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Abstract—In the traditional signal model, signal is assumed to
be deterministic, and noise is assumed to be random, additive and

uncorrelated to the signal component. A hyperspectral image has

high spatial and spectral correlation, and a pixel can be well pre-
dicted using its spatial and/or spectral neighbors; any prediction

error can be considered from noise. Using this concept, several al-

gorithms have been developed for noise estimation for hyperspec-
tral images. However, these algorithms have not been rigorously

analyzed with a unified scheme. In this paper, we conduct a com-

parative study for such linear regression-based algorithms using
simulated images with different signal-to-noise ratio (SNR) and

real images with different land cover types. Based on experimental

results, instructive guidance is concluded for their practical appli-
cations.

Index Terms—Hyperspectral, multiple linear regressions, noise

estimation.

I. INTRODUCTION

T HE development of high spectral resolution image sensors

improves the capability of monitoring the Earth system

and human activity on the Earth. Due to the fact that hyperspec-

tral imaging spectrometers adopt very narrow band intervals,

energy acquired in each band is not enough to generate high

signal-to-noise ratio (SNR). Spectral features in hyperspectral

imagery (HSI) can be easily confused as a result of noise influ-

ence. Only when the level of noise is quantitatively lower than

the depth of spectral absorption, the spectral feature can be rec-

ognized [1]. In HSI processing, the performance of many algo-

rithms commonly is affected by noise, such as feature extraction

[2], classification [3], spectral unmixing [4], and target detec-

tion [5], because most of these algorithms assume a signal/noise

model in their formulas. Hence, accurate noise estimation can

be beneficial for them in HSI information exploitation.

The noise in HSI usually belongs to one of two types: random

noise and periodic noise. Periodic noise has fixed pattern and
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can be removed using suitable procedures. However, random

noise cannot be predicted in advance and also cannot be re-

moved completely [6]–[8]. Therefore, random noise mainly is

concerned in information exploitation. The random noise in HSI

is generally assumed to be additive and uncorrelated with the

signal [6]–[11]. The signal model described here can be ex-

pressed as

(1)

where is the image digital number (DN) at coordinate

in band , and are signal and noise components

of , respectively. The noise in HSIs generally is a normally

distributed, zero-mean random process with a Gaussian proba-

bility density function (PDF), , given as

(2)

where is the standard deviation (SD) of the noise. Here, it is as-

sumed that signal is deterministic and random noise is additive

and uncorrelated to signal. Note that we focus on the estimation

of noise standard deviation in each band.

A HSI has high spatial and spectral correlation, and a pixel

can be well predicted using its spatial and/or spectral neighbors;

any prediction error can be considered from noise [9]. Using this

concept, several algorithms have been developed for hyperspec-

tral noise estimation. One simple noise estimation algorithm, re-

ferred to as the homogeneous area (HA) method, uses the mean

of standard deviations of several visually homogeneous regions

as noise estimate [10]. However, in this method, the homoge-

neous areas within an image need to be manually selected, and

in most cases, the homogeneous areas are not existent or dif-

ficult to be identified. Curran and Dungan [1] developed the

geo-statistical (GS) method, where some narrow homogeneous

strips are selected to estimate the noise. Like HA, this method

is also difficult to be automated, and requires to predetermine

strictly homogeneous areas. Another disadvantage of these two

methods is that the noise estimated from local homogeneous

segments can not represent the noise level of the entire image.

To improve the performance, several algorithms are developed

to more reliably estimate noise with less human intervention,

such as local means and local standard deviations (LMLSD)

method [11], spectral and spatial de-correlation (SSDC) method

[9], homogeneous regions division and spectral de-correlation

(HRDSDC) method [12], and residual-scaled local standard de-

viation (RLSD) method [13]. Up to now, these algorithms were

partially compared using few HSIs only, and have not been rig-

orously analyzed under a unified scheme. In this paper, we in-

vestigate their performance when noise level and image con-
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Fig. 1. Developing course of noise estimation algorithms, where real line
presents improvement, and dashed line means that one algorithm is developed
to deal with questions in another algorithm.

tents are changed. The result and conclusion will be beneficial

for appropriate algorithm selection in image pre-processing.

The remainder of this paper is organized as follows. Section II

focuses on an overview of several linear regression-based noise

estimation algorithms, such as LMLSD, SSDC, HRDSDC,

and RLSD. Section III describes experimental image database,

accuracy assessment framework, and comparative analysis

methods. In Section IV, comparative performance analysis for

these algorithms using simulated and real hyperspectral images

are presented and discussed. Section V draws the conclusions.

II. LINEAR REGRESSION-BASED NOISE ESTIMATION

ALGRITHMS

Hyperspectral data are corrupted by wavelength-dependent

and sensor-specific noise, which significantly impacts data and

resulting data products. Modeling this noise is an important

topic related to hyperspectral sensing [14], [15]. During past

years, several algorithms have been developed to estimate noise

in HSIs, as shown in Fig. 1. HA is one of the earliest noise es-

timation algorithms, and still is used in laboratory or for hyper-

spectal image only acquired at calibration site. GS is seldomly

used or improved in applications. LMLSD is developed to solve

some questions shown in HA, such as low applicability and

automaticity. To reduce low sensitivity with land cover types

shown in LMLSD, SSDC is developed. RLSD and HRDSDC

can be considered as improvements of LMLSD and SSDC. In

this paper, only noise estimation algorithms based on signal

independent model are analyzed and assessed. There are also

some new algorithms with signal dependent model lately [16],

[17]. These algorithms are not discussed in this paper.

A. Description of Main Algorithms

1) LMLSD: The LMLSD algorithm assumed that an HSI is

made up of many homogeneous blocks and few heterogeneous

blocks. Statistical analysis of these blocks can be used to esti-

mate noise. In LMLSD, an entire image is uniformly divided

into non-overlapping small blocks with pixels. The local

mean (LM) of each block in band is calculated by

(3)

Here, LM of a block is related to the signal, and it is assumed

that the deviation from the local mean is due to noise. Thus, the

local standard deviation (LSD) of each block is estimated by

(4)

where LSD is considered as noise standard deviation of the

block. Within the range of the minimum and maximum value

of these standard deviations, a number of bins of equal width

are delineated. The number of blocks falling into each bin is

counted, and the bin with the largest number of blocks repre-

sents the noise standard deviation of the entire image. The mean

value of LSDs in this bin is considered as the estimated noise of

the HSI.

2) SSDC: In SSDC, the high between-band (spectral) and

within-band (spatial) correlations are used to de-correlate an

image data via linear regression, and the remaining unexplained

residuals are the estimates of noise. In this method, the image

also is uniformly divided into non-overlapping small blocks

with pixels. The pixel value at in band can be

predicted by its spatial and spectral neighbors and the residual

is calculated as

(5)

where is the linear predicted value of , and is com-

puted as

(6)

where expresses spatial adjacent pixel of , , , , and

are the coefficients determined by multiple linear regressions

(MLR). The LSD of all the residuals in a block is computed

using

(7)

The mean value of these standard deviations is considered as

the noise estimate for the entire image. Note that (5) and (6)

use two spectral neighbors and one spatial neighbor for MLR.

If more neighbors of are also used, then more coefficients

are to be determined, similarly with the MLR method.

3) HRDSDC: In most remote sensing images, the scene con-

sists primarily of many regions arranged in a patchworkmanner,

where each region corresponds to one class of land cover type.

These homogeneous regions are usually related to objects in the

scene. When the sampling interval is smaller than the size of an

earth object, the probability of transition from state to state

is much greater if , than if . Based on this theory,

the segmentation algorithm can be used to divide an image into
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TABLE I
SUMMARY OF NOISE ESTIMATION ALGORITHMS DISCUSSED IN THIS PAPER

many homogeneous regions, and to produce a class map of the

scene. In this class map, each region contains one earth object,

and each spectrum of the same region has a similar correla-

tion between the data in one band and the data in its two adja-

cent bands. HRDSDC employs this general internal regularity

of earth objects in natural scene and the strong spectral correla-

tions of HSIs. In HRDSDC, an image segmentation algorithm is

applied first to partition the image into spectrally homogeneous

regions. Then, MLR is applied to each homogeneous region to

calculate residuals using spectral neighbors as follows

(8)

where , , and are the coefficients computed using MLR.

At last, the mean value of residual standard deviations in local

regions is used as the global noise estimate.

4) RLSD: RLSD can be considered an effective improve-

ment of LMLSD. In each block, instead of using LSD as local

noise estimate, the residuals from the MLR in the spectral do-

main are used for local noise estimation. Therefore, RLSD also

incorporates the merit of SSDC. Following LMLSD and SSDC,

RLSD also adopts the strategy to divide a band image into many

small blocks. Then the residuals in each block are estimated by

using MLR as shown in (8). This procedure leaves residuals

which are much more likely noise than the original data used

in LMLSD. The standard deviation value of residuals, so-called

LSD of residuals, actually approaches the noise in the block.

RLSD adopts the same statistical methods described by Gao

[11] to obtain the best estimate of band noise. The histogram

of these LSDs is computed, and the one with the maximum

counts is treated as the noise standard deviation for the entire

image. In general, RLSD can produce more accurate estimate

than LMLSD.

B. Summary

A brief overview of noise estimation algorithms investigated

in this paper is summarized in Table I. It can be seen that all

of them are developed based on some assumptions. For exam-

ples, HA and GS assume that land cover of an image is strictly

homogeneous, So they are suitable to images containing ho-

mogeneous area which is covered by only one earth object.

LMLSD assumes that an image mainly contains many homo-

geneous blocks, and is suitable to images with relatively high

spatial resolution and simple texture. On the contrary, RLSD,

SSDC and HRDSDC assume high spectral correlation, which is

reasonable for HSIs.

Although these noise estimation algorithms make different

assumptions, they have similar three steps, as shown in Fig. 2:

1) image spatial partition, 2) LSD estimation of noise, and

3) global noise estimation based on local information. In HA

and GS, to get strictly homogeneous area, region of interest

(ROI) selection is the key procedure; LMLSD, RLSD, and

SSDC divide an image into many blocks, and the block size

selection is a factor influencing the performance; in HRDSDC,

image segmentation is used for spatial partition. When image

spatial partition is finished, LSD estimation of noise will be

applied on these blocks or homogeneous regions. LMLSD uses

original data to calculate LSD; on the contrary, RLSD, SSDC,

and HRDSDC use residuals calculated by linear regression to

estimate noise. As for global noise estimation, two methods are

adopted: LSD statistics method by LMLSD and RLSD, and the

mean value of residual LSDs by SSDC and HRDSDC.

III. EXPERIMENTAL DESIGN

This section designs two experiments to assess performances

of noise estimation algorithms. The first experiment based on

simulated images is to validate the accuracy of noise estimates

for images with different values of SNR. The second experi-

ment based on real images is to assess the robustness of noise

estimation algorithms for images with land cover change.

A. Comparison With Simulated Images

To generate simulated images, the linear mixture model

(LMM) is used with specific level of additive noise. Let

be a pixel at spatial coordinate . It can be considered as

a -dimensional ( -D) vector, where is the number of

spectral bands. This spectrum may be modeled in terms of a

linear combination of several endmembers using the following

expression [4]:

(9)

where is the number of endmembers, and is a scalar value

representing the fractional coverage of endmember vector
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Fig. 2. Summary of primary techniques used in noise estimation algorithms.

Fig. 3. AVIRIS image of Cuprite (left) and endmember spectra (right) extracted by NFINDR.

in pixel . With additive noise [4], [18], [19], (9) can be

rewritten as:

(10)

where can be modeled by using classical additive white

Gaussian noise [20].

As shown in Fig. 3, a Cuprite image collected by airborne

visible/infrared imaging spectrometer (AVIRIS) on 19/06/1997

is used to generate a simulated image with controlled noise

level, which consists of 500 500 pixels and 221 spectral

bandswith a nominal ground resolution of 20 m, spectral reso-

lution of 10 nm, and 16 bit radiometric resolution. This image

is a typical data for spectral unmixing research and application.

Many spectral unmixing algorithms based on LMM have been

successfully tested through Cuprite image shown in Fig. 3

[21]–[25]. In this study, endmember spectra and abundance

maps are extracted with minimum noise fraction (MNF) trans-

form [26], N-FINDR method [21], and unconstrained least

squares method [18]. N-FINDR is one of the most widely used

algorithms for endmember extraction. However, due to the re-

quirement of volume calculation algorithm used in N-FINDR,

a first step of dimensionality reduction should be performed

by using MNF transform [21], [27]. Then endmember spectra

and abundance maps are combined to form a new HSI using

(9). The detail flow of this experiment design is shown in

Fig. 4. Due to the controlled environment, true noise level is

known for precise assessment of noise estimates. Here, two

simple statistical measurements are used to evaluate the error

of estimated noise: mean of absolute error (MAE) and standard

deviation of absolute error (SDAE), which can be represented

as

(11)
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Fig. 4. Schematical description of the approach used to assess noise estimation
accuracy with simulated data.

where and are true and estimated noise value at band ,

respectively, and

(12)

In addition, for statistical experiment used in this part, we also

provide significance level analysis of noise estimation results

based on T-test.

In this study, based on estimation of the virtual dimension-

ality, 14 components of MNF are selected for N-FINDR to ex-

tract 15 endmembers. Reflectance spectra of these endmembers

are shown in Fig. 3. Note that, in this study, precision of end-

member extraction and abundance inversion is not important;

instead, combination result of endmember spectra and abun-

dance maps is more concerned. 15 abundance maps and one

error map of Cuprite image shown in Fig. 3 are calculated by

unconstrained least squares method using radiance spectra of

these endmembers. In image simulation, the error map consid-

ered as uncertain information is ignored. Therefore, these radi-

ance spectra of endmembers and abundance maps are combined

to generate a new image. The simulated image and its kaolinite

spectrum are shown in Fig. 5. It can be seen that spatial texture

and spectral curve of simulated image are similar to the original

image. Due to the fact that these endmember spectra and abun-

dance maps are treated as signals, the simulated image is consid-

ered as combination of signal. Thus, different levels of Gaussian

random noise are added, which is determined by SNR, such as

150:1, 110:1, 90:1, 70:1, 50:1, 30:1, and 10:1. In this simulation

experiment, SNR is specified as the ratio between signal level

and the SD of the simulated noise [28]. Simulated image and

TABLE II
DETAILED DESCRIPTION OF AVIRIS IMAGES SHOWN IN FIG. 1

kaolinite spectrum with are shown in Fig. 6. It

can be seen that spatial feature and spectral curve are degraded.

B. Comparison With Real Images

To assess the performance of aforementioned algorithms

when land cover type is different, 8 real AVIRIS radiance

images in Fig. 7 with very different land cover types are used

in the experiment. Normally, the random noise in AVIRIS

images is mainly additive and uncorrelated with the signal [17].

More detailed descriptions are shown in Table II. Note that

the AVIRIS sensor is made up of four grating spectrometers,

and detector read-out error is existent in band 33, so the noise

estimation for this band is unreliable [29].

The AVIRIS HSIs in Fig. 7 were acquired from 07/1996 to

06/1997. During this time period, the sensor parameters were

changed little and noise level may be similar in these images. In

particular, Fig.7(c) and 7(d), Fig. 7(e) and 7(f), Fig. 7(g) and 7(h)

are cut from the same image, respectively. Therefore, their noise

level should be the same.

IV. RESULTS

A. Parameters Selection

As summarized in Table I and Fig. 2, SSDC and HRDSDC

adopt the mean value of LSDs of small blocks or local regions

after MLR. On the contrary, in LMLSD and RLSD, noise is es-

timated through the statistical analysis of LSD histogram, so we

use the parameters in [11] to find appropriate bins. In LMLSD

and RLSD, bins are set in the range between the minimum LSD

of all blocks and 1.2 times the average LSD of all blocks, and

150 bins are used for noise estimation.

The block size is the most important parameter for LMLSD,

SSDC, and RLSD. In the experiment, the blocks of size 4

4, 5 5, 6 6, 7 7, and 8 8 are tested. For LMLSD,

since it is assumed that an image mainly is composed of many

homogeneous small blocks, 4 4 is an appropriate choice in our

experiment. It seems that a smaller block size is also beneficial

for SSDC and RLSD. However, when the block size is 4 4

or 5 5, some homogeneous blocks in most experimental data

have similar DN value in certain bands; as a consequence, it
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Fig. 5. Simulated image (left) and kaolinite spectrum (right) without noise.

Fig. 6. Simulated image (left) and kaolinite spectrum (right) with using signal independent noise model.

Fig. 7. AVIRIS radiance images used for noise estimation.

makes the inverse matrix calculation in MLR infeasible. Thus,

the block of size 6 6 is adopted for SSDC and RLSD. As for

the HRDSDC, it employs more advanced image segmentation,

whose step and related parameters are the same as in [12].

B. Results From Simulated Images

Noise estimation results using LMLSD, SSDC, HRDSDC

and RLSD are shown in Fig. 8(a)to Fig. 8(c) and Table III. It

can be seen that:
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TABLE III
ACCURACY ASSESSMENT OF NOISE ESTIMATION ALGORITHM USING SIMULATED IMAGERYWITH DIFFERENT SNR

Fig. 8. Noise estimation results for simulated HSIs, where SNR of (a) is 150:1,
(b) is 90:1, and (c) is 10:1.

1) SSDC is the most reliable algorithm for noise estimation of

HSIs with different levels of SNR. The capability of RLSD

and HRDSDC are also good enough in this experiment.

However, LMLSD can be easily affected by land cover

types. Therefore, it is not satisfied for most images with

different level of SNR.

2) In most cases, estimated noise using SSDC, HRDSDC,

and RLSD is a little greater than true noise value. It is be-

cause that inner variability between bands (resulting from

input of endmember spectra) and intra-pixel variability (re-

sulting from spatially heterogeneous pixel contents) are

considered as noise when MLR are used in these methods.

The absolute error between estimation result and simulated

noise is increasing with increase of noise level. On the con-

trary, the relative error defined as the ratio of MAE/SDAE

to simulated noise SD is decreasing with increase of noise

level.

3) To LMLSD, the estimation result grows better in precision

with increase of noise level. When the SNR of image is

not very low, estimated noise is largely different from truth

noise value. If SNR of image is decreased to 10:1, esti-

mated noise is nearly the same as truth noise value.

4) Due to noise impact, error of image segmentation used in

HRDSDC is increasing with increase of noise level. When

SNR is greater than 50:1, estimated noise is satisfied. How-

ever, when SNR is very low, such as 30:1 or 10:1, estimated

noise using HRSDC is the worst among all the noise esti-

mation algorithms.

Significance levels of noise estimation results are analyzed

by T-test, and analysis results are shown in Table IV. When

significance level, it means that the estimated noise

has no statistic difference from the true value. It can be seen that:

1) With the SNR value being decreased, the P value is in-

creased.

2) For various SNR values, SSDC performs the best, and

RLSD is the second best.

3) When , HRDSDC performs better than

LMLSD. However, due to influence of error in image seg-

mentation, when , the estimates from

HRDSDC still have significant difference from the true

values.

4) When , LMLSD should not be used.

C. Results From Real Images

1) Noise Estimation With Different Land Cover Types:

Fig. 9(a) shows the noise estimates from LMLSD for the 8 real

HSI scenes in Fig. 7. They are varied along with land cover

types, which is not reasonable. It may be because that most

image blocks do not meet the homogeneous hypothesis made

by LMLSD, in particular, when an image is simply uniformly

partitioned. Only when the primary land cover type is water, the

image can be homogeneous enough to find adequately effective

blocks. Experimental results show that noise estimates from

SSDC (Fig. 9(b)) is better than LMLSD. HRDSDC, considered

as modified SSDC using image segmentation as spatial parti-

tion, generated also better result as shown in Fig. 9(c). Noise

estimates shown in Fig. 9(d) using RLSD are also better in

terms that noise estimates are less sensitive to image contents.
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Fig. 9. Noise estimation results of Fig. 7 using (a) LMLSD, (b) SSDC,
(c) HRDSDC, and (d) RLSD.

Though these algorithms consider spectral and spatial infor-

mation in different ways, the noise estimated results shown in

Fig. 10 are very similar. To quantitatively compare the stability

of these algorithms for different land cover types, MAE and

SDAE expressed in (11) and (12) are used to analyze error of

noise estimation results. Here, through results shown in Fig. 9, it

can be seen that results of LMLSD are not correct, and results of

Fig. 10. Noise curves in estimated noise image of Fig. 7(g) using SSDC,
HRDSDC, and RLSD.

Fig. 11. Noise estimation results of Fig. 7(g) and (h) using (a) SSDC,
(b) HRDSDC, and (c) RLSD. These two subimages are cropped from a single
image, but Fig. 7(h) is mainly covered by water.

SSDC, HRDSDC, and RLSD are similar and stable for very dif-

ferent land cover types. Therefore, in this study, the mean value
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TABLE IV
SIGNIFICANCE ANALYSIS OF NOISE ESTIMATION RESULTS

TABLE V
ACCURACY ASSESSMENTS OF NOISE ESTIMATION ALGORITHM USING REAL IMAGERYWITH DIFFERENT LAND COVER TYPES

TABLE VI
ACCURACY ASSESSMENTS OF NOISE ESTIMATION ALGORITHM USING REAL

IMAGERYWITH DIFFERENT LAND COVER TYPES

of noise estimates of SSDC, HRDSDC, and RLSD for one cer-

tain land cover type is treated as the reliable noise value of this

land cover type, namely ; corresponding to this mean value,

MAE and SDAE of LMLSD, SSDC, HRDSDC, and RLSD are

calculated for each land cover type as shown in Table V. One

can see that results of LMLSD are far different from others. Re-

sults of LMLSD highly depend on homogeneity of land cover

type; for examples, results of homogeneous gobi and farmland

shown in Fig. 7(b) and (f) are better than results of heteroge-

neous city, and result of homogeneous water shown in Fig. 7(g)

is the best. From results shown in Table V, it also can be seen

that stability of SSDC for different land cover types is a little

better than those of other methods.

2) Noise Estimation for Images Covered by Water: Areas

covered by water always are very homogeneous. However,

spectrum of water from near infrared to shortwave infrared

spectroscopy is nearly equal to zero. Therefore, many methods

may yield lower noise estimate than the actual value (e.g., re-

sults shown in Fig. 11(a) by SSDC and Fig. 11(b) by HRDSDC).

This is because that their procedure of mean value calculation

of LSDs cannot avoid the influence of very low radiance, and

is not suitable for noise estimation of images mainly covered

by water. However, RLSD produced better results as shown in

Fig. 11(c), which may be because that it uses the LSD with the

maximum occurrence as the noise estimate for the image.

In this study, a quantitative analysis of noise estimation for

water area is also carried out based on MAE and SDAE. Here,

two images in one pair are treated as and respectively.

Results are shown in Table VI. Although SSDC and HRDSDC

are reliable for images covered by city and vegetation, noise

estimation results of image covered mainly by water is not sat-

isfied. On the contrary, RLSD expresses good performance on

images mainly covered by water, such as Fig. 7(h).

V. CONCLUSION

Over the past years, several linear regression-based noise es-

timation algorithms have been developed for HSIs containing

uncorrelated random noise. However, these algorithms have not

been rigorously analyzed with a unified scheme. In this paper,

we conduct a comparative study for these algorithms using sim-

ulated images with different SNR and real images with different

land cover types. Specially, based on image simulation, we de-

sign a new framework to assess and compare the quantitative

performance of noise estimation algorithms. Parameters of these

algorithms are also discussed and well confirmed.

Experiments with simulated and real HSIs indicate that 1)

using the residual of linear regression is an effective approach

for noise estimation; and 2) when the noise level is not very low,

the combination of spectral and spatial information in linear re-

gression provides better result than the algorithms using spatial

information only. It also can be concluded that: 1) The simple

uniform spatial partition with small block size, say, 6 6, can

perform as well as more sophisticated image segmentation; and

2) the histogram of LSD is more appropriate than the simple av-

erage of LSD for global noise estimation.
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