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Traditionally, two approaches have been employed for structural
equation modeling: covariance structure analysis and partial least
squares. A third alternative, generalized structured component analysis,
was introduced recently in the psychometric literature. The authors con-
duct a simulation study to evaluate the relative performance of these
three approaches in terms of parameter recovery under different experi-
mental conditions of sample size, data distribution, and model specifi-
cation. In this study, model specification is the only meaningful condition
in differentiating the performance of the three approaches in parameter
recovery. Specifically, when the model is correctly specified, covariance
structure analysis tends to recover parameters better than the other two
approaches. Conversely, when the model is misspecified, generalized
structured component analysis tends to recover parameters better. Finally,
partial least squares exhibits inferior performance in parameter recovery
compared with the other approaches. In particular, this tendency is salient
when the model involves cross-loadings. Thus, generalized structured
component analysis may be a good alternative to partial least squares
for structural equation modeling and is recommended over covariance
structure analysis unless correct model specification is ensured.
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Structural equation modeling, also known as path analy-
sis with latent variables, is used for the specification and
analysis of interdependencies among observed variables and

underlying theoretical constructs, often called latent
variables. Since its introduction to marketing (Bagozzi
1980), structural equation modeling has become a remark-
ably popular tool for many reasons, including its analytic
flexibility and generality (Baumgartner and Homburg 1996;
Steenkamp and Baumgartner 2000).
Traditionally, two approaches have been used for struc-

tural equation modeling (Anderson and Gerbing 1988; For-
nell and Bookstein 1982; Jöreskog and Wold 1982): One is
covariance structure analysis (Jöreskog 1973), and the other
is partial least squares (Lohmöller 1989; Wold 1975).
Covariance structure analysis is exemplified by many avail-
able software programs, including LISREL (Jöreskog and
Sörbom 1993), AMOS (Arbuckle 1994), EQS (Bentler
1995), and Mplus (Muthén and Muthén 1994), and partial
least squares can be implemented by the software programs
LVPLS (Lohmöller 1984), PLS-Graph (Chin 2001), Smart-
PLS (Ringle, Wende, and Will 2005), and VisualPLS (Fu
2006). Recently, a third approach—namely, generalized
structured component analysis—has been published in the
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where

and I is an identity matrix (Hwang, DeSarbo, and Takane
2007; Hwang and Takane 2004). Although Equation 4 rep-
resents the original generalized structured component
analysis model that Hwang and Takane (2004) propose, this
model can also be expressed as follows:

ui = Tui + ei,

where

Thus, the generalized structured component analysis model
is essentially of the same form as the reticular action model
(McArdle and McDonald 1984), which is mathematically
the most compact specification among various formations
of covariance structure analysis. With respect to the reticu-
lar action model, the only difference in model specification
is that generalized structured component analysis defines
latent variables as components—that is, γγi = Wzi.
The unknown parameters of generalized structured com-

ponent analysis (W and A) are estimated such that the sum
of squares of all residuals (ei) is as small as possible across
all respondents. This problem is equivalent to minimizing
the following least squares criterion:

with respect to W and A, subject to ΣNi = 1γ2id = 1, where γid
is the dth element of γγi. An alternating least squares algo-
rithm (De Leeuw, Young, and Takane 1976) was developed
to minimize this criterion. This algorithm alternates two
main steps until convergence: In the first step, for fixed W,
A is updated in the least squares sense, and in the second,
W is updated in the least squares sense for fixed A (for a
detailed description of the algorithm, see Hwang and
Takane 2004).
Generalized structured component analysis estimates

model parameters by consistently minimizing the global
optimization criterion. This enables the provision of meas-
ures of overall model fit. Specifically, generalized structured
component analysis offers an overall measure of fit, called
FIT, which is the proportion of the total variance of all
endogenous variables explained by a given particular model
specification. It is given by FIT = 1 – [ΣN

i = 1(Vzi – AWzi)′
(Vzi – AWzi)/ΣNi = 1zi′V′Vzi]. The values of FIT range from
0 to 1. The larger this value, the more variance in the
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psychometric literature (Hwang and Takane 2004). General-
ized structured component analysis is implemented by the
software program GeSCA (Hwang 2009a).
However, to date, no study has investigated the relative

performance of these three approaches to structural equa-
tion modeling. Therefore, the objective of this article is to
evaluate the three approaches in terms of parameter recov-
ery capability using a Monte Carlo simulation study.
The structure of this article is as follows: We briefly

review generalized structured component analysis and dis-
cuss theoretical differences and similarities among the three
approaches. Then, we describe the design of the simulation
study and report the results. Finally, we discuss the implica-
tions of the study and also provide recommendations for
marketing/applied researchers based on the parameter
recovery capability of the three approaches.

BACKGROUND

Vast literature provides the technical underpinnings of
covariance structure analysis (e.g., Bollen 1989; Kaplan
2000) and partial least squares (e.g., Lohmöller 1989;
Tenenhaus et al. 2005). However, generalized structured
component analysis is still novel to marketing researchers.
Thus, we present a brief description of generalized struc-
tured component analysis and then discuss theoretical char-
acteristics among the three approaches.

Generalized Structured Component Analysis

As its name explicitly suggests, generalized structured
component analysis represents a component-based approach
to structural equation modeling (Tenenhaus 2008). Thus,
this approach defines latent variables as components or
weighted composites of observed variables as follows:

(1) γγi = Wzi,

where zi denotes a vector of observed variables for a respon-
dent i (i = 1, …, N), γγi is a vector of latent variables for a
respondent i, and W is a matrix consisting of component
weights assigned to observed variables. Moreover, general-
ized structured component analysis involves two additional
equations for model specifications: One is for the measure-
ment, or outer, model, which specifies the relationships
between observed and latent variables, and the other is for
the structural, or inner, model, which expresses the relation-
ships among latent variables. Specifically, in generalized
structured component analysis, the measurement model is
given by the following:

(2) zi = Cγγi + εεi,

where C is a matrix of loadings relating latent variables to
observed variables and εεi is a vector of residuals for zi. The
structural model is defined by the following:

(3) γγi = Bγγi + ξξi,

where B is a matrix of path coefficients connecting latent
variables among themselves and ξξi is a vector of residuals
for γγi.
Then, the generalized structured component analysis

model is derived from combining these three equations into
a single equation as follows:
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also regarded as components. Conversely, in covariance
structure analysis, latent variables are equivalent to common
factors. Thus, generalized structured component analysis
and partial least squares are viewed as component-based
approaches to structural equation modeling, whereas covari-
ance structure analysis is viewed as a factor-based approach
(Chin 1998; Velicer and Jackson 1990). In turn, this implies
that latent variables in covariance structure analysis are ran-
dom, whereas in partial least squares and generalized struc-
tured component analysis, they are fixed. Consequently, this
leads to the specification of different sets of model parame-
ters for latent variables (i.e., factor means and/or variances
in covariance structure analysis versus component weights
in partial least squares and generalized structured compo-
nent analysis).
Another point of comparison in model specification rests

in the number of equations to be used in specifying models.
As Equations 2 and 3 show, generalized structured compo-
nent analysis entails the specifications of measurement and
structural models. This is the case in both covariance struc-
ture analysis and partial least squares. However, covariance
structure analysis and generalized structured component
analysis integrate the two submodels into a unified algebraic
formulation (i.e., a single equation), such as the reticular
action model in covariance structure analysis and Equation
4 in generalized structured component analysis. Conversely,
partial least squares does not combine the two submodels
into a single equation and thus addresses the two equations
separately. This difference in the number of equations for
the specification of structural equation models contributes
to characterizing the parameter estimation procedures of the
three approaches, as we discuss subsequently.

Comparisons in parameter estimation. As the name sug-
gests, covariance structure analysis is run on covariances or
correlations among observed variables as input data.
Specifically, in covariance structure analysis, the population
covariance matrix of observed variables is modeled as a
function of the parameters of a hypothesized structural
equation model. This modeled population covariance matrix
is often referred to as the implied population covariance
matrix. If the model is correct and the population covariance
matrix is known, the parameters can be estimated by mini-
mizing the difference between the population and the
implied covariance matrices. In practice, the population
covariance matrix is substituted for by the sample covari-
ance matrix because the population covariance matrix is
usually unknown (Bollen 1989). Under the assumption of
multivariate normality of observed variables, Jöreskog
(1973) developed a maximum likelihood method for
parameter estimation for covariance structure analysis. This
procedure is by far the most widely used (Bollen 1989),
though there are alternative estimation methods that include
generalized least squares and unweighted least squares.
Conversely, partial least squares and generalized struc-

tured component analysis employ individual-level raw data
as input data for parameter estimation. Moreover, the two
approaches estimate parameters with a least squares estima-
tion method: the fixed-point algorithm for partial least
squares (Wold 1965) and the alternating least squares algo-
rithm for generalized structured component analysis.
Because of the adoption of a least squares estimation
method, partial least squares and generalized structured

variables is accounted for by the specified model. The FIT
measure is a function of the sum of the squared residuals
that summarizes the discrepancies between the model and
the data. However, FIT is affected by model complexity—
that is, the more parameters, the larger is the value of FIT.
Thus, another index of fit was developed that takes this con-
tingency into account. It is referred to as adjusted FIT, or
AFIT (Hwang, DeSarbo, and Takane 2007), given by AFIT =
1 – (1 – FIT)(d0/d1), where d0 = NJ is the degrees of freedom
for the null model (W = 0 and A = 0) and d1 = NJ – G is the
degrees of freedom for the model being tested, where J is
the number of observed variables and G is the number of
free parameters. The model that maximizes AFIT is consid-
ered the most appropriate among competing models.
In generalized structured component analysis, the boot-

strap method (Efron 1982) is employed to calculate the
standard errors of parameter estimates without recourse to
the assumption of multivariate normality of observed
variables. The bootstrapped standard errors or confidence
intervals can be used for assessing the reliability of the
parameter estimates.

Similarities and Dissimilarities Among the Three
Approaches

In this section, we compare the theoretical characteristics
of generalized structured component analysis with those of
covariance structure analysis and partial least squares. Table
1 provides a summary of the comparisons among the three
approaches in terms of model specification and parameter
estimation.
Comparisons in model specification. With respect to

model specification, generalized structured component
analysis defines latent variables as components or weighted
sums of observed variables, as shown in Equation 1. This is
similar to partial least squares, in which latent variables are

Table 1
SIMILARITIES AND DISSIMILARITIES AMONG THE THREE

APPROACHES TO STRUCTURAL EQUATION MODELING

Generalized
Covariance Structured
Structure Partial Least Component
Analysis Squares Analysis

Model Specification
Latent variables Factors Components Components
Number of equations One Two One
Model parameters Loadings, path Loadings, path Loadings, path 

coefficients, error coefficients, coefficients,
variances, factor component component
means and/or weights weights
variances

Parameter Estimation
Input data Covariances/ Individual-level Individual-level

correlations raw data raw data
Estimation method Maximum Least squares Least squares

likelihood 
(mainly)

Global optimization 
function Yes No Yes

Normality assumption Required for Not required Not required
maximum 
likelihood

Model fit measures Overall and Local Overall and 
local local
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Importantly, the availability of measures of overall model
fit relies on whether some global optimization criterion is
present. Indeed, because generalized structured component
analysis and covariance structure analysis involve a global
optimization criterion, they can provide measures of overall
and local model fit. In contrast, partial least squares entails
the estimation of two submodels to capture the same rela-
tionships, and each is linked to a separate local optimization
criterion. Thus, partial least squares is incapable of provid-
ing a measure of overall model fit. This forces partial least
squares users to rely solely on local fit measures to evaluate
a model. Despite the importance of measures of local fit in
evaluating the suitability of models (Bollen 1989), they pro-
vide little information on how well a model fits the data as a
whole. Moreover, they are of little use for comparisons of a
focal model to alternative model specifications.

SIMULATION DESIGN

The experimental conditions we considered in the simu-
lation study are as follows: approach (covariance structure
analysis, partial least squares, and generalized structured
component analysis), sample size (N = 100, 200, 300, 400,
and 500), model specification (correctly specified versus
misspecified), and data distribution (normal versus nonnor-
mal). These experimental conditions are commonly encoun-
tered in simulations based on structural equation modeling
(Paxton et al. 2001).
We specify a structural equation model for this study that

involves three latent variables and four observed variables
per latent variable. This model is essentially the same as that
which Paxton and colleagues (2001) specify in their simula-
tions. Figure 1 displays the correct specification and a mis-
specification of the model along with their unstandardized
and standardized parameter values. In the misspecified

component analysis do not require the normality assump-
tion for parameter estimation. Note that in covariance struc-
ture analysis, this distributional assumption can also be
relaxed through the use of unweighted least squares or
asymptotically distribution-free estimators (e.g., Browne
1982, 1984).
Although covariance structure analysis and generalized

structured component analysis use differing estimation
methods (maximum likelihood versus least squares), they
remain comparable in the sense that both approaches aim 
to optimize a single optimization function for parameter
estimation. Specifically, maximum likelihood estimates
parameters by consistently maximizing a single likelihood
function, which in turn is derived from a single formulation
of structural equation modeling. Similarly, the alternating
least squares algorithm of generalized structured component
analysis also estimates parameters by consistently mini-
mizing a single least squares optimization function, which
in turn is directly derived from a single equation. Con-
versely, because of the absence of such a global optimiza-
tion function stemming from a unified formulation of the
two submodels, the fixed-point algorithm inherent to partial
least squares involves minimizing separate local optimiza-
tion functions by solving a series of ordinary regression
analyses. Consequently, covariance structure analysis and
generalized structured component analysis define conver-
gence as the increase or decrease in the function value
beyond a certain threshold. In contrast, partial least squares
defines convergence as a sort of equilibrium—that is, the
point at which no substantial difference occurs between the
previous and the current estimates of component weights.
Thus, the algebraic formulations underlying the three
approaches seem to result in substantial differences in the
procedures of parameter estimation.

Figure 1
THE SPECIFIED MODEL FOR THE SIMULATION STUDY ALONG WITH STANDARDIZED PARAMETERS (IN PARENTHESES)

Notes: The model misspecification indicates omission of dashed loadings and inclusion of the dashed path coefficient.
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model, we omit cross-loadings and specify an additional
path coefficient, as indicated by the dashed lines.
We draw individual-level multivariate normal data from

N(0, ΣΣ), where ΣΣ is the implied population covariance
matrix derived from a covariance structure analysis formu-
lation (i.e., the reticular action model) using the unstandard-
ized parameter values. For a nonnormal distribution, we
adopt skewness = 1.25 and kurtosis = 3.75. We use these
levels of skewness and kurtosis to closely reflect a nonnor-
mal condition typically encountered in marketing research
(e.g., Hulland, Ryan, and Rayner 2005). To generate the
intended nonnormality (i.e., the intended skewness and kur-
tosis values), we apply Fleishman’s (1978) power transfor-
mation approach to normal data. We generate 500 samples
at each level of the experimental conditions. Subsequently,
we fit all 10,000 samples (5 sample sizes × 2 distributions ×
2 model specifications × 500 replications) by the three
approaches.

SIMULATION RESULTS

To evaluate the recovery of parameter estimates under the
three approaches, we computed the mean absolute differ-
ences of parameters and their estimates as follows:

where θ̂j and θj are an estimate and its parameter, respec-
tively, and P is the number of parameters (e.g., Mason and
Perreault 1991). We removed any simulated sample involv-
ing nonconvergence within 100 iterations or convergence 
to improper solutions from the calculation of the absolute
differences.
As we discussed previously, the three approaches esti-

mate different sets of model parameters. Thus, in this study,
we evaluate and report the recovery of the estimates of a
common set of parameters (i.e., loadings and path coeffi-
cients) and the recovery of the standard errors of those
parameter estimates. Covariance structure analysis typically
provides unstandardized parameter estimates and their stan-
dard errors, whereas generalized structured component
analysis and partial least squares result in standardized

( )

ˆ

,7 1MAD
P

j j

j

P

=

−
=
∑ θ θ

parameter estimates and their standard errors. Thus, we
rescaled all estimates by dividing them by the correspon-
ding (unstandardized or standardized) parameters to ensure
equal-scale comparisons across the three approaches.

Recovery of Parameters

An analysis of variance for examining the recovery of
parameters. We performed an analysis of variance
(ANOVA) that included the mean absolute differences of
the estimates of loadings and path coefficients as the
dependent variable and the four experimental conditions as
design factors. Table 2 presents the results of the ANOVA.
A number of the main and interaction effects of the design
factors were statistically significant. However, this may be
largely due to the large number of observations stemming
from the replications under multiple conditions (the total
number of observations was 28,267). Thus, it is important
to report and interpret the meaningfulness of such effects
using an effect size (Paxton et al. 2001). We focus only on
effects whose sizes were at least medium (i.e., η2 ≥ .06)
(Cohen 1988).
First, model specification (η2 = .08) and approach (η2 =

.14) had a medium and large main effect, respectively. Thus,
it is likely that the levels of the mean absolute differences of
parameter estimates were higher when the model was cor-
rectly specified (.31) than when the model was misspecified
(.15). Moreover, there are likely meaningful differences in
the mean absolute differences among the three approaches.
It appears that there were little differences in the mean
absolute differences between covariance structure analysis
(.16) and generalized structured component analysis (.15),
whereas partial least squares was associated with a higher
level of the mean absolute differences (.38).
Second, the two-way interaction effect between model

specification and approach was large (η2 = .16). Figure 2
displays the average values of the mean absolute differences
of the three approaches under the two levels of model
specification (correct versus misspecified). When the model
was correctly specified, covariance structure analysis was
associated with the smallest level of the mean absolute dif-
ferences (.15), generalized structured component analysis
was associated with the second smallest (.16), and partial
least squares was associated with the largest (.62). Con-

Table 2
THE RESULTS OF AN ANOVA FOR THE MEAN ABSOLUTE DIFFERENCES OF PARAMETER ESTIMATES

Source Sum of Squares d.f. Mean Square F Significance η2

Distribution (A) .41 1 .41 8.13 .00 .00
Model specification (B) 179.20 1 179.20 3521.36 .00 .08
Sample size (C) 8.70 4 2.17 42.72 .00 .00
Approach (D) 325.05 2 162.53 3193.77 .00 .14
A × B .75 1 .75 14.80 .00 .00
A × C .13 4 .03 .62 .65 .00
A × D .10 2 .05 .96 .38 .00
B × C .25 4 .06 1.23 .30 .00
B × D 391.09 2 195.54 3842.60 .00 .16
C × D 6.80 8 .85 16.71 .00 .00
A × B × C .39 4 .10 1.89 .11 .00
A × B × D .35 2 .17 3.40 .03 .00
A × C × D .28 8 .04 .69 .71 .00
B × C × D 1.09 8 .14 2.67 .01 .00
A × B × C × D .73 8 .09 1.78 .08 .00
Error 1435.40 28,207 .05
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versely, when the model was misspecified, generalized
structured component analysis involved the smallest level of
the mean absolute differences (.13), partial least squares had
the second smallest (.14), and covariance structure analysis
yielded the largest (.18). Thus, the somewhat counter-
intuitive nature of the main effect of model specification
may be due to the poor parameter recovery of partial least
squares under correct specification.

Overall finite-sample properties of parameter estimates
under model specification levels. The ANOVA showed that
the parameter recovery of the three approaches was distinct
between the two levels of model specification. To obtain 
a greater understanding of how differently they behave
under this condition, we further investigated the overall
finite-sample properties of the parameter estimates of the
three approaches across the model specification levels. Fig-
ures 3 and 4 display the average relative biases, standard
deviations, and mean square errors of parameter estimates
obtained from the three approaches under the two model
specifications. Among these properties, in particular, the
mean square error is the average squared difference between
a parameter and its estimate, indicating how far an estimate
is, on average, from its parameter—that is, the smaller the

mean square error, the closer the estimate is to the parameter.
Specifically, the mean square error is given by the following:

As Equation 8 shows, the mean square error of an estimate
is the sum of its variance and squared bias. Thus, the mean
square error entails information on both bias and variability
of the estimate (Mood, Graybill, and Boes 1974).
In the study, we regard absolute values of relative bias

greater than 10% as indicative of an unacceptable degree of
bias (Bollen et al. 2007; Lei 2009). As Figure 3 shows,
under correct model specification, on average, covariance
structure analysis yielded unbiased estimates of loadings
and path coefficients across all sample sizes. Generalized
structured component analysis led to unbiased loading esti-
mates, but it yielded negatively biased path coefficient esti-
mates, regardless of sample size. Partial least squares
showed a high level of positive bias in loading estimates,
which appeared to increase with sample size. This approach
also tended to result in positively biased path coefficient
estimates as sample size increased. When the model was
correctly specified, overall, the parameter estimates of gen-
eralized structured component analysis were consistently
associated with smaller standard deviations than estimates
obtained from the two traditional approaches. The estimates
of partial least squares involved larger standard deviations
than those under covariance structure analysis. As sample
size increased, these standard deviations tended to decrease
across all the approaches.
On average, covariance structure analysis showed the

smallest mean square errors of loading estimates, and gen-
eralized structured component analysis involved the second
smallest mean square errors of loading estimates, though
both approaches showed similar levels of the mean square
errors until N = 300. Conversely, partial least squares exhib-
ited the largest mean square errors of loading estimates
across all sample sizes. Finally, generalized structured com-
ponent analysis involved the smallest mean square errors of
path coefficient estimates until N = 400, whereas covariance
structure analysis resulted in the smallest mean square error
of path coefficient estimate at N = 500, though the differ-
ences in the mean square errors between generalized struc-
tured component analysis and covariance structure analysis
became small as N > 100. Conversely, partial least squares
was associated with the largest mean square errors of path
coefficient estimates across all sample sizes.
As Figure 4 shows, under model misspecification, all

three approaches yielded positively biased loading estimates
across sample sizes, though the amount of bias tended to
decrease with sample size in covariance structure analysis.
Conversely, generalized structured component analysis and
partial least squares led to a negative but tolerable degree of
bias for path coefficient estimates, whereas covariance
structure analysis yielded positively biased path coefficient
estimates that were slightly less than 10% of relative bias.
In addition, under misspecification, the parameter estimates
under generalized structured component analysis were con-
sistently associated with smaller standard deviations than
those under the other approaches, though the differences

( ) ˆ ˆ ˆ ˆ8
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MSE E E Ej j j j jθ θ θ θ θ( ) = −( )
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Figure 2
THE AVERAGE VALUES OF THE MEAN ABSOLUTE

DIFFERENCES OF THE ESTIMATES OF PARAMETERS AND

STANDARD ERRORS OBTAINED FROM THE THREE

APPROACHES ACROSS TWO LEVELS OF MODEL

SPECIFICATION

A: The Mean Absolute Differences of Parameter Estimates

B: The Mean Absoute Differences of Standard Error Estimates

Notes: GSCA = generalized structured component analysis, CSA =
covariance structure analysis, and PLS = partial least squares.
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between generalized structured component analysis and
partial least squares were small. The parameter estimates
from covariance structure analysis showed the largest levels
of standard deviations over sample size.
On average, generalized structured component analysis

had the smallest mean square errors of both loading and
path coefficient estimates across all sample sizes. However,
the differences in the mean square errors of the parameter
estimates were negligibly small between generalized struc-
tured component analysis and partial least squares. Con-

versely, covariance structure analysis resulted in the
parameter estimates with the largest mean square errors
over sample size, though the mean square errors of the load-
ing estimates appeared close to those of generalized struc-
tured component analysis and partial least squares when
sample size increased.

Recovery of Standard Errors

An ANOVA for examining the recovery of standard errors.
To evaluate the recovery of the standard errors of parameter

Figure 3
OVERALL FINITE-SAMPLE PROPERTIES OF THE PARAMETER ESTIMATES OF THE THREE APPROACHES UNDER CORRECT

SPECIFICATION ACROSS DIFFERENT SAMPLE SIZES

Notes: RB = relative bias, SD = standard deviation, and MSE = mean square error. A line indicates no relative bias. GSCA = generalized struc-
tured component analysis, CSA = covariance structure analysis, and PLS = partial least squares.
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1989; Srinivasan and Mason 1986). We then calculated the
mean absolute differences of the standard errors of loading
and path coefficient estimates across different experimental
conditions. In covariance structure analysis, we obtained the
standard errors from the asymptotic covariance matrix of
parameter estimates under asymptotic normal theory (e.g.,
Bollen 1989), whereas in generalized structured component
analysis and partial least squares, we estimated them on the
basis of the bootstrap method with 100 bootstrap samples.
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estimates, we first obtained the true standard errors empiri-
cally as follows:

where θ̂
–
j is the mean of a parameter estimate across B repli-

cations (e.g., B = 500) (Sharma, Durvasula, and Dillon
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Figure 4
OVERALL FINITE-SAMPLE PROPERTIES OF THE PARAMETER ESTIMATES OF THE THREE APPROACHES UNDER

MISSPECIFICATION ACROSS DIFFERENT SAMPLE SIZES

Notes: RB = relative bias, SD = standard deviation, and MSE = mean square error. A line indicates no relative bias. GSCA = generalized struc-
tured component analysis, CSA = covariance structure analysis, and PLS = partial least squares.
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Covariance structure analysis led to positively biased stan-
dard errors of the parameter estimates. Partial least squares
resulted in unbiased standard errors of loading estimates,
while providing biased standard errors of path coefficients
when N ≤ 200. Under correct specification, the standard
errors of loading and path coefficient estimates under gen-
eralized structured component analysis were associated
with the smallest levels of standard deviations, except for
those of loading estimates at N ≥ 300. Conversely, the stan-
dard errors of both sets of parameter estimates obtained
from partial least squares had the largest levels of standard
deviations over sample size.
On average, generalized structured component analysis

showed the smallest mean square errors of the standard
errors of loading and path coefficient estimates over sample
size. Covariance structure analysis involved smaller mean
square errors of both sets of estimates than those under par-
tial least squares when N ≥ 200. However, the differences in
the mean square errors of the standard errors of path coeffi-
cient estimates appeared negligibly small among the three
approaches as sample size increased.
As Figure 6 shows, under model misspecification, the

standard errors for covariance structure analysis and gener-
alized structured component analysis seemed to possess
similar properties to those under correct specification. Con-
versely, the standard errors for partial least squares under
misspecification appeared to have smaller biases, standard
deviation, and mean square errors than those under correct
specification. Moreover, under misspecification, the stan-
dard errors obtained from partial least squares and general-
ized structured component analysis behaved comparably.

CONCLUSIONS AND RECOMMENDATIONS

In this article, we undertook investigations of the per-
formance of three approaches to structural equation model-
ing (covariance structure analysis, partial least squares, and
generalized structured component analysis) through analy-
ses of simulated data under diverse experimental conditions.
This study represents the first effort toward providing sys-
tematic comparisons between the performances of three dif-
ferent approaches to structural equation modeling, includ-
ing a recent development in the area, namely, generalized

We performed an ANOVA to examine the main and inter-
action effects of the design factors on the mean absolute dif-
ferences of the standard error estimates. Table 3 shows the
results of the ANOVA. Again, most of the main and inter-
action effects of the design factors turned out to be statisti-
cally significant. Nonetheless, only two design factors
showed sufficiently large main effects: model specification
(η2 = .14) and approach (η2 = .27). Thus, these suggest
meaningful differences in the mean absolute differences of
standard errors between the two model specifications (cor-
rect = .03, and misspecified = .01) and the three approaches
(generalized structured component analysis = .00, covari-
ance structure analysis = .02, and partial least squares = .04).
Moreover, the two-way interaction between model

specification and approach had a large effect size (η2 = .36).
Figure 2 displays the average values of the mean absolute
differences of the three approaches under the two levels of
model specification. Under both levels, generalized struc-
tured component analysis resulted in the smallest level of
the mean absolute differences of standard errors (correct =
.00, and misspecified = .00). Conversely, covariance struc-
ture analysis provided a smaller level of the mean absolute
differences than partial least squares under correct specifi-
cation (covariance structure analysis = .02, and partial least
squares = .07), whereas partial least squares yielded a
smaller level of the mean absolute differences than covari-
ance structure analysis under misspecification (covariance
structure analysis = .02, and partial least squares = .00). In
particular, there seemed to be a large difference in the mean
absolute differences of the standard errors of partial least
squares across the two specifications. Again, this may
explain why the level of the mean absolute differences was,
on average, lower under misspecification, as we concluded
with respect to the main effect of model specification.
Overall finite-sample properties of standard error esti-

mates under model specification levels. Figures 5 and 6
show the average relative biases, standard deviations, and
mean square errors of the standard errors estimated from the
three approaches under the two model specifications over
sample size. As Figure 5 shows, when the model was cor-
rectly specified, on average, generalized structured compo-
nent analysis yielded unbiased standard errors of both load-
ing and path coefficient estimates across all sample sizes.

Table 3
THE RESULTS OF AN ANOVA FOR THE MEAN ABSOLUTE DIFFERENCES OF STANDARD ERROR ESTIMATES

Source Sum of Squares d.f. Mean Square F Significance η2

Distribution (A) .00 1 .00 .16 .69 .00
Model specification (B) 2.99 1 2.99 38,820.93 .00 .14
Sample size (C) .63 4 .16 2040.47 .00 .03
Approach (D) 5.68 2 2.84 36,932.50 .00 .27
A × B .04 1 .04 524.39 .00 .00
A × C .01 4 .00 28.48 .00 .00
A × D .39 2 .20 2551.00 .00 .02
B × C .09 4 .02 295.41 .00 .00
B × D 7.54 2 3.77 49,004.23 .00 .36
C × D .50 8 .06 815.28 .00 .02
A × B × C .01 4 .00 21.49 .00 .00
A × B × D .09 2 .05 603.77 .00 .01
A × C × D .03 8 .00 43.44 .00 .00
B × C × D .23 8 .03 375.65 .00 .01
A × B × C × D .01 8 .00 20.76 .00 .00
Error 2.17 28,207 .00



structured component analysis. The major findings of this
study are twofold.
First, only the model specification factor led to differences

in parameter recovery among the approaches. Whether or
not the model is correctly specified was the only meaning-
ful factor in differentiating the performance of the three
approaches in parameter recovery. Specifically, when the
model was correctly specified, in general, covariance struc-
ture analysis recovered loadings and path coefficients better

than generalized structured component analysis and partial
least squares. Conversely, when the model was misspeci-
fied, generalized structured component analysis resulted 
in more accurate estimates of these parameters. However,
generalized structured component analysis appeared to esti-
mate standard errors more precisely under both levels of
model specification. The relatively poor performance of
covariance structure analysis under misspecification has
been previously reported in the literature (e.g., Bollen et al.
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Figure 5
OVERALL FINITE-SAMPLE PROPERTIES OF THE STANDARD ERROR ESTIMATES OF THE THREE APPROACHES UNDER CORRECT

SPECIFICATION ACROSS DIFFERENT SAMPLE SIZES

Notes: RB = relative bias, SD = standard deviation, and MSE = mean square error. A line  indicates no relative bias. GSCA = generalized struc-
tured component analysis, CSA = covariance structure analysis, and PLS = partial least squares.
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2007; Hoogland and Boomsma 1998). What is novel in this
study is the superior performance of generalized structured
component analysis over covariance structure analysis
under misspecification.
Similarly, the overall finite-sample properties of the three

approaches were distinct between the two levels of model
specification. In particular, covariance structure analysis
and generalized structured component analysis tended to
result in parameter estimates with relatively small mean

square errors (i.e., close to their parameters) when the
model was correctly specified. Conversely, generalized
structured component analysis and partial least squares
tended to yield parameter estimates with relatively small
mean square errors when the model was misspecified. In
addition, generalized structured component analysis pro-
duced standard error estimates with the smallest mean
square errors regardless of model specification. This sug-
gests that the bootstrap method adopted by generalized

Figure 6
OVERALL FINITE-SAMPLE PROPERTIES OF THE STANDARD ERROR ESTIMATES OF THE THREE APPROACHES UNDER

MISSPECIFICATION ACROSS DIFFERENT SAMPLE SIZES

Notes RB = relative bias, SD = standard deviation, and MSE = mean square error. A line indicates no relative bias. GSCA = generalized structured
component analysis, CSA = covariance structure analysis, and PLS = partial least squares.
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structured component analysis performed well in the esti-
mation of standard errors of the parameter estimates.
Bias in parameter estimates and standard errors under the

three approaches also appeared to differ between the two
levels of model specification. For example, when the model
was correctly specified, in general, covariance structure
analysis resulted in unbiased parameter estimates, whereas
the other two approaches tended to provide biased parame-
ter estimates. Conversely, when the model was misspeci-
fied, all three approaches tended to yield biased parameter
estimates. Bias represents an important piece of information
regarding the finite-sample behavior of a parameter estimate
(i.e., how close the mean of an estimate is to the parameter).
Nonetheless, as Equation 8 implies, bias per se may not be
of serious concern unless it increases mean square error in
combination with variance, thereby making an estimate far
from its true value on average (e.g., Hastie, Tibshirani, and
Friedman 2001).
In addition, the violation of normality, to the extent that it

is frequently faced in practice, did not seem to greatly affect
parameter recovery among the three approaches. This is
consistent with Hulland, Ryan, and Rayner (2005), who
compare the recovery of path coefficients between covari-
ance structure analysis and partial least squares with simu-
lated data.
Second, the performance of partial least squares was rela-

tively poor in parameter recovery compared with the other
two approaches. Partial least squares showed relatively infe-
rior performance in parameter recovery compared with the
other two approaches. In particular, this tendency was
prominent when the model was correctly specified. This
may hinge on the correct model in this study being com-
posed of cross-loadings. Partial least squares performed
similarly to generalized structured component analysis
when the model was misspecified to exclude cross-loadings.
This implies that the performance of partial least squares
may be affected by how the model is specified, not by
whether the model is correct. This result is somewhat unex-
pected because partial least squares has been regarded and
presented as a model-free or soft-modeling approach that
requires minimal demands on prior assumptions for struc-
tural equation modeling (Wold 1982). It is unclear which
technical mechanism underlying partial least squares is
related to our finding. Further research might investigate
this issue more fully.

Recommendations

At the risk of generalizing from the results of our simula-
tion study, we venture to provide some recommendations
for the marketing/applied researcher. First, we recommend
the adoption of generalized structured component analysis
as a sensible alternative to partial least squares. As we
demonstrated, generalized structured component analysis
performed better than or as well as partial least squares in
parameter recovery. In addition, generalized structured
component analysis maintains all the advantages of partial
least squares as a component-based structural equation
modeling methodology. However, it also offers additional
benefits, such as overall measures of model fit (Hwang and
Takane 2004).
Second, if correct model specification is ensured, we rec-

ommend the use of covariance structure analysis. This

approach resulted in more accurate parameter estimates
than generalized structured component analysis under cor-
rect model specification.
Finally, if correct model specification cannot be ensured,

researchers should use generalized structured component
analysis because it outperformed covariance structure analy-
sis in the recovery of parameters under misspecification.
Note that we offer these recommendations on the basis of

the capability of parameter recovery among the three
approaches in this simulation study. In practice, however,
the data analytic flexibility of the three approaches may also
be important to the researcher. Although generalized struc-
tured component analysis has been rapidly extended and
refined to enhance its generality and versatility (e.g., Hwang
2009b; Hwang, DeSarbo, and Takane 2007; Hwang and
Takane 2010; Hwang, Takane, and Malhotra 2007; Takane,
Hunter, and Hwang 2004), covariance structure analysis still
seems more versatile because it has been extended by many
researchers over several decades. For example, since the
seminal work of Kenny and Judd (1984), many researchers
have elaborated covariance structure analysis to accommo-
date nonlinear latent variables, such as quadratic and inter-
action terms of latent variables (e.g., Klein and Muthén
2007; Marsh, Wen, and Hau 2004; Schumacker and Mar-
coulides 1998; Wall and Amemiya 2001). As in partial least
squares, generalized structured component analysis may
readily address a two-way interaction of latent variables by
adopting the so-called product-indicator procedure (Chin,
Marcolin, and Newsted 1996), in which new product terms
of observed variables taken to underlie two latent variables
are computed in advance and then used as the indicators for
the two-way interaction. Nonetheless, no formal study has
yet been carried out to deal with such nonlinear latent
variables in generalized structured component analysis. In
addition, the product-indicator procedure is mainly limited
to examine a two-way interaction of latent variables because
it is difficult to decide which and how many observed
variables should be selected to form product indicators for
higher-way latent interactions. Thus, covariance structure
analysis may remain more flexible in accounting for nonlin-
ear latent variables.

Limitations and Contributions

As do other simulation studies, this study has limitations.
First, we generated simulated data on the basis of covari-
ance structure analysis. This data generation procedure may
have had an unfavorable effect on the performance of par-
tial least squares and generalized structured component
analysis. We adopted the procedure because it was rather
difficult to arrive at an impartial way of generating synthetic
data for all three different approaches. Nevertheless, the
same procedure has been used in other studies that com-
pared the performance of covariance structure analysis with
that of partial least squares (e.g., Hulland, Ryan, and Rayner
2005). In any case, it appears necessary in future studies to
investigate whether a particular data generation procedure
may influence the relative performance of the different
approaches.
Second, as we stated previously, this study analyzed only

converged samples without improper solutions for covari-
ance structure analysis. Nonconvergence or improper solu-
tions are likely to lead to outliers or suboptimal estimates
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for covariance structure analysis. Thus, the purposeful
exclusion of such solutions may render covariance structure
analysis solutions biased by enhancing the differences
between the distributions of the sample and population
covariance matrices (Hoogland and Boomsma 1998). Con-
versely, we carried out no such manipulation for generalized
structured component analysis and partial least squares,
because they did not involve any convergence problems.
This may have led to results that were more favorable for
covariance structure analysis.
Finally, the simulation study took into account diverse

experimental conditions that are frequently considered in
simulations based on structural equation modeling.
Nonetheless, as with all simulation studies, the range of
conditions in this study may still be limited in scope. Thus,
it may be necessary to consider a greater variety of experi-
mental levels/conditions (e.g., a wider range of skewness
and kurtosis and different models) for more thorough inves-
tigations of the relative performance of the three approaches.
Notwithstanding these limitations, this research makes

several contributions. We present the technical underpin-
nings of generalized structured component analysis to mar-
keting researchers. Moreover, we compare generalized
structured component analysis with the two traditional
approaches to structural equation modeling to highlight
similarities and differences and to assess its relative per-
formance with respect to the traditional approaches using
simulated data. Overall, the results of the Monte Carlo
analysis provide rather clear guidelines with respect to the
conditions under which generalized structured component
analysis is preferable to the two traditional approaches. We
hope that this study provides a greater understanding of the
three currently available approaches to structural equation
modeling and leads marketing researchers to adopt general-
ized structured component analysis in many situations, par-
ticularly those in which the researchers have little confi-
dence that their models are correctly specified.
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