrence networks such 
as RNN, GRU, LSTM, Bi-LSTM, as well as CNN, and 
attention algorithms such as the Transformer encoder 
and BERT-Base. The model performances were evaluated 
in terms of AUC-ROC, AUC-PR, F1 Score, and Balanced 
Accuracy. Deep learning algorithms such as RNN, GRU, 
LSTM, and Bi-LSTM models are typically used for NLP 
tasks and have achieved promising results [5–7]. They 
are designed to work with sequence data by allowing pre-
vious outputs to be used as inputs which allows flow of 
information from previous elements (and posterior ele-
ments in Bi-LSTMs) of the sequence.

GRUs, LSTMs, and Bi-LSTMs are advanced variants 
of the vanilla RNNs with additional gates (mathematical 
operations involving additional weights to be trained) 
added in an RNN unit to overcome the vanishing or 
exploding gradient problem that RNNs often suffer with 
long sequences. LSTMs have two additional gates com-
pared to GRUs which entails a better performance on 
long sequences by allowing information from further 
back to be carried over to the current unit. Bi-LSTMs 
have an additional layer (on top of the LSTM units) that 
goes backwards so that the information from posterior 
elements is passed on to previous units. This feature 
works particularly well for text data since the context 
(information from both previous elements and from pos-
terior elements) is important for interpretation of words. 
The extra gates and layer, however, consequently result in 
more complexity and longer training time.

More recently, CNNs have attracted attention for NLP 
tasks due to their superior performance especially on 

lengthy texts [8–11]. CNNs are widely used in computer 
vision such as image classification or image recognition 
[12, 13]. CNNs in computer vision feature a 2-Dimen-
sional or 3-Dimensional convolutional layer that extracts 
information from neighboring pixels and thus recog-
nizes patterns across space. CNNs in NLP tasks employ a 
1-Dimensional convolutional layer which extracts infor-
mation from adjacent words. It is not quite clear exactly 
why CNN outperforms the traditional NLP algorithms 
such as RNN, GRU, LSTM, and Bi-LSTM in many cases 
but it is widely accepted that the number of kernels in 
the 1-dimensional convolutional layer in CNN serves as 
the n-gram (n adjacent words treated as one) technique 
in NLP [14–16]. In traditional NLP algorithms, anything 
more than 3-g would be too cumbersome. CNN algo-
rithms, however, can easily adopt an 8-g or even higher 
gram technique (depending on the length of the text) 
without increasing the computational cost.

Transformers have been successfully applied to many 
NLP tasks since the introduction of the Transformer by 
Vaswani et  al. [17]. The Transformer model is a novel 
network architecture that is based solely on attention 
mechanisms, dispensing with recurrence and convolu-
tions entirely [17]. Transformers for tasks such as trans-
lation or question answering have both encoders and 
decoders, while Transformers for text classification tasks 
typically have only encoders. An encoder has two layers, 
a multi-head self-attention layer and a feedforward layer. 
Unlike the recurrent networks which process the words 
sequentially by taking the information from the previ-
ous word as input for the processing of the current word, 
the Transformer processes an input sequence as a whole. 
Another novel design of the Transformer is that it intro-
duces positional embedding which captures information 
from the order of words. The positional embeddings are 
added to the word embeddings before they are fed to 
the encoder. One major disadvantage of Transformers is 
their high computational cost especially when the text 
sequences are long. Longer sequences are dispropor-
tionately expensive because attention is quadratic to the 
sequence length due to the self-attention of each word 
with every other word in the sequence [18].

BERT (Bi-directional Encoder Representations from 
Transformers) is a transformer-based language repre-
sentation model which was designed to pre-train deep 
bidirectional representations from unlabeled text from 

Conclusions:  For classification tasks on medical notes, Transformer encoders are the best choice if the computation 
resource is not an issue. Otherwise, when the classes are relatively balanced, CNNs are a leading candidate because of 
their competitive performance and computational efficiency.
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BooksCorpus and English Wikipedia [18]. Two architec-
tures of the BERT model (BERT-Base and BERT-Large) 
were introduced in the original paper. The BERT-Base 
model has 12 Transformer encoders, 12 self-attention 
heads in each encoder, a hidden size of 768, and a total of 
110 M parameters. The BERT-Large model has 24 Trans-
former encoders, 16 self-attention heads in each encoder, 
a hidden size of 1024, and a total of 340 M parameters. 
The BERT model achieved state-of-the-art performance 
on a number of natural language understanding tasks 
when it was published. It has been successfully applied in 
many NLP tasks since then [19–21]. One major drawback 
of BERT is the costly computational resources needed to 
train or fine-tune the model due to the large number of 
parameters [22].

Data
In this study, we used de-identified discharge summary 
data made available by Harvard University in 2008 for a 
challenge to classify obesity and its comorbidities with 
multiple classes (presence, absence, or questionable) 
for each disease that were annotated with textual judg-
ments and intuitive judgments, respectively [23]. The 
data consist of 1,237 unique discharge summaries from 
the Partners HealthCare Research Patient Data Reposi-
tory and were annotated from a list of 16 disease condi-
tions by three experts from the Massachusetts General 
Hospital [24]. The literature on classification tasks using 
this dataset is focused on optimizing the macro-F score 
of the multi-class classification task by primarily employ-
ing rule-based methods (or rule-based methods com-
bined with traditional machine learning algorithms 
such as SVM) which involved heavy text preprocessing 
that are tailored for these specific discharge summaries 
in association with these 16 diseases [24]. For example, 
Ware et al. employed the Apelon terminology engine to 
provide synonym sets for drug names and used Domain 
Specific Language (DSL) to frame the rules to identify 
the presence of a disease [25]. Yang et al. built a diction-
ary for diseases, symptoms, treatments, medications, and 
their synonyms [26]. Solt et al. also developed a regular 
expression driven string replacement dictionary for all 
occurrences of relevant abbreviations, synonyms, plain 
English equivalents, spelling variants, frequent typos, 
suffixed forms, etc. [27].

The goal of this study is to compare the behavior of the 
7 deep learning algorithms in terms of their performance 
on the same datasets, their training efficiency, and their 
ability to handle imbalanced classes, as well as the effect 
of two types of word embedding approaches. Therefore, 
we simplified the multi-class task into a binary-class 
problem for the intuitive labels only and applied gen-
eral text preprocessing. We converted the data into 16 

datasets for binary classifications, each with the same 
1,237 discharge summaries but a different binary out-
come variable denoting the presence or absence of a par-
ticular disease. The disease prevalence of the 16 disease 
conditions in the datasets are listed in Table 1. The dis-
ease prevalence ranges from 5 to 73%, with hypertriglyc-
eridemia being the least prevalent and hypertension the 
most prevalent. The disease prevalence also reflects the 
class imbalance level between the positive (disease pres-
ence) and negative (disease absence) classes in our binary 
classification problems.

The discharge summary notes in the dataset include 
contents such as the description of the current illness, 
medical history, information about physical examina-
tion and laboratory examination, treatment or services 
provided if applicable, and discharge medications. These 
unstructured medical notes require special treatment 
before they can be fed into deep learning algorithms. 
We first converted all words to the lower case so that 
words such as “disease” and “Disease” are treated as the 
same word. We then removed numbers and punctua-
tions which do not carry significant information about 
the diagnoses. Standard stop words (the most common 
words in any natural language which do not add much 
value in NLP modeling) such as “the”, “this”, “that” were 
removed as well as template words such as “discharge”, 
“admission”, “date”, and words with only one or two char-
acters such as “mg”. Detailed descriptive statistics of the 
variables denoting the number of words and characters 
in the discharge summaries before and after cleaning are 
shown in Table  2. In particular, the average number of 
words before and after cleaning were 1170 and 557 with 
a minimum of 146 and 50 and a maximum of 4280 and 
2098, respectively. Similarly, the average number of char-
acters before and after cleaning were 6870 and 4429 with 
a minimum of 903 and 410 and a maximum of 25,842 and 
16,976, respectively.

Table 1  Disease prevalence (N = 1,237)

OSA* obstructive sleep apnea, PVD* peripheral vascular disease , OA* osteo 
arthritis, GERD* gastroesophageal reflux disease, CHF* congestive heart failure, 
CAD* coronary artery disease

Disease Disease 
Prevalence

Disease Disease 
Prevalence

Hypertriglyceridemia 5% GERD* 20%

Venous Insufficiency 7% Depression 20%

Asthma 13% Obesity 40%

Gout 13% CHF* 43%

OSA* 14% Hypercholesterolemia 47%

PVD* 15% CAD* 55%

Gallstones 15% Diabetes 66%

OA* 18% Hypertension 73%
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The dataset was then randomly split (stratified 
according to the disease label) into training and test 
sets containing 75% and 25% of the data, respectively, 
for 10 iterations and the average metrics from the 10 
iterations were used for comparison of the model per-
formance. In each iteration, the dataset was randomly 
split with stratification and the models were trained 
on the same training set and tested on the same test 
set. Regular tokenizing with Keras Tokenizer was per-
formed to convert text into numbers for all models 
except for BERT which uses a different tokenization 
technique (WordPiece tokenization) [18, 28]. The regu-
lar tokenizing procedure takes the following two steps. 
First, it creates a word-index dictionary based on word 
frequency in the training set so that every unique word 
is assigned an integer value as the index (an integer 
between 1 and the maximum number of unique words 
in the texts. 0 is reserved for padding.) Then, it trans-
forms each text to a sequence of integers by taking each 
word in the discharge summary note, looking it up in 
the word-index dictionary, and replacing it with its cor-
responding index. Next, the medical notes in the test 
set were converted to sequences of integers by looking 
up each word in the word-index dictionary previously 
constructed from the training set. The reason that the 
word-index dictionary is built based on the training set 
only is to avoid information leaking from the test set, 
because the test set is supposed to contain new data 
that the model has never seen. At this point, all medi-
cal notes have been converted to numbers but they are 
of different lengths because each discharge note has 
different length. We arbitrarily chose the maximum 
sequence length to be 557 (the average length of the 
sequences in the dataset) and forced all sequences to be 
of the same length by truncating the longer sequences 
and padding the shorter sequences with 0’s. After these 
preprocessing steps, the original discharge summary 
notes have been transformed into sequences of integers 
of the same length and ready to be fed into the deep 

learning models. For the pre-trained BERT-Base model, 
the maximum sequence length allowed is 512.

Methods
A CNN model with eight 1-dimensional filters and a ker-
nel size of eight, a RNN model with eight units, a GRU 
model with eight units, a LSTM model with eight units, 
a Bi-LSTM model with eight units, and a Transformer 
encoder with one encoder and two self-attention heads 
were fit on all 16 datasets with a batch size of 32 and 20 
epochs. A pre-trained BERT-Base model with a 128-unit 
feed-forward layer before the classification output layer 
was also fit with a batch size of 32 and 3 epochs. All mod-
els had a Word Embedding layer (word representations 
to capture the similarity between words) with an input 
length of 557 and an output dimension of 200. The BERT-
Base model had both word embeddings and positional 
embeddings of dimension 512 by 768.

Since the focus of this study was to compare the per-
formance of different models instead of optimizing a 
specific model, we tried to use the same and/or default 
hyperparameters for all models. There have been many 
studies and debates about the choice of hyperparameters 
[29–31]. The batch size can be any number between 1 
and the number of samples in the training set. There are 
many factors that could affect the optimal choice of the 
batch size such as available computational resource, the 
size of the data, the choice of the optimizer and the learn-
ing rate. Generally speaking, the larger the batch size, 
the more likely the algorithm is to converge to the global 
minimum but more memory is required during the train-
ing process. When the batch size is too small, the model 
is more prone to noisiness and thus requires smaller 
learning rate for stability which results in more training 
steps and thus longer training time. There can be a sweet 
spot but it is dataset and model specific and requires a 
trial and error search. Commonly used batch sizes are 
16, 32, and 64 for small and moderate-sized datasets. We 
chose to use 32 because our dataset was relatively small 

Table 2  Descriptive statistics

Descriptive Statistics Number of Words Number of Characters

Before Cleaning After Cleaning Before Cleaning After Cleaning

Minimum 146 50 903 410

25% Percentile 819 391 4798 3089

Median 1084 517 6391 4098

Mean 1170 557 6870 4429

75% Percentile 1425 687 8404 5420

Maximum 4280 2098 25,842 16,976

Standard Deviation 506 242 2960 1931
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and the input sequences were long. Similar to the choice 
of the batch size, the choice of the number of epochs 
is also dataset and model specific. Larger number of 
epochs requires longer training time and could result in 
overfitting while small number of epochs could result in 
underfitting. We chose to use 20 epochs for all models 
except for BERT (3 epochs). The authors of BERT recom-
mended 2–4 epochs for fine-tuning BERT [18]. Dropout 
was used to mitigate the overfitting problem. Commonly 
used dropout rates are between 0.1 and 0.5. We chose to 
use 0.3 for all models. For other hyperparameters such 
as learning rate, activation function, and optimizer, we 
chose to use the default values for all models.

Table 3 shows the architecture information of the seven 
models. The models were evaluated in terms of AUC-
ROC (Area Under the Curve of the Receiver Operat-
ing Characteristic), AUC-PR (Area Under the Curve of 
Precision and Recall), F1 Score, and Balanced Accuracy 
(detailed reports on these metrics including Precision, 
Recall, and Specificity are shown in Table  4–9 in the 
Appendix).

Word embeddings have replaced the traditional Bag-
of-Words (BoW) representations (e.g. TF-IDF, Count 
Vectorization) and have become essential in NLP tasks. 
They are the projection of tokenized word vectors onto 
a real-valued embedding matrix that are learned from 
the data during training or pre-trained on large datasets. 
One advantage of word embeddings over BoW is their 
significantly lower dimension that at most equals the 
maximum length of the input sequences (versus the max-
imum number of unique words in the dataset for BoW). 
Another advantage is their dense feature (less zeros for 
word embeddings compared to the sparse feature of 
BoW) [32]. Pre-trained word embeddings are widely used 
in NLP tasks with small datasets because they better cap-
ture the semantic and syntactic meaning of a word since 
they are trained on large datasets. Many different models 

for creating pre-trained word embeddings such as Word-
2Vec, GloVe, fastText, and BioWordVec among others 
have been developed. In this study, we implemented the 
GloVe embeddings (dimension 200) and the BioWordVec 
embeddings (dimension 200) on all models except for the 
Transformer encoder and BERT-Base and no pre-trained 
word embeddings for all models (word embeddings of 
dimension 200 learned from data during training). Pre-
trained word embeddings were not used on the Trans-
former encoder and BERT-Base in this study because 
they are not a priority in the design of Transformers 
and BERT additionally requires special tokens for input 
sequences such as [CLS] and [SEP]. GloVe was trained 
on five corpora of varying sizes, including Wikipedia, 
Gigaword and web data from Common Crawl5 [33]. Bio-
WordVec embeddings were trained on biomedical text 
and a biomedical controlled vocabulary called Medical 
Subject Headings (MeSH) to accommodate for the NLP 
needs in the biomedical domain [34].

Results
Figure 1 (a, b, c, d) shows the AUC-ROC, AUC-PR, F1 
Score, and Balanced Accuracy of the seven models for 
all 16 datasets ordered from lowest to highest accord-
ing to the disease prevalence. The Transformer encoder 
produced the highest AUC-ROC for 13 datasets (the 
highest of the 13 is 0.926 for Diabetes), the highest 
AUC-PR for 14 datasets (the highest of the 14 is 0.954 
for Diabetes), the highest F1 Score for 15 datasets (the 
highest of the 15 is 0.905 for Diabetes), and the highest 
Balanced Accuracy for 14 datasets (the highest of the 14 
is 0.939 for Diabetes). CNN exceeded the Transformer 
encoder for 3 datasets in terms of AUC-ROC (0.702 
for Hypertriglyceridemia, 0.883 for CHF, and 0.882 for 
CAD), 2 datasets in terms of AUC-PR (0.171 for Hyper-
triglyceridemia, and 0.897 for CAD), 1 dataset in terms 
of F1 Score (0.822 for CAD), and 2 datasets in terms 

Table 3  Model architectures

Model Number of Filters/
Units/Encoders

Embedding 
Dimension

Max 
Sequence 
Length

Dropout Activation 
Function

Optimizer Total Parameters

CNN 8 200 557 0.3 ReLU Adam 5.51 M

RNN 8 200 557 0.3 ReLU Adam 5.50 M

GRU​ 8 200 557 0.3 ReLU Adam 5.50 M

LSTM 8 200 557 0.3 ReLU Adam 5.50 M

Bi-LSTM 8 200 557 0.3 ReLU Adam 5.51 M

Transformer 
Encoder

1 encoder (2 
heads)

200 557 0.3 ReLU Adam 5.94 M

BERT-Base 12 encoders (12 
heads)

768 512 0.3
(fine-tune layer)

ReLU (fine-tune 
layer)

Adam (fine-tune 
layer)

110 M
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of Balanced Accuracy (0.823 for CAD, and 0.863 for 
Hypertension). The values of the F1 Score and/or the 
Balanced Accuracy were unavailable for some models 
due to zero values for the True Positives (actual disease 
presence correctly predicted) which was encountered 
when the disease prevalence was less than 20%. The 
zero values for the True Positives occur when the algo-
rithm predicts all positive cases as negative. Similarly, 
when a good portion of the positive cases (which can 
be a very small number in a small sample) are mis-
classified, the AUC-PR, F1 score, and the Balanced 
Accuracy would be low, while the AUC-ROC and the 
overall accuracy can still be high. This is not surprising 
because when the classes are highly imbalanced and the 
sample size is small, there are not many minority cases 
for the algorithms to learn the distinct characteristics 
of the minority class, and the cost for misclassifying 
minority cases is small even when all minority cases are 
misclassified.

Sordo et. al. reported that, as the sample size increases, 
machine learning algorithms (Naïve Bayes, SVM, and 
Decision Trees) show a substantial improvement in per-
formance in predicting the smoking status of a patient 
from text excerpts extracted from narrative medical 
reports [35]. This is reasonable because the algorithms 
need to “learn” the latent information in the data by being 
exposed to a large enough amount of data in both classes. 
Given our small sample size (a total of 1,237 lengthy 
medical notes) and the fact that deep learning algorithms 
are data hungry, the performance of the Transformer 
encoder and the CNN algorithm are quite promising on 
the relatively balanced datasets. The datasets on which 
the Transformer encoder and the CNN algorithm per-
formed poorly were all highly imbalanced and the other 
five models performed even worse on them. The low 
performance on the imbalanced datasets is a result of 
having too few samples in the minority class for the algo-
rithms to learn from, or the number of minority cases in 

Fig. 1  Model Performance. (c. F1 Score* and d. Balanced Accuracy*: some points in these graphs are missing due to NA values resulted from zero 
values for the True Positives in the highly imbalanced datasets)
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the training set not big enough to represent the minority 
class in the test set.

Table  4 shows how small the sample sizes are in the 
minority class in the training set, especially when the 
classes are highly imbalanced. For the datasets where the 
disease prevalence is less than 10%, the number of sam-
ples in the minority class in the training set is no more 
than 62 which is challenging for any algorithm to perform 
well. As shown in Fig.  1 (b, c, d), as the prevalence (or 
the number of samples in the minority class) increases, 
the performance of all models improved substantially 

in terms of AUC-PR, F1 score, and the Balanced Accu-
racy. Therefore, when used on big enough datasets (with 
a large enough number of samples in both classes), these 
algorithms could render excellent performance.

Figure  2 displays the training time of all seven algo-
rithms averaged over all 16 classification tasks (on a 
computer with Intel(R) Core(TM) i7-6560U CPU @ 
2.20  GHz, and 16  GB RAM for). The CNN model ran 
consistently faster than all other models in all tasks. On 
average, CNN ran faster by as much as 17.6% than RNN 
which was the second fastest algorithm, 91.3% faster than 

Table 4  Number of samples in each class in training and test sets

Disease Prevalence Training Set Test Set

Disease Presence 
Presence

Disease Absence Disease Presence Disease 
Absence

Hypertriglyceridemia 5% 50 878 17 292

Venous Insufficiency 7% 62 865 21 289

Asthma 13% 123 805 41 268

Gout 13% 120 808 40 269

OSA 14% 129 799 43 266

PVD 15% 135 793 45 264

Gallstones 15% 141 787 47 262

OA 18% 168 760 56 253

GERD 20% 184 743 62 248

Depression 20% 187 741 62 247

Obesity 40% 374 554 125 184

CHF 43% 402 526 134 175

Hypercholesterolemia 47% 432 496 144 165

CAD 55% 512 416 170 139

Diabetes 66% 616 312 205 104

Hypertension 73% 677 250 226 84

Fig. 2  Average training time
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the Transformer encoder and 94.7% faster than BERT-
Base. The BERT-Base model is the most time consum-
ing due to the large number of parameters being fed to 
the top layer even though it was only fine-tuned using 3 
epochs.

Figure 3 shows the model performance with and with-
out pre-trained word embeddings. There was slight 
improvement in terms of F1 Score, and Balanced Accu-
racy for RNN, GRU, and LSTM with both the GloVe and 
BioWordVec embeddings when the disease prevalence is 
greater than 50%. BioWordVec embeddings performed 
slightly better than GloVe embeddings in most cases, and 
the improvement is the most significant for the Bi-LSTM 
model. For the CNN model, the performance is better 
without pre-trained word embeddings.

Figure  4 shows the training time of the models with 
and without pre-trained word embeddings averaged 
over all iterations and all datasets. Both pre-trained word 
embeddings shortened the training time significantly for 

all models. Models with the GloVe embeddings ran the 
fastest. The training time of Bi-LSTM was shortened by 
as much as 61% with the GloVe embeddings than without 
pre-trained embeddings.

Discussion
Medical notes are often lengthy and thus constitute 
high-dimensional data. High-dimensional data (with a 
relatively small sample size) can be challenging due to 
its inevitable overfitting problems. The longest discharge 
summary in our data had 2,098 words after cleaning 
while the sample size was only 1,237. This issue was miti-
gated by the following treatments of the data. First, after 
tokenizing, the discharge notes of different lengths were 
forced into the same arbitrary length (557 in our study) 
by truncating the longer notes and padding the shorter 
notes with 0  s. There was no formula for the choice of 
the length, but Ying Wen et al. reported that a length that 
is close to the average length of the texts in the training 

Fig. 3  Model performance with and without Pre-trained Word Embeddings. (c. F1 Score* and d. Balanced Accuracy*: some points in these graphs 
are missing due to NaN values resulted from zero values for the True Positives in the highly imbalanced datasets)
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set generally produces better results. If the length is too 
small, it will result in a great loss of information; if the 
length is too large, it will lead to sparse data in shorter 
notes and will include more noise from the longer notes 
[32]. Second, a relatively small number of epochs (20 
epochs) was used to train the models to avoid the models 
memorizing the training data which is another source of 
overfitting with high-dimensional data.

In this study, the Transformer encoder stood out 
among all models in nearly all class imbalance scenarios. 
Its strength lies in the self-attention feature where all 
other words in the sequence are considered at once when 
encoding a specific word which effectively resolves the 
issue of “forgetting” information from previous words in 
long sequences that recurrent networks often encoun-
ter. CNN also outperformed the other five models and 
achieved a comparable performance to the Transformer 
encoder when the disease prevalence is close to or 
greater than 50%. Somewhat surprisingly, BERT-Base, as 
a powerful NLP model, performed poorly in all scenarios. 

It is likely due to the fact that it was trained on general 
text, not on medical text and thus failed to capture the 
information and the relationships of medical words. 
In addition, the maximum sequence length allowed in 
BERT-Base is 512 while the average length of the dis-
charge summary notes in the dataset is 557 which could 
lead to too much loss of information.

The results for the five models with different word 
embeddings show that the BioWordVec embeddings 
slightly improved the performance of the Bi-LSTM model 
for some datasets. In general, models with BioWordVec 
embeddings performed slightly better than those with 
GloVe embeddings which is reasonable since the Bio-
WordVec embeddings were trained on biomedical text 
while Glove embeddings were trained on corpora that 
are not in the biomedical domain. The reason that the 
improvement with BioWordVec was not quite noticeable 
may be due to the fact that many medical words (espe-
cially medication names such as zanflex, fondapurinox, 
diurhesis) and mis-spelled words (such as dopthromycin, 

Fig. 4  Average training time with and without pre-trained word embeddings
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anestheteic, amoxicil) in the dataset were still not rec-
ognized by BioWordVec. As expected, even more words 
were not recognized by GloVe which presumably contrib-
uted to the faster training time.

When the classes were highly imbalanced (disease 
prevalence lower than 30% or higher than 70%), all mod-
els performed poorly with very low AUC-PR and very 
low F1 Score and Balanced Accuracy (or even no avail-
able F1 Score and/or Balanced Accuracy). This is mainly 
due to unequal misclassification costs where misclassify-
ing the minority class does not result in too much cost. 
This is especially true when the dataset is small and there 
are too few samples in the minority class to matter when 
misclassified. When the dataset is large, under-sampling 
the majority class, over-sampling the minority class, 
or a combination of the two can be used to balance the 
classes.

For small datasets, if collecting more data from the 
minority class is not feasible, using data augmentation 
(SMOTE, back-translation, random swap, and random 
deletion, etc.) to increase the number of samples in the 
minority class may help improve the performance of the 
models [19, 23–25]. In addition, for lengthy text data, the 
length of the text sequence to be fed into the model may 
also affect model performance since a short sequence 
may lose too much information and a long sequence may 
result in sparse data and introduce more noise as well as 
longer training time and overfitting problems [36–38]. 
If medical expert consultation is available, applying text 
preprocessing methods such as those implemented in 
some of the top 10 i2b2 challenge solutions should also 
help improve the model performance [24]. For example, 
abbreviations are very common in medical notes, and 
expanding them should help improve the results since 
otherwise they are often treated as unknown words and 
thus not contributing any information. In addition, most 
drug names are also not recognized and tagging drug 
names that are strongly indicative of a certain disease will 
also help improve prediction accuracy.

Conclusion
In the binary text classification tasks studied, the Trans-
former encoder stood out among all algorithms studied 
(in terms of model performance metrics such as AUC-
ROC, AUC-PR, F1 Score, and Balanced Accuracy). 
When the classes were more balanced, the CNN model 
performed equally well with markedly shorter training 
time. When the dataset was highly imbalanced with the 
positive class (disease presence) as the minority, AUC-
ROC may be inflated, and AUC-PR may be a more reli-
able metric to evaluate model performance. In turn, 

when the dataset is highly imbalanced with the negative 
class (disease absence) as the minority, AUC-ROC may 
be a more accurate measure of model performance. In 
addition, domain specific pre-trained word embeddings 
such as BioBERT [39] and ClinicalBERT [40, 41] may 
help yield better results since the word embeddings 
are trained on medical text using the powerful BERT 
model. In summary, for classification tasks on medical 
notes, Transformer encoders are the best choice if the 
computation resource is not an issue. Otherwise, when 
the classes are relatively balanced, CNNs are a leading 
candidate because of its comparable performance and 
computational efficiency.
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