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Abstract 

The current research of state of charge (SoC) online estimation of lithium-ion battery (LiB) in electric vehicles (EVs) 

mainly focuses on adopting or improving of battery models and estimation filters. However, little attention has been 

paid to the accuracy of various open circuit voltage (OCV) models for correcting the SoC with aid of the ampere-hour 

counting method. This paper presents a comprehensive comparison study on eighteen OCV models which cover the 

majority of models used in literature. The low-current OCV tests are conducted on the typical commercial  LiFePO4/

graphite (LFP) and  LiNiMnCoO2/graphite (NMC) cells to obtain the experimental OCV-SoC curves at different ambient 

temperature and aging stages. With selected OCV and SoC points from experimental OCV-SoC curves, the parameters 

of each OCV model are determined by curve fitting toolbox of MATLAB 2013. Then the fitting OCV-SoC curves based 

on diversified OCV models are also obtained. The indicator of root-mean-square error (RMSE) between the experimen-

tal data and fitted data is selected to evaluate the adaptabilities of these OCV models for their main features, advan-

tages, and limitations. The sensitivities of OCV models to ambient temperatures, aging stages, numbers of data points, 

and SoC regions are studied for both NMC and LFP cells. Furthermore, the influences of these models on SoC estima-

tion are discussed. Through a comprehensive comparison and analysis on OCV models, some recommendations in 

selecting OCV models for both NMC and LFP cells are given.
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1 Introduction
Due to the global energy crisis and environmental dete-

rioration, electric vehicles (EVs) have had an unprec-

edented development opportunity in recent years [1]. A 

large number of advanced batteries with higher power 

and energy densities are connected in series or parallels 

to provide required power and energy for EVs. �ere-

fore, a smart battery management system (BMS) is criti-

cal for safe and reliable operations of EVs [2]. One of the 

basic BMS functions is to monitor and estimate the state 

of charge (SoC) of lithium ion batteries in real time [3]. 

Among different approaches for estimating the SoC, the 

model-based methods have been used extensively for 

their self-correct ability [4, 5]. �e models require an 

accurate open circuit voltage (OCV) representation for 

correcting SoC calculation [6, 7].

�e OCV equals the terminal voltage when there are 

no polarization effects or voltage drop on the internal 

impedance. �e OCV is related to the battery SoC and 

this relationship is commonly obtained by offline OCV 

tests [8, 9]. Due to the hysteresis effects of lithium ion 

batteries, the average values of the OCV charge curve 

and OCV discharge curve is defined as the experimen-

tal OCV curve [10]. �e experimental OCV-SoC curves 

differ among battery types and vary with ambient tem-

peratures, aging stages, and current rates. �erefore, the 

OCV model should represent experimental OCVs with 

high fidelity. So far, a large number of nonlinear functions 

have been proposed to represent the OCV-SoC rela-

tionship. Plett proposed an OCV model which contains 

a linear function [5], a power function, and a logarith-

mic function. Polynomial functions were added into the 

OCV models in Refs.  [11–13]. Tong et al. [14] removed 

the power function from the OCV models. Subsequently, 
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several references replaced the logarithmic functions 

from OCV models by exponential functions [15–17]. 

Zhang et al. [18] reported an OCV model that contains 

a linear function, an exponential function, and a loga-

rithmic function. In addition, polynomial functions with 

different orders are developed to fit OCV data points 

obtained from offline OCV tests [19–21].

All the reported OCV models have been shown in their 

original publications to be suitable for SoC estimation 

under their selected operating conditions. However, there 

are few studies that provide a comprehensive comparison 

of these diversified OCV models. Hu et al. [21] compared 

five OCV models and the 6th order polynomial func-

tion was reported to be the most accurate OCV model 

among them. However, the study is only conducted on 

 LiFePO4 (LFP) batteries. Its adaptability to other battery 

types needs to be further investigated. Moreover, sensi-

tivities of these OCV models to ambient temperatures, 

aging stages, and numbers of data points remain largely 

an open issue. Only three OCV models were compared 

by Zhang et al. [18] from the viewpoints of sensitivities to 

ambient temperatures and aging stages, without explor-

ing the sensitivities to numbers of data points. In addi-

tion, an overwhelming majority of these OCV models are 

proposed based on the experimental data of middle SoC 

regions between 10% and 90%, and their applicability to 

the entire SoC region is worth further study.

�e key contribution of this paper is using an innova-

tive approach to give a systematic comparison on the 

practicality of diversified OCV models. First, adaptability 

of these OCV models to different battery types is inves-

tigated. Second, sensitivities to ambient temperatures, 

aging stages, numbers of data points, and SoC regions 

are studied. �ird, the impacts of these models on SoC 

estimation are explored. Finally, suggestions about the 

selection of OCV models are given based on comparison 

analyses.

�e remainder of this paper is organized as follows. In 

Section 2, the experimental setup, battery specifications, 

and experimental OCV-SoC curves under different ambi-

ent temperatures and aging stages for two types of lith-

ium ion batteries are given. Section 3 introduces eighteen 

OCV models to be studied and compared. A systematic 

comparison of diversified OCV models is presented in 

Section 4, followed by the conclusions in Section 5.

2  Experiments
2.1  Experimental Setup

�e battery test bench in Refs. [11, 22] is used to carry 

out battery tests in this study. Considering the OCV-

SoC curves differ among battery types, typical commer-

cial  LiFePO4/graphite (LFP) and  LiNiMnCoO2/graphite 

(NMC) lithium ion battery cells are selected as the test 

samples, and their basic specifications are given in 

Table 1. It’s worth noting that both the nominal capac-

ity and actual capacity are measured through capacity 

test under 25  °C [22]. �e capacity losses of the aged 

NMC and LFP cells are 10.2% and 10.5%, respectively.

2.2  OCV Tests

�e low-current OCV tests are performed to obtain the 

experimental OCV-SoC curves [17]. �e fully charged 

battery cells are discharged at a constant low rate of 

0.05  °C until fully discharged. After rest 2 h, the battery 

cells are then charged at the same current rate until the 

upper cutoff voltage is reached. Afterwards, the cells will 

be fully charged with constant current constant voltage 

(CCCV) method. �e voltage at this low current rate 

reflects the OCV at a close-to-equilibrium status. Due 

to the OCV is independent of ambient temperatures and 

aging stages, the OCV tests are performed under three 

temperatures (i.e., 10 °C, 25 °C and 40 °C) and two aging 

stages (i.e., fresh and aged battery cells) in this study.

�e average OCV-SoC curves between the measures 

obtained during charge and discharge are illustrated 

in Figure  1. �e OCV-SoC curves of NMC cells shown 

in Figure  1(a) change dramatically as the SoCs drop to 

0% and gradually increase between 10% and 100% SoC 

regions, but for LFP cells shown in Figure 1(b), the OCV-

SoC curves change dramatically as the SoCs drop to 0% 

and rise to 100%, and there are wide flat OCV plateau in 

the middle SoC regions. Which indicate the OCV-SoC 

relationships differ among battery types and its adapt-

ability to different battery types needs to be further inves-

tigated. �e large OCV errors of NMC cells occur in the 

middle and low SoC regions, but for LFP cells, the large 

OCV errors occur in the whole SoC regions, especially 

in the low and high SoC regions. �e large errors may be 

caused by the rest effects at difference operation condi-

tions. Which confirmed that the OCV-SoC relationship 

is independent of ambient temperatures and aging stages. 

In addition, the OCV models may be sensitive to SoC 

regions and numbers of data points for the different fea-

tures of experimental OCV-SoC curves.

Table 1 Basic speci�cations of the battery cells

Cell Nominal 
voltage 
(V)

Nominal 
capacity 
(Ah)

Actual 
capacity 
(Ah)

Cuto� voltage (V)

NMC (Fresh) 3.7 25 28.40 2.5/4.2

NMC (Aged) 3.7 25 25.51 2.5/4.2

LFP (Fresh) 3.2 20 19.84 2.0/3.65

LFP (Aged) 3.2 20 17.77 2.0/3.65
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2.3  UDDS Tests

�e urban dynamic driving sequence (UDDS) test is a 

typical driving test that is often used to evaluate the per-

formance of the SoC estimation [23]. In this paper, the 

UDDS tests, as shown in Figure 2, are performed to eval-

uate the impact of OCV models on SoC estimation for 

both NMC and LFP fresh cells under 25 °C.

3  OCV Model Structures
A total of eighteen OCV models are selected from lit-

erature and compared in this study. Which cover the 

overwhelming majority of OCV models presented in 

the past studies. �ese OCV models are summarized in 

Table 2. Noted that Uoc and s are battery OCV and SoC, 

respectively. Ki, αi, βi, m and n, (i = 0, 1, 2, …, 12) are 

the parameters of OCV models, which are determined 

by MATLAB curve fitting toolbox (Fit Option: Custom 

Equation; Robust: Bisquare; Algorithm: Trust-Region).

As shown in Table 2, these OCV models generally can 

be divided into four classes from the perspective of com-

ponent terms.

1. A generalized polynomial function + a logarithmic 

function + a power function, such as model 1 to 5;

2. A generalized polynomial function + an exponential 

function, such as model 6 to 9;

3. A generalized polynomial function + an exponential 

function + a logarithmic function, such as model 10;

4. A generalized polynomial function, such as model 11 

to 18.

4  Comparison and Analysis of OCV Models
As shown in Table 2, there are distinct difference in struc-

tures of these OCV models. Some models are very simple 

with fewer numbers of parameters while some models 

are quite complicated with many parameters. Addition-

ally, some models have limits on the SoC regions. In this 

section, we will give a comprehensive comparison and 

analysis on these OCV models, including the adaptabili-

ties to battery types, sensitivities to temperatures, aging 

stages, SoC regions, numbers of data points, and impacts 

on SoC estimation. �e fitted OCV should be as close to 

experimental OCV as possible. �e fitting performance 

will be evaluated by the indicator of root-mean-square 

error (RMSE) between the experimental data and fitted 

data.

4.1  Sensitivity to SoC Regions

�e most of OCV models focus on the middle SoC 

regions between 10% and 90%, however, it is difficult 

to obtain accurate SoC initial value in real applications. 

Hence, if the parameters of OCV models are determined 

by fitting the experimental data of middle SoC regions 

(i.e., between 10% and 90%), the OCVs will inaccurate 

in the low (i.e., 0%‒10%) and high SoC (i.e., 90%‒100%) 

regions for their great features at these two regions, 

which will in turn contributed large SoC errors. �ere-

fore, it is better to model the OCV by fitting the entire 

SoC region data.

Due to the logarithmic function exists in some OCV 

models, the entire or whole SoC region is selected from 

0.001% to 99.999%. �e fitted OCV-SoC curves of differ-

ent OCV models at 25  °C for both NMC and LFP fresh 

cells are shown in Figure  3. Note that the SoCs change 

dramatically when drop to 0% or rise to 100%, the RMSEs 

are collected the SoC regions between 2.5% and 97.5%. 
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�e RMSEs of different SoC regions are given in Figure 4. 

Although these models perform well in fitting the SoC 

regions between 10% and 90%, but some models perform 

poorly in fitting the entire SoC regions for both NMC 

and LFP fresh cells, especially in the low and high SoC 

regions.

�eoretically, the fitting performance is better with 

higher order polynomial function, however, the 2nd to 

4th order polynomial functions perform well in middle 

SoC regions, but perform poorly in low and high SoC 

regions. But for 5th and 6th order polynomial functions, 

the OCV-SoC curves pass through data points 0% and 

100% and fluctuate sharply in the middle SoC regions. 

�e fitting performances are become better for the 7th 

to 12th order polynomial functions. �erefore, we may 

conclude from Figure 4 that the models 16, 17 and 18 are 

suitable for NMC cell and models 7, 17 and 18 are suit-

able for LFP cell, which perform well in both the entire 

and middle SoC regions. In the following sections, all the 

OCV models are determined from the experimental data 

of entire SoC regions.

4.2  Sensitivity to Numbers of Data Points

As mentioned above, the OCV models are determined 

by fitting certain numbers of experimental data points 

with MATLAB curve fitting toolbox. Some studies used 

21 data points (i.e., in every 5% SoC interval) to deter-

mine the OCV model [13, 14, 42], but some other stud-

ies used 11 data points (i.e., in every 10% SoC interval) 

[43–45] or 51 data points (i.e., in every 2% SoC inter-

val) [30] to determine the OCV models. �e compari-

son results depicted in Figure 5 indicate that the OCV 

models are more sensitive to the data points for LFP 

cell than NMC cell. �ese may be caused by their differ-

ences in low and high SoC regions of OCV-SoC curves. 

In addition, the RMSEs of NMC cell change slightly 

with increasing the numbers of data points except the 

models 5, 7, 12 and 13, but for the LFP cell, the RMSEs 

are generally decrease greatly with 21 data points than 

with 11 data points, but the RMSEs virtually unchanged 

if change the number of data points from 21 to 51 

except models 8 and 14. Note that the models 8 and 18 

Table 2 OCV models evaluated in this study

Model Reference OCV model expression

1 [24–26] Uoc = K0 + K1s + K2/s + K3 ln (s) + K4 ln (1 − s)

2 [27, 28] Uoc = K0 + K1s + K2s
2
+ K3/s + K4 ln (s)

+ K5 ln (1 − s)

3 [11, 12] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4/s + K5 ln (s)

+ K6 ln (1 − s)

4 [14] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4 ln (s) + K5 ln (1 − s)

5 [29] Uoc = K0 + K1 ln (s) + K2 ln (1 − s)

6 [16] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4 exp(K5s)

7 [15] Uoc = K0 + K1s + K2(1 − exp(αs)) + K3(1 − exp(β(1 − s)−1))

8 [17] Uoc = K0s + K1(1 + exp(α1(s − β1))
−1

+ K2(1 + exp(α2s))
−1

+ K3(1 + exp(α3(s − β2))
−1

+ K4(1 + exp(α4(s − 1))−1
+ K5

9 [18, 30] Uoc = K0 + K1s + K2(1 − ln))m + K3 exp(n(s − 1))

10 [14, 31] Uoc = K0 + K1s + K2s
2

11 [32] Uoc = K0 + K1s + K2s
2
+ K3s

3

12 [20] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4s

4

13 [33] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4s

4
+ K5s

5

14 [34, 35] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4s

4
+ K5s

5
+ K6s

6

15 [36, 37] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4s

4
+ K5s

5
+ K6s

6
+ K7s

7

16 [38] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4s

4
+ K5s

5
+ K6s

6
+ K7s

7

+ K8s
8

17 [39, 40] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4s

4
+ K5s

5
+ K6s

6
+ K7s

7

+ K8s
8
+ K9s

9

18 [41] Uoc = K0 + K1s + K2s
2
+ K3s

3
+ K4s

4
+ K5s

5
+ K6s

6
+ K7s

7

+ K8s
8
+ K9s

9
+ K10s

10
+ K11s

11
+ K12s

12
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require more than 12 and 13 data points, respectively, 

to fit by MATLAB curve fitting toolbox.

With the low-current OCV test, we can easily obtain 

certain numbers of data points, but for the other OCV 

test method, such as incremental OCV test, the experi-

mental time will be greatly raised with increasing num-

bers of data points, therefore, it is recommended to 

model OCV by 21 data points by compromising the test 

time and model accuracy. In addition, we may conclude 

from Figure 5 that the models 4, 16 and 17 are suitable 

for NMC cell and models 4, 7 and 17 are suitable for LFP 

cell for their robustness against numbers of data points.

4.3  Sensitivity to Ambient Temperatures

�e comparison results of OCV models at different 

ambient temperatures are illustrated in Figure 6. It is can 

be seen that most OCV models are sensitive to the ambi-

ent temperatures, especially the low temperature for both 

NMC and LFP cells. In addition, models 5 to 12 are more 

sensitive to temperatures than other models for NMC 

cell, but for the LFP cell, models 8, 13 and 14 are more 

sensitive to temperatures than other models. Besides, a 

conclusion can be drawn from Figure 6 is that models 16, 

17 and 18 are recommended for NMC cell and models 4, 

17 and 18 are recommended for LFP cell for their robust-

ness against ambient temperatures.

4.4  Sensitivity to Aging Stages

Not only the temperatures but also the battery aging 

stages can influence the battery OCV [46, 47]. �e com-

parison results of OCV models at different aging stages 

are illustrated in Figure  7. It is can be seen that most 

OCV models are sensitive to battery aging affects, espe-

cially models 5, 7, 8, 11 and 12 for NMC cells and models 

8, 13 and 14 for LFP cells. In addition, a conclusion can 

be drawn from Figure 7 is that models 3, 17 and 18 are 

recommended for NMC cells and models 4, 17 and 18 are 

recommended for LFP cell for their robustness against 

aging affects.

4.5  Impacts on SoC Estimation

OCV model is commonly used to correct the SoC with 

aid of ampere-hour counting in SoC estimation process. 

In this study, the OCV can be regarded as part of the 

parameters of first RC battery model and can be identi-

fied by the H infinity filter [22, 38], then the OCV mod-

els only affect the SoC estimation process other than 

the parameters identification process. With the same 

online parameters delivered to SoC estimation process, 

it is more easily to observe the impacts of OCV models 

on SoC estimation with unscented Kalman filter (UKF) 

[22]. �e results are shown in Figure  8. It is clear that 

these OCV models perform generally better for LFP than 

NMC cells except model 8 at 25 °C. In addition, a conclu-

sion can be drawn from Figure 8 is that models 16, 17 and 

18 are recommended for both NMC and LFP cells.

Based on the comparisons above, the compared fitting 

results of OCV models can be summarized in Table  3. 

Model 18 is a little bit better than model 17 represent-

ing experimental OCV-SoC relationship. Considering 

quite a few studies will still choose 11 data points from 

incremental OCV test data to model the OCV-SoC rela-

tionship, which only suit to fit no more than 10th order 

polynomial functions. Hence, Model 17 is more suitable 

than model 18. Furthermore, one could speculate that the 

improvement of accuracy between 9 and 10 order poly-

nomial functions can be quite small. �erefore, it can be 

concluded that model 17, namely 9th order polynomial 

function, is better than others for both NMC and LFP 

cells. And this study recommends 9th order polynomial 

function to model the OCV for both the NMC and LFP 

cells.
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5  Conclusions
1. �is study conducts a systematic comparative study 

on eighteen OCV models. Low-current OCV tests 

are employed to obtain experimental OCV-SoC 

curves as the basis for comparison. �e parameters 

of these OCV models are determined by experimen-

tal OCV data points.

2. NMC and LFP cells are used to evaluate how well 

the OCV models can accurately represent the OCV-

SoC curves. Two representative experimental SoC 

regions (0%‒100% and 10%‒90%) data are used to fit 

the OCV models. �e results show that some OCV 

models perform poorer over the entire SoC region 

than the middle SoC region.

3. �e data size plays an important role in model selec-

tion. A set of 21 data points is employed to compare 
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models with data size constraints. In addition, model 

sensitivity and robustness against temperatures and 

aging stages investigated. �e results indicate that 9th 

order polynomial model is more robust than other 

models. �ese conclusions are further validated by 

comparing model impact on SoC estimation.

4. By thorough analyses of OCV models, the 9th order 

polynomial model is recommended for both NMC 

and LFP cells.
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