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Constrained nonlinear programming problems often arise in many engineering appli-

cations. The most well-known optimization methods for solving these problems are se-

quential quadratic programming methods and generalized reduced gradient methods.

This study compares the performance of these methods with the genetic algorithms which

gained popularity in recent years due to advantages in speed and robustness. We present a

comparative study that is performed on fifteen test problems selected from the literature.

1. Introduction

There are many applications in various branches of engineering field (e.g., mechanical

engineering, chemical engineering, electrical engineering, aerospace engineering, etc.)

that can be formulated as constrained nonlinear programming problems (NLPs). Typ-

ical examples include structural optimization, mechanical design, chemical process con-

trol, engineering design, and VLSI design. Quality of the solutions to these applications

affects the system performance significantly, resulting in low-cost implementation and

maintenance, fast execution, and robust operation [21].

A general constrained nonlinear programming problem (P) can be stated as follows:

(P)

Minimize f (x), x ∈ F ⊆ S⊆Rn,

subject to

hi(x)= 0, i= 1, . . . , p,

g j(x)≤ 0, j = p+ 1, . . . ,q,

ak ≤ xk ≤ bk, k = 1, . . . ,n,

(1.1)

where x = [x1, . . . ,xn] is a vector of n variables, f (x) is the objective function, hi(x) (i =

1, . . . , p) is the ith equality constraint, and g j(x) ( j = p + 1, . . . ,q; q < n) is the jth in-

equality constraint. S is the whole search space and F is the feasible search space. The ak
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and bk denote the lower and upper bounds of the variable xk (k = 1, . . . ,n), respectively.

It is assumed that all problem functions f (x), hi(x), and g j(x) are twice continuously

differentiable. In most of the nonlinear programming problems f (x), h(x), and g(x) are

nonconvex and the problems have multiple locally optimal solutions. In the only case

where the f (x) is convex, every hi(x) is linear and every g j(x) is convex, constrained local

minimum is also constrained global minimum.

Although a number of methods for the solution of constrained nonlinear program-

ming problems are available, there is no known method to determine the global mini-

mum with certainty in the general nonlinear programming problem. The methods for

constrained optimization can be divided into two categories as deterministic and sto-

chastic methods. According to some comparative studies, the generalized reduced gradi-

ent (GRG) methods and the sequential quadratic programming (SQP) methods are two

of the best deterministic local optimization methods [8]. These gradient-based methods

always look for optimum closest to the starting point whether it is a local or global one.

A number of packages, such as Optima, Matlab, GRG, and LSGRG, are based on these

widely used methods. In recent years, there has been an increasing interest to employ the

stochastic methods, such as genetic algorithms (GA), simulated annealing (SA), and tabu

search (TS), in solving complex optimization problems involving even nondifferentiable,

discontinuous, highly nonlinear objective, and constraint functions. These methods are

stochastic global optimization methods which do not require gradient information un-

like GRG and SQP.

In this paper, the performances of SQP and GRG are compared with that of GA, which

is the most popular method among the stochastic methods in solving constrained nonlin-

ear programming problems. The experimental study is conducted on several NLPs taken

from the literature.

The organization of this paper as follows: we briefly describe sequential quadratic pro-

gramming methods, generalized reduced gradient methods, and genetic algorithms in

Section 2. Section 3 presents the 15 test problems and the optimization results obtained

by using SQP, GRG, and GA. The conclusion is drawn in Section 4.

2. Methods used in the study

In this section, the brief summaries of each of the methods, namely sequential quadratic

programming, generalized reduced gradient, and genetic algorithms, are given.

2.1. Sequential quadratic programming. SQP methods are iterative methods that solve

at the kth iteration a quadratic subproblem (QP) of the form

(QP)

Minimize
1

2
dtHkd+∇ f

(

xk
)t
d,

subject to

∇hi
(

xk
)t
d+hi

(

xk
)

= 0, i= 1, . . . , p,

∇g j
(

xk
)t
d+ g j

(

xk
)

≤ 0, j = p+ 1, . . . ,q,

(2.1)
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where d is the search direction and Hk is a positive definite approximation to the Hessian

matrix of Lagrangian function of problem (P). The Lagrangian function is given by

L(x,u,v)= f (x) +

p
∑

i=1

uihi(x) +

q
∑

j=p+1

v jg j(x), (2.2)

where ui and v j are the Lagrangian multipliers. The subproblem (QP) can be solved by

using the active set strategy. The solution dk is used to generate a new iterate

xk+1 = xk +αkdk, (2.3)

where the step-length parameter αk ∈ (0,1] depends on some line search techniques.

At each iteration, the matrix Hk is updated according to any of the quasi-Newton

method. The most preferable method to updateHk is Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method [5], where Hk is initially set to the identity matrix I and updated using

the formula

Hk+1 =Hk +
yk y

t
k

sk y
t
k

−
Hksks

t
kHk

stkHksk
, (2.4)

where

sk = xk+1− xk, yk =∇L
(

xk+1,uk+1,vk+1

)

−∇L
(

xk,uk,vk
)

. (2.5)

We have only provided the most basic form of the SQP methods here. Detailed de-

scription of the SQP method can be found in [2, 3].

2.2. Generalized reduced gradient. The GRG algorithm was first developed by Abadie

and Carpentier [1] as an extension of the reduced gradient method.

GRG transforms inequality constraints into equality constraints by introducing slack

variables. Hence all the constraints in (P) are of equality form and can be represented as

follows:

hi(x)= 0, i= 1, . . . ,q, (2.6)

where x contains both original variables and slacks. Variables are divided into dependent,

xD, and independent, xI , variables (or basic and nonbasic, resp.):

x =







xD
···

xI





 . (2.7)
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The names of basic and nonbasic variables are from linear programming. Similarly, the

gradient of the objective function bounds and the Jacobian matrix may be partitioned as

follows:

a=







aD
···

aI





 , b =







bD
···

bI





 , ∇ f (x)=







∇D f (x)

···

∇I f (x)





 ,

J(x)=





















∇Dh1(x)
...∇Ih1(x)

∇Dh2(x)
...∇Ih2(x)
...

∇Dhq(x)
...∇Ihq(x)





















.

(2.8)

Let x0 be an initial feasible solution, which satisfies equality constraints and bound con-

straints. Note that basic variables must be selected so that JD(x0) is nonsingular.

The reduced gradient vector is determined as follows:

gI =∇I f
(

x0
)

−∇D f
(

x0
)(

JD
(

x0
))−1

JI
(

x0
)

. (2.9)

The search directions for the independent and the dependent variables are given by

dI =



















0, if x0
i = ai, gi > 0,

0, if x0
i = bi, gi < 0,

−gi, otherwise,

dD =−
(

JD
(

x0
))−1

JI
(

x0
)

dI .

(2.10)

A line search is performed to find the step length α as the solution to the following

problem:

Minimize f
(

x0 +αd
)

,

subject to

0≤ α≤ αmax,

(2.11)

where

αmax = sup

{

α

a
≤ x0

≤ x0 +αd ≤ b

}

. (2.12)

The optimal solution α∗ to the problem gives the next solution:

x1
= x0 +α∗d. (2.13)

A more detailed description of the GRG method can be found in [10].
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2.3. Genetic algorithms. GAs are stochastic optimization algorithms based upon the

principles of evolution observed in nature [7, 12]. Because of their power and ease of im-

plementation, the use of GAs has noticeably increased in recent years. Unlike the gradient

methods, they have no requirements on convexity, differentiability, and continuity of the

objective, and constraint functions. These significant characteristics of GAs increase their

popularity in applications.

The basic GA can be summarized by the following steps:

(1) generate an initial population of chromosomes (or possible solutions) randomly,

(2) evaluate the fitness of each chromosome in the initial population,

(3) select chromosomes that will have their information passed on to the next gener-

ation,

(4) cross over the selected chromosomes to produce new offspring chromosomes,

(5) mutate the genes of the offspring chromosomes,

(6) repeat steps (3) through (5) until a new population of chromosomes is created,

(7) evaluate each of the chromosomes in the new population,

(8) go back to step (3) unless some predefined termination condition is satisfied.

GAs are directly applicable only to the unconstrained problems. In the application of

GAs to constrained nonlinear programming problems, chromosomes in the initial pop-

ulation or those generated by genetic operators during the evolutionary process generally

violate the constraints, resulting in infeasible chromosomes. During the past few years,

several methods were proposed for handling constraints by GAs.

Michalewicz and Schoenauer grouped the constraint handling methods into the fol-

lowing four categories [14]:

(1) methods based on preserving feasibility of solutions,

(2) methods based on penalty functions,

(3) methods based on a search for feasible solutions,

(4) hybrid methods.

Penalty function methods are the most popular methods used in the GAs for con-

strained optimization problems. These methods transform a constrained problem into

an unconstrained one by penalizing infeasible solutions. Penalty is imposed by adding to

the objective function f (x) a positive quantity to reduce fitness values of such infeasible

solutions:

f̂ (x)=







f (x) if x ∈ F,

f (x) + p(x) otherwise,
(2.14)

where f̂ (x) is the fitness function and p(x) is the penalty function whose value is pos-

itive. The design of the penalty function p(x) is the main difficulty of penalty function

methods. Several forms of penalty functions are available in the literature.

Nevertheless, most of them have the form

p(x)=

p
∑

i=1

ri
[

Hi(x)
]β

+
m
∑

j=p+1

c j
[

G j(x)
]γ

, (2.15)
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Table 3.1. Fifteen constrained nonlinear programming problems.

Problem

number
n LE LI NE NI

Type of objective

function
Best known Source

1 8 0 3 0 3 Linear 7049.25 [6]

2 7 0 0 0 4 Polynomial 680.6300573 [13]

3 6 0 0 3 1 Linear −0.3888 [22]

4 10 4 0 1 2 Linear −400 [16]

5 6 3 3 0 0 Nonlinear −13.401904 [16]

6 5 0 0 0 6 Quadratic 30665.41 [20]

7 10 0 3 0 5 Quadratic 24.3062 [20]

8 13 0 9 0 0 Quadratic −15 [13]

9 2 0 1 0 1 Polynomial −118.704860 [16]

10 2 0 2 0 2 Linear −2.828427 [16]

11 2 0 0 0 2 Linear −5.50801 [18]

12 5 0 0 3 0 Nonlinear 0.0539498 [18]

13 3 0 0 0 2 Quadratic 11.68 [11]

14 2 0 0 0 2 Quadratic −79.8078 [19]

15 10 0 3 0 5 Polynomial −216.602 [17]

where Hi(x) and G j(x) are functions of the equality constraint hi(x) and the inequality

constraint g j(x), respectively, and ri and c j are positive penalty coefficients. β and γ are

positive constants usually set to be 1 or 2. The most general form of Hi and G j is as fol-

lows:

Hi(x)=
∣

∣hi(x)
∣

∣, G j(x)=max
⌊

0,g j(x)
⌋

. (2.16)

How to design a penalty function and which penalty function method is the best are

still open questions one needs to answer. Comparative studies about the penalty func-

tion methods in genetic algorithms can be found in [9, 13, 15]. One important result

of these studies is that the quality of the solution severely depends on selected values of

penalty coefficients. Hence, determining the appropriate values for penalty coefficients at

the beginning of the optimization has vital importance in order to have a robust solution.

3. Test problems and results

In order to test the efficiency of the algorithms in terms of getting closer to the best-

known solution, some constrained nonlinear programming problems have been selected

from the literature. Several authors from optimization community have used some of

these problems to compare the performances of some available penalty function meth-

ods and their own methods. These problems have objective functions of various types

with different types of constraints. Table 3.1 presents some information of these prob-

lems, including the number of variables n, the number of constraints, type of the objec-

tive function, the best-known objective function value, and the source of the problem.

LE, LI, NE, and NI denote the number of linear equations, linear inequalities, nonlinear

equations, and nonlinear inequalities, respectively.
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Table 3.2. Results obtained by GRG, SQP, and GA.

Problem number
Methods

GRG SQP GA

1 7049.248 7049.248 7049.248

2 680.63 680.63 680.63

3 −0,3876 0 −0.3888

4 −400 −400 −400

5 −12.5079 −4.8038 −13.4019

6 30665.4152 30665.4152 30665.4152

7 24.6232 24.3062 24.3062

8 −10.1094 −10.1094 −15

9 10.94 11 −118.7049

10 1.4142 1.4142 −2.8284

11 −4.0537 −4.0537 −5.5080

12 1 1 0.0435

13 6.9418 7.0732 11.6766

14 −47.9977 −79.8078 −79.8078

15 4.1288 197.8580 −216.6025

In our experiments, three different programs have been used to solve the problems

above:

(i) Microsoft Excel Solver using GRG algorithm,

(ii) the function fmincon from the MATLAB Optimization Toolbox using SQP algo-

rithm,

(iii) GA Solver of WWW-NIMBUS system.

The GA Solver of WWW-NIMBUS system uses a parameter-free penalty function ap-

proach [4]. One of the important advantages of this penalty approach is that no param-

eter is required in handling constraints unlike other penalty function approaches which

require that a large number of parameters must be set right by the user. consequently , we

decided to use GA Solver of WWW-NIMBUS for solving 15 test problems. For detailed

information about the parameter-free penalty function approach, see [4].

For each of the problems, we started the GRG and SQP methods from five different

starting points in order to increase their chances of finding better solutions, and recorded

the best solutions, found. The experimental results obtained by each of the three methods

are shown in Table 3.2.

From the results of Table 3.2, it is easy to draw a conclusion that GA has better perfor-

mance than GRG and SQP in constrained nonlinear programming problems. In fourteen

problems, GA has been able to find solutions close to or the same as objective func-

tion values reported in earlier studies. In problem 12, the solution (x∗ =−1.4730;1.7546;

−1.8568;−0.7956;0.8190) obtained with GA is more accurate than that reported earlier.

Although GRG and SQP could give the same solutions with true optimum solutions in

some of the problems, they could not find better solutions than those of GA in any of
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the problems. It is also interesting to note that GRG and SQP have given solutions rather

far from the true optimum solutions in some problems (e.g., problems 8,9,12,13, and

15).

4. Conclusion

Three popular optimization methods were tested on various constrained optimization

problems that were found in the literature. Sizes of our test problems were smaller than

the problems generally encountered in engineering applications, but they had some com-

mon characteristics (e.g., nonconvex and multimodal solution space) with real-world en-

gineering optimization problems. GA Solver of WWW-NIMBUS system was found to be

highly efficient for all these problems. Neither GRG nor SQP could give better solutions

than those found by using GA. In some problems, these methods get trapped local op-

timum solutions rather far from the true optimum solutions. We expect that the poor

performances of the GRG and SQP methods will also continue in large-scale engineering

optimization problems because of the nonconvex solution spaces.

GA Solver of WWW-NIMBUS using penalty-free method makes things easier for the

user by removing the problem of setting a large number of the penalty parameter values

even in small size problems. Since the GA explores multiple regions of the solution space

simultaneously, it can avoid the local optimum problem and identify the global opti-

mum. We conclude that GA is reliable and effective for solving nonlinear and nonconvex

engineering problems.

References

[1] J. Abadie and J. Carpentier, Generalization of the Wolfe reduced gradient method to the case of

nonlinear constraints, Optimization (Sympos., Univ. Keele, Keele, 1968) (R. Fletcher, ed.),

Academic Press, London, 1969, with discussion, pp. 37–47.

[2] P. T. Boggs and J. W. Tolle, Sequential quadratic programming, Acta Numerica, 1995, Acta Nu-

mer., Cambridge University Press, Cambridge, 1995, pp. 1–51.

[3] , Sequential quadratic programming for large-scale nonlinear optimization, J. Comput.

Appl. Math. 124 (2000), no. 1-2, 123–137.

[4] K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl.

Mech. Eng. 186 (2000), no. 2–4, 311–338.

[5] R. Fletcher, Practical Methods of Optimization, A Wiley-Interscience Publication, John Wiley &

Sons, Chichester, 1987.

[6] C. A. Floudas and P. M. Pardalos, A Collection of Test Problems for Constrained Global Opti-

mization Algorithms, Lecture Notes in Computer Science, vol. 455, Springer, Berlin, 1990.

[7] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, Massachusetts, 1989.

[8] C. Kao, Performance of several nonlinear programming software packages on microcomputers,

Comput. Oper. Res. 25 (1998), no. 10, 807–816.

[9] A. F. Kuri-Morales and J. Gutiérrez-Garcia, Penalty functions methods for constrained optimiza-

tion with genetic algorithms: a statistical analysis, Proc. 2nd Mexican International Confer-

ence on Artificial Intelligence, Springer-Verlag, Heidelberg, Germany, 2001, pp. 108–117.

[10] L. S. Lasdon, A. D. Warren, A. Jain, and M. Ratner, Design and testing of a generalized reduced

gradient code for nonlinear programming, ACM Trans. Math. Software 4 (1978), no. 1, 34–50.



Ozgur Yeniay 173

[11] M. Mathur, S. B. Karale, S. Priye, V. K. Jayaraman, and B. D. Kulkarni, Ant colony approach to

continuous function optimization, Ind. Engng. Chem. Res 39 (2000), no. 10, 3814–3822.

[12] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin,

1994.

[13] , Genetic algorithms, numerical optimization and constraints, Proc. 6th International

Conference on Genetic Algorithms (L. J. Eshelman, ed.), Morgan Kaufmann, California,

1995, pp. 151–158.

[14] Z. Michalewicz and M. Schoenauer, Evolutionary algorithms for constrained parameter opti-

mization problems, Evolutionary Computation 4 (1996), no. 1, 1–32.
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