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Abstract—In this paper, three new particle swarm optimization
(PSO) algorithms are compared with the state of the art PSO al-
gorithms for the optimal steady-state performance of power sys-
tems, namely, the reactive power and voltage control. Two of the
three introduced, the enhanced GPAC PSO and LPAC PSO, are
based on the global and local-neighborhood variant PSOs, respec-
tively. They are hybridized with the constriction factor approach
together with a new operator, reflecting the physical force of pas-
sive congregation observed in swarms. The third one is based on a
new concept of coordinated aggregation (CA) and simulates how
the achievements of particles can be distributed in the swarm af-
fecting its manipulation. Specifically, each particle in the swarm is
attracted only by particles with better achievements than its own,
with the exception of the particle with the best achievement, which
moves randomly as a “crazy” agent. The obtained results by the
enhanced general passive congregation (GPAC), local passive con-
gregation (LPAC), and CA on the IEEE 30-bus and IEEE 118-bus
systems are compared with an interior point (IP)-based OPF al-
gorithm, a conventional PSO algorithm, and an evolutionary algo-
rithm (EA), demonstrating the excellent performance of the pro-
posed PSO algorithms.

Index Terms—Coordinated aggregation (CA), particle swarm
optimization (PSO), passive congregation, reactive power control,
voltage control.

I. INTRODUCTION

D
URING the history of science of computational in-

telligence, many evolutionary algorithms (EAs) were

proposed having more or less success in solving various non-

linear engineering optimization problems. Among them, the

best are considered to be the popular particle swarm opti-

mization (PSO) introduced by Kennedy and Eberhart [1], the

ant-colony systems (ACS) introduced by Dorigo [2], and the

cultural algorithms introduced by Reynolds [3]. In the last

years, the effort is continued by the same and other researchers

[4], [5] generating more effective EAs. The reason for the

growing development of EA is that mathematical optimization

methods, such as nonlinear programming, quadratic program-

ming, Newton-based techniques, sequential unconstrained
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minimization, and interior point algorithms, have failed in

handling nonconvexities and nonsmoothness in engineering

optimization problems. The main advantage of EA is that they

do not require the objective functions and the constraints to be

differentiable and continuous [6]. However, their main problem

remains the same, achieving the global best solution in the

possible shortest time.

In this paper, we focus on PSO algorithms for power engi-

neering discipline. In recent years, various PSO algorithms have

been successfully applied in many power-engineering problems

[7]–[18]. Among them, the hybrid PSO satisfactorily handled

problems such as distribution state estimation [8] and loss power

minimization [9] performing better convergence characteristics

than conventional methods. However, these PSO algorithms are

based on the original concept introduced by Kennedy and Eber-

hart [1].

In this paper, we proceed to the effort of developing more ef-

fective PSO algorithms by reflecting recent advances in swarm

intelligence [19] and, in addition, by introducing new concepts.

Under these conditions, two new hybrid PSO algorithms are

proposed, which are more effective and capable of solving non-

linear optimization problems faster and with better accuracy in

detecting the global best solution. The main concept of this de-

velopment is based on the passive congregation [19] and a kind

of coordinated aggregation observed in the swarms. Specifi-

cally, He et al. [20] introduced an operator of passive congrega-

tion in the global variant PSO, the general passive congregation

(GPAC PSO). We expand the application of this operator in the

local-neighborhood variant PSO [21] by enhancing it with the

constriction factor approach [8], [22], which results in the local

passive congregation (LPAC) PSO. Moreover, the GPAC PSO

[20] is also enhanced with the constriction factor approach in

this paper.

Another completely different type of PSO algorithm is intro-

duced, which is based on the coordinated aggregation (CA) ob-

served in swarms. The main idea behind the CA is based on the

fact that the achievement of each particle is distributed in the en-

tire swarm. At each iterative cycle of CA, each particle updates

its velocity, taking into account the differences between its po-

sition and the positions of better achieving particles. These dif-

ferences play the role of regulators and are called coordinators

as they are multiplied by weighting factors. The ratios of dif-

ferences between the achievement of a specific particle and the

achievements of better particles to the sum of these differences

are the weighting factors of coordinators. The best particle in the

swarm is excluded from this process, as it regulates its velocity
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VLACHOGIANNIS AND LEE: COMPARATIVE STUDY ON PARTICLE SWARM OPTIMIZATION 1719

randomly. Specifically, the best particle changes its velocity ac-

cording to a random coordinator, which takes into account the

difference between the position of the best particle and the po-

sition of a randomly chosen particle in the swarm. This seems

like the “craziness” concept adopted in [1] and helps CA to over-

come premature convergence in local minima.

In this paper, the enhanced GPAC, LPAC, and CA are ap-

plied in two nonlinear optimization problems of power systems,

namely, the reactive power and voltage control problems. The

results obtained in the IEEE 30-bus and IEEE 118-bus systems

are compared with those given by the primal-dual interior-point

based optimal power flow (OPF) algorithm [23], a conventional

PSO algorithm [8], [9], and a multiobjective evolutionary algo-

rithm (EA) [24], demonstrating improved performance of the

proposed algorithms.

This paper is organized as follows: the problems of reac-

tive power and voltage control are formulated in Section II.

Section III summarizes a conventional PSO algorithm, which

is used effectively in power engineering problems. Section IV

introduces the LPAC and the enhanced GPAC algorithms, and

the CA algorithm is introduced in Section V. Section VI presents

numerical results. Discussions and final conclusions with future

works are outlined in Sections VII and VIII, respectively.

II. REACTIVE POWER AND VOLTAGE CONTROL

The proposed PSO algorithms are tested and compared

with a conventional PSO algorithm on optimal steady-state

performance of power systems in terms of minimization of: 1)

power losses in transmission lines and 2) voltage deviations

on load busses while satisfying several equality and inequality

constraints [24]. Since the main focus of this paper is the per-

formance evaluation of the new PSO algorithms, two nonlinear

optimization problems are separately studied. Thus, a clear

picture of the effectiveness of the proposed PSO algorithms

will be given.

The first objective is to minimize the real power losses in

transmission lines that can be expressed as

(1)

where is the vector of depended variables, is the vector of

control variables, is the real power losses at line- , and is

the number of transmission lines.

The second objective is to optimize the voltage profile of the

power system. The objective is to minimize the voltage devia-

tions at load buses that can be expressed by

(2)

where is the pre-specified reference value at load bus- ,

which is usually set at the value of 1.0 p.u., and is the number

of load buses.

As the search space in both problems, the following two vec-

tors are considered:

(3)

(4)

where is the vector of dependent variables consisting of load

bus voltages , generator reactive power outputs , and

transmission line loadings , and is the vector of control

variables consisting of generator voltages , transformer tap

settings , and shunt VAR compensations .

The equality constraints of both optimization problems are

typical load flow equations as follows:

(5)

(6)

where and are the real and reactive power flow equations

at bus- , respectively; and are the generator real and

reactive power at bus- , respectively; and and are the

load real and reactive power at bus- , respectively.

The inequality constraints in both problems represent the

system operating constraints.

Generation constraints: Generator voltages and reac-

tive power outputs are restricted by their limits as fol-

lows:

(7)

(8)

where is the number of generators.

Switchable VAR constraints: Switchable VAR compensa-

tions are restricted by their limits as follows:

(9)

where is the number of switchable VAR sources.

Transformer constraints: Transformer tap settings are

bounded as follows:

(10)

where is the number of transformers.

Security constraints: This term refers to the constraints of

load voltages at load buses and transmission line load-

ings as follows:

(11)

(12)
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where is the number of load buses, and the number

of transmission lines.

III. CONVENTIONAL PARTICLE SWARM OPTIMIZATION

PSO is a swarm intelligence algorithm, inspired by the social

dynamics and an emergent behavior that arises in socially orga-

nized colonies. PSO algorithm exploits a population of individ-

uals to probe promising regions of search space. In this context,

the population is called swarm and the individuals are called

particles or agents.

In PSO algorithms, each particle moves with an adaptable ve-

locity within the regions of decision space and retains a memory

of the best position it ever encountered. The best position ever

attained by each particle of the swarm is communicated to all

other particles. As a conventional PSO, we consider the state-of-

the-art hybrid PSO algorithm [8], [9]. Specifically, the conven-

tional PSO assumes an -dimensional search space ,

where is the number of decision variables in the optimization

problem, and a swarm consisting of -particles.

In PSO, variables are defined as follows.

The position of the th particle at time- is an -dimen-

sional vector denoted by

(13)

The velocity of this particle at time- is also an -dimen-

sional vector

(14)

The best previous position of the th particle is a point in

, denoted by

(15)

The global best position ever attained among all particles

is a point in denoted by

(16)

Then, the PSO assumes that the swarm is manipulated by the

equations

(17)

(18)

where ; and are the cognitive and the so-

cial parameters, respectively; and and are random

numbers uniformly distributed within .

The inertia weighting factor for the velocity of particle- is

defined by the inertial weight approach

(19)

where is the maximum number of iterations, and is the

current number of iterations; and are the upper and

lower limits of the inertia weighting factor, respectively.

Moreover, in order to guarantee the convergence of the PSO

algorithm, the constriction factor is defined as [8], [9], [22],

[25]–[27]

(20)

In this constriction factor approach (CFA), the basic system

equations of the PSO (17), (18) can be considered as difference

equations. Therefore, the system dynamics, namely, the search

procedure, can be analyzed by the eigenvalue analysis and can

be controlled so that the system behavior has the following fea-

tures.

1) The system converges.

2) The system can search different regions efficiently.

In the CFA, the must be greater than 4.0 to guarantee sta-

bility. However, as increases, the factor decreases and diver-

sification is reduced, yielding slower response. Therefore, we

choose 4.1 as the smallest that guarantees stability but yields

the fastest response. It has been observed here, and also in other

papers [25], that leads to good solutions. The

CFA results in convergence of the agents over time. Unlike other

PSO methods, the CFA ensures the convergence of the search

procedure based on mathematical theory. Therefore, the CFA

can generate higher quality solutions than the basic PSO ap-

proach.

However, the constriction factor only considers dynamic be-

havior of one agent and ignores the effect of the interaction

among agents. Namely, the equations were developed with a

fixed set of best positions (pbest and gbest), although pbest and

gbest change during the search procedure in the basic PSO equa-

tion [28].

IV. PASSIVE CONGREGATION-BASED PSO

According to the local-neighborhood variant of the PSO algo-

rithm (L-PSO) [21], each particle moves toward its best previous

position and toward the best particle in its restricted neighbor-

hood. As the local-neighborhood leader of a particle, its nearest

particle (in terms of distance in the decision space) with the

better evaluation is considered. Since the constriction factor ap-

proach generates higher quality solutions in the basic PSO, we

enhance the L-PSO [21] with the constriction factor [22]. How-

ever, it has been shown recently that more biological forces than

those adopted in the state-of-the-art PSO are essential for pre-

serving the swarm’s integrity. Specifically, Parrish and Hammer

[19] have proposed mathematical models to show how these

forces organize the swarms. These can be classified in two cat-

egories: the aggregation and the congregation forces.

Aggregation refers to the swarming of particles by nonsocial,

external physical forces. There are two types of aggregation:

passive aggregation and active aggregation. Passive aggregation

is a swarming by physical forces, such as the water currents in

the open sea group the plankton [19], [20]. In this paper, we do
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not consider passive aggregation, since particles (solution can-

didates in the optimization problems) are not aggregated pas-

sively via physical forces. Active aggregation is a swarming by

attractive resources such as the place with the most food. The

second term in the conventional PSO algorithm (17) (the global

best position) represents the active aggregation [19], [20].

Congregation, on the other hand, is a swarming by social

forces, which is the source of attraction of a particle to others

and is classified in two types: social and passive. Social congre-

gation usually happens when the swarm’s fidelity is high, such

as genetic relation. Social congregation necessitates active in-

formation transfer, e.g., ants that have high genetic relation use

antennal contacts to transfer information about location of re-

sources [19], [20], [29]–[32]. We do not consider social congre-

gation in this paper because it frequently displays a division of

labor. Finally, passive congregation is an attraction of a particle

to other swarm members, where there is no display of social

behavior since particles need to monitor both environment and

their immediate surroundings such as the position and the speed

of neighbors [19], [20]. Such information transfer can be em-

ployed in the passive congregation. In this paper, we propose a

hybrid L-PSO with passive congregation operator (PAC) called

LPAC PSO. Moreover, the global variant-based passive congre-

gation PSO (GPAC) [20] is enhanced with the constriction factor

approach [8], [22].

The swarms of the enhanced GPAC and LPAC are manipu-

lated by the velocity update

(21)

where ; , , and are the cognitive, so-

cial, and passive congregation parameters, respectively; ,

, and are random numbers uniformly distributed

within ; is the best previous position of the th particle;

is either the global best position ever attained among all par-

ticles in the case of enhanced GPAC or the local best position

of particle- , namely, the position of its nearest particle- with

better evaluation in the case of LPAC; and is the position of

passive congregator (position of a randomly chosen particle- ).

The positions are updated using (18).

The positions of the th particle in the -dimensional deci-

sion space are limited by the minimum and maximum positions

expressed by vectors

(22)

In this paper, the minimum and maximum position vectors of

(22) express the inequality constraints.

The velocities of the th particle in the -dimensional deci-

sion space are limited by

(23)

where the maximum velocity in the th dimension of the search

space is proposed as

(24)

where and are the limits in the -dimension of the

search space. The maximum velocities are constricted in small

intervals in the search space for better balance between explo-

ration and exploitation. is a chosen number of search in-

tervals for the particles. It is an important parameter in the en-

hanced GPAC and LPAC PSO algorithms. A small facil-

itates global exploration (searching new areas), while a large

one tends to facilitate local exploration (fine tuning of the cur-

rent search area). A suitable value for the usually provides

balance between global and local exploration abilities and con-

sequently results in a reduction of the number of iterations re-

quired to locate the optimum solution.

The basic steps of the enhanced GPAC and LPAC are listed

below.

Step 1) Generate a swarm of -particles with uniform prob-

ability distribution, initial positions , and ve-

locities , , and initialize the

random parameters. Evaluate each particle- using

objective function (e.g., to be minimized).

Step 2) For each particle- , calculate the distance be-

tween its position and the position of all other parti-

cles: , where

and are the position vectors of particle- and

particle- , respectively.

Step 3) For each particle- , determine the nearest particle,

particle- , with better evaluation than its own, i.e.,

, , and set it as the leader of

particle- .

In the case of enhanced GPAC, particle- is consid-

ered as the global best.

Step 4) For each particle- , randomly select a particle- and

set it as passive congregator of particle- .

Step 5) Update the velocities and positions of particles using

(21) and (18), respectively.

Step 6) Check if the limits of positions (22) and velocities

(23), (24) are enforced. If the limits are violated,

then they are replaced by the respective limits.

Step 7) Evaluate each particle using the objective function

. The objective function is calculated by running

a load flow. In the case where for a particle no load

flow solution exists, an error is returned and the par-

ticle retains its previous achievement.

Step 8) If the stopping criteria are not satisfied, go to Step 2.

The enhanced GPAC and LPAC PSO algorithms will be

terminated if one of the following criteria is satisfied: 1) no

improvement of the global best in the last 30 generations is

observed, or 2) the maximum number of allowed iterations is

achieved (in this paper, 100).

Finally, we can indicate that the last term of (21), added in the

conventional PSO velocity update (17), displays the information

transferred via passive congregation of particle- with a ran-

domly selected particle- . This passive congregation operator
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Fig. 1. Swarm’s manipulation concept of CA PSO.

can be regarded as a stochastic variable that introduces perturba-

tions to the search process. For each particle- , the perturbation

is proportional to the distance between itself and a randomly se-

lected particle- rather than an external random number, namely,

the turbulence factor introduced in [20] and [33]. The constric-

tion factor approach helps the convergence of algorithm more

than the turbulence factor because: 1) in the early stages of the

process, where distance between particles is large, the turbu-

lence factor should be large, avoiding premature convergence;

and 2) in the last stages of process, as the distance between par-

ticles becomes smaller, the turbulence factor should be smaller

too, enabling the swarm to converge in the global optimum [20].

Therefore, LPAC is more capable of probing the decision space,

avoiding sub-optimums and improving information propagation

in the swarm than other conventional PSO algorithms.

V. COORDINATED AGGREGATION-BASED PSO

The coordinated aggregation is a completely new operator in-

troduced in the swarm, where each particle moves considering

only the positions of particles with better achievements than its

own, with the exception of the best particle, which moves ran-

domly. The coordinated aggregation can be considered as a type

of active aggregation where particles are attracted only by places

with the most food.

Fig. 1 depicts how the position of a particle- in a two-di-

mensional decision space changes. In this figure, particle- has

worse achievement than particles- but better than particles- .

Specifically, at each iterative cycle- of CA, each particle- with

better achievement than particle- regulates the velocity of the

second. The velocity of particle- is adapted by means of co-

ordinators multiplied by weighting factors. The differences be-

tween the positions of particles- and the position of particle- ,

are defined as coordinators of particle- velocity.

The ratios of differences between the achievement of particle- ,

and the better achievements by particles- , to the

sum of all these differences are called achievement’s weighting

factors

(25)

where represents the set of particles- with better achieve-

ment than particle- .

The steps of CA PSO algorithm are listed below.

Step 1) Initialization: Generate -particles. For each par-

ticle- , choose initial position randomly. Cal-

culate its initial achievement using the ob-

jective function and find the maximum

called the global best achievement.

Then, particles update their positions in accordance

with the following steps.

Step 2) Swarm’s manipulation: The particles, except the

best of them, regulate their velocities in accordance

with the equation

(26)

where ; the random parameter

is used to maintain the diversity of the popu-

lation and is uniformly distributed within the range

; are achievement’s weighting factors;

and the inertia weighting factor is defined by

(19). The role of the inertia weighting factor is con-

sidered critical for the CA convergence behavior. It

is employed to control the influence of the previous

history of the velocities on the current one. Accord-

ingly, the inertia weighting function regulates the

tradeoff between the global and local exploration

abilities of the swarms [5].

Step 3) Best particle’s manipulation (craziness): The best

particle in the swarm updates its velocity using a

random coordinator calculated between its position

and the position of a randomly chosen particle in

the swarm. The manipulation of best particle seems

like the crazy agents introduced in [1] or the turbu-

lence factor introduced in [20] and [33] and helps

the swarm escape from the local minima.

Step 4) Check if the limits of velocities (23) and (24) are

enforced. If the limits are violated, then they are

replaced by the respective limits.

Step 5) Position update: The positions of particles are up-

dated using (18). Check if the limits of positions (22)

are enforced. In this paper, the minimum and max-

imum position vectors of (22) express the inequality

constraints.

Step 6) Evaluation: Calculate the achievement of

each particle- using the objective function . The

achievement is calculated by running a load flow. In

the case where for a particle no load flow solution

exists, an error is returned and the particle retains its

previous achievement.

Step 7) If the stopping criteria are not satisfied, go to Step 2.

The CA algorithm will be terminated if no more im-

provement of the global best achievement in the last

30 generations is observed or the maximum number

of allowed iterations is achieved (in this paper, 100).

Step 8) Global optimal solution: Choose the optimal solu-

tion as the global best achievement

(27)
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VI. PERFORMANCE EVALUATION

The main focus of this paper is the comparison of the three

alternative PSO algorithms with the conventional PSO algo-

rithm [8], [9], the primal-dual interior-point-based OPF algo-

rithm [23], called IP-OPF, and a multiobjective evolutionary al-

gorithm (EA) [24] in the optimization of steady-state perfor-

mance in power systems. Specifically, they need to handle two

optimization problems, namely, minimization of 1) real power

losses in transmission lines and 2) voltage deviation on load

buses. The criterion for the comparison is the achievement of

global optimum solution in the shortest computing time. In ad-

dition to the primary goal, observation will be made on the sto-

chastic behavior of the competing algorithms. In all case studies,

as decision variables, generator voltages, transformers tap set-

tings, and reactive power compensators are chosen. In this paper,

these variables are considered to be continuous. Nevertheless,

in the case of reactive compensation, modern silicon controlled

rectified (SCR) power controllers may handle continuous values

of reactive power compensation [9]. Moreover, PSO algorithms

can handle topological changes easily in power systems due to

the particles “flight” on the space of decision variables, and there

is no need to “know” the special topology given by Jacobian or

a similar matrix.

A. IEEE 30-Bus System

To verify the feasibility of the proposed PSO algorithms (en-

hanced GPAC, LPAC, and CA) in the reactive power and voltage

control, they are applied on the IEEE 30-bus system. The results

are also compared with those given by a conventional PSO algo-

rithm [8], [9], as well as by the IP-OPF algorithm [23] and an EA

[24] on the same system. All PSO algorithms are simply called

competitors. The topology and the complete data of this network

can be found in [34]. The network consists of 6 generators, 41

lines, 4 transformers, and 2 capacitor banks. In the transformer

tests, tap settings are considered within the interval .

The available reactive powers of capacitor banks are within the

interval MVAr, and they are connected to buses 10 and

24. Voltages are considered within the range of . In

this case, the decision space has 12 dimensions, namely, the 6

generator voltages, 4 transformer taps, and 2 capacitor banks.

The parameters of PSO algorithms are those, which lead them

faster in convergence and were selected after many runs on the

test system. All parameters were selected by means of sensi-

tivity analysis tables.

Sensitivity analysis was performed with the parameters ,

, , , , and following our earlier work [25]. The

average and minimum of objective functions was estimated with

up to 1500 iterations in 100 trials for each competitor. The sen-

sitivity analysis yielded the parameters in Table I as best values

of random parameters for each competitor. The number of par-

ticles is 30 for all competitors.

Fig. 2 gives the convergence iterations of the competitors. The

conventional PSO converges in 93 iterations, achieving the least

power loss of 5.09219 MW (see Table II). The total CPU time

is 3.72 s. The enhanced GPAC converges faster than the con-

ventional PSO (in 68 iterations), achieving sub-optimal loss of

5.09226 MW (see Table II). The total CPU time of the enhanced

GPAC is 3.434 s. However, LPAC and CA algorithms converge

TABLE I
PARAMETERS OF PSO ALGORITHMS ON IEEE 30-BUS SYSTEM

Fig. 2. PSO algorithms for reactive power control of IEEE 30-bus system.

TABLE II
RESULTS OF PSO AND IP-OPF ALGORITHMS IN REACTIVE

POWER CONTROL OF IEEE 30-BUS SYSTEM

very fast in 25 and 27 iterations, respectively. The total CPU

time of LPAC and CA are 1.262 and 1.365 s, respectively. Al-

though LPAC is faster than CA, it fails in finding the global

best solution achieved by CA (5.09209 MW). The IP-OPF is

the fastest among all competitors (total CPU time at 0.636 s)

but fails to achieve the global best. The EA in [24] converges

in about 70 iterations, and its optimum solution is 5.1065 MW.

The IP-OPF and EA achieve approximately the same solution.

Table II gives the optimal settings of decision variables in p.u.

for the reactive control of IEEE 30-bus system as proposed by

competitors and the IP-OPF.

The feasibility of voltage control is also tested for the com-

petitors. In this case, conventional PSO converges in 92 itera-

tions (see Fig. 3), achieving voltage deviation of 0.13029 p.u.
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Fig. 3. PSO algorithms for voltage control of IEEE 30-bus system.

TABLE III
RESULTS OF PSO AND IP-OPF ALGORITHMS IN VOLTAGE

CONTROL OF IEEE 30-BUS SYSTEM

(see Table III). The total CPU time is 3.68 s. GPAC and LPAC

converge in 79 and 98 iterations, respectively (see Fig. 3). The

total CPU time of the enhanced GPAC and LPAC are 3.989 and

4.949 s, respectively. Although their convergence time is bigger

than the conventional PSO, they find better results, achieving

0.12737 and 0.12401 p.u., respectively.

Comparing these results, LPAC finds better results than the

conventional PSO and the enhanced GPAC but takes more time

to converge. On the contrary, CA finds the global optimum so-

lution achieving 0.12252 p.u. (see Table III) in a very short time

(only 21 iterations). The total CPU time of CA is 1.064 s. The

IP-OPF is the fastest of all competitors (total CPU time at 0.89 s)

but fails to achieve the global best solution. It actually achieves

the worst solution of 0.17328 p.u. The EA in [24] converges in

about 110 iterations, and its optimum solution is 0.1477 p.u.,

which is much better than the classical IP-OPF. The final op-

timal settings of decision variables in p.u. as proposed by com-

petitors are given in Table III.

Comparing the results given in the reactive power control

problem as well as in the voltage control problem, the best per-

formance of the CA is concluded among all competitors. In both

problems, CA achieves the global optimal solution in a very few

TABLE IV
PARAMETERS OF PSO ALGORITHMS ON IEEE 118-BUS SYSTEM

Fig. 4. PSO algorithms for reactive power control of IEEE 118-bus system.

iterations, up to 30 within a total CPU time of 1.365 and 1.064

s, respectively.

B. IEEE 118-Bus System

In this section, the competition of PSO algorithms is moved

to a larger test system such as the IEEE 118-bus [35]. In this

case, the decision space has 75 dimensions. The network con-

sists of 54 generators, 9 transformers, 12 capacitor banks, and

186 lines. In the transformer tests, tap settings are considered

within the interval . The available reactive powers of

capacitor banks are within the range of MVAr. Voltages

are considered within the range of . The parameters

of competitors are given in Table IV. The number of particles is

30 for all competitors. The sensitivity analysis is performed for

each one of the competitors on the IEEE 118-bus system.

In the case study for reactive power control, Fig. 4 gives the

convergence iterations of competitors. Conventional PSO and

the enhanced GPAC converge in 93 and 89 iterations achieving

131.91469 and 131.90834 MW, respectively. The total CPU

time of the conventional PSO and the enhanced GPAC are 26.04

and 28.09 s, respectively. However, LPAC and CA converge

faster: in 43 and 71 iterations, respectively, achieving better

results. The total CPU time of LPAC and CA are 13.572 and

22.453 s, respectively. Although LPAC is faster than CA, it

achieves sub-optimal solution of 131.90104 MW while CA

achieves the global optimal solution of 131.86385 MW. The

IP-OPF is the fastest algorithm since it converges within 11.873

s. However, it gives the worst solution of 132.1097 MW. So,

the difference in power losses between IP-OPF and CA (the

best of the proposed competitors) is about 0.25 MW and with

GPAC (the worst of the proposed competitors) is 0.20 MW

(see Table V). So the proposed PSO offers an improvement of

0.15% higher than the widely recognized IP-OPF. Due to the

space limitation, Table V presents the final optimal settings
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TABLE V
RESULTS OF PSO AND IP-OPF ALGORITHMS IN REACTIVE

POWER CONTROL OF IEEE 118-BUS SYSTEM

Fig. 5. Statistical results of competitors (100 trials) for power losses on IEEE
118-bus system.

TABLE VI
MINIMUM, AVERAGE, AND MAXIMUM VALUES OF OBJECTIVE

FUNCTION (J ) ON IEEE 118-BUS SYSTEM (100 TRIALS)

of 15 out of 75 decision variables in p.u. as proposed by the

competitors.

Fig. 5 shows the statistical evaluation of results of competi-

tors in 100 trials. The spectrum of Fig. 5 reveals that most of the

obtained results are close to the minimum value of the objective

function (1) for CA, while the plethora of results are close

to the average values for other competitors. The maximum, av-

erage, and minimum values of the objective function (1) are

shown in Table VI.

PSO algorithms are also competed in the minimization of

voltage deviations on load buses of the IEEE 118-bus system.

In this case study, competitors converge between 85 and 95 iter-

ations (see Fig. 6) within the total CPU time between 25.48 and

29.984 s (see Table VII).

Fig. 6. PSO algorithms for voltage control of IEEE 118-bus system.

TABLE VII
RESULTS OF PSO AND IP-OPF ALGORITHMS IN VOLTAGE

CONTROL OF IEEE 118-BUS SYSTEM

The CA achieves voltage deviation of 1.27558 p.u., which is

the global best, while the enhanced GPAC and LPAC achieve

near optimum voltage deviations of 1.28499 and 1.28891 p.u.,

respectively. Although the IP-OPF is the fastest of all competi-

tors, it achieves the worst voltage deviation of 1.32235 p.u. In

all cases, the total CPU time is calculated in a 1.4-GHz Pen-

tium-IV PC. Due to the space limitation, Table VII presents the

final optimal settings of 15 out of 75 decision variables in p.u.

as proposed by the competitors.

Fig. 7 shows the statistical evaluation of results of competi-

tors in 100 trials. The spectrum of Fig. 7 reveals that most of

the obtained results are close to the minimum value of the ob-

jective function (2) for CA, in contrast to other competitors

where they are close to their average values. In this case study,

the maximum, average, and minimum values of the objective

functions (2) are shown in Table VIII.

Fig. 8 shows the compromise between the number of parti-

cles and the number of iterations for the CA algorithm for the

last case study. It is concluded that the number of iterations de-

creases as the number of particles varies from 20 to 40. However,

the rate of decrease is not appreciable when the number of parti-

cles exceeds 30. Further, the number of load flow computations
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Fig. 7. Statistical results of competitors (100 trials) for voltage deviation on
IEEE 118-bus system.

TABLE VIII
MINIMUM, AVERAGE, AND MAXIMUM VALUES OF OBJECTIVE

FUNCTION (J ) ON IEEE 118-BUS SYSTEM

Fig. 8. Compromise between the number of particles and the number of itera-
tions of the CA for IEEE 118-bus system.

is easily provided if the number of particles (horizontal axis)

multiplied with number of achieved iteration (vertical axis).

Finally, in order to verify the achievements of competitors, in

both cases, we run them over 100 iterations (say, for 1500 iter-

ations), and we obtain an improvement over their achievements

only in less than 0.01%.

VII. DISCUSSION

A comparison between the competitors was presented as well

as with conventional IP-OPF. A fair comparison of competi-

tors with IP-OPF could be done in optimization problems where

their solution space is semi-smooth, such as reactive power and

voltage control. The final results indicated that, even in “easy”

spaces for IP-OPF, the competitors have better performance. Fi-

nally, we note that competitors are more attractive on problems

with more complexities, where conventional IP-OPF fails.

The objective functions, power loss (1), and voltage devia-

tions (2) are functions of many decision (control) variables (12

decision variables for the 30-bus system and 75 for the 118-bus

system). Therefore, there are many possible combinations of de-

cision variables that will yield almost the same values of the

objective functions, yielding many local minima. Furthermore,

evolutionary algorithms that are compared here are all generated

by pseudo random numbers, which are different for different al-

gorithms. The difference in control variables among algorithms

is not significant in the case of loss minimization (see Tables II

and V and Figs. 2 and 4) due to the possible flat nature of the

objective function (1). However, it is noticeable in the case of

minimization of voltage deviations (see Tables III and VII and

Figs. 3 and 6) since this objective function (2) is very sensitive

to the control variables.

Further, comparing all results obtained in both IEEE 30-bus

and IEEE 118-bus systems, a general conclusion can be drawn

that all competitors are much better in achieving better solutions

than conventional IP-OPF [23] and an EA algorithm [24]. How-

ever, the main drawbacks of competitors compared to the con-

ventional IP-OPF [23] are the computing time and the handling

of discrete variables. Fortunately, the rapid progress of computer

systems will soon overcome the issue of convergence time. In

addition, recent studies have attempted to enforce PSO to dis-

crete optimization problems [36]–[38].

Obviously, the two examined problems, though different,

have several local minima, much more for the voltage deviation

minimization. In such complex problems, the conventional OPF

techniques are susceptible to be trapped in local minima, and

the solution obtained will not be the optimal one. In general,

the IP-OPF techniques suffer from bad initial condition, termi-

nation condition, and optimality criteria, and in most cases are

unable to solve nonlinear quadratic objective functions [13],

[39].

Observing the results given in this paper, the conventional

PSO algorithm [8], [9] is shown to be more efficient than the

IP-OPF [23] in finding optimal solutions. This is also confirmed

by a recent work, presented in [9], where the IP-OPF technique

[23] and a genetic algorithm were compared with a hybrid PSO

algorithm (called the conventional PSO in this paper).

In addition, the comparison between all competitors demon-

strates the improved performance of LPAC over the enhanced

GPAC. However, in most of the cases, the enhanced GPAC is

much better than the conventional PSO. Regarding CA, it has

an excellent performance in finding the global best solution in a

comparable computing time with other competitors. The main

advantages of the CA over all other competitors are: 1) it op-

timally manipulates the swarm by regulating only three empir-

ical parameters, namely, the limits of inertia weighting factor

and the chosen number of search intervals .

The enhanced GPAC and LPAC regulate six empirical param-

eters ( , , , , , and ), and the conventional

PSO regulates five ( , , , , and ), and 2) it takes

into account much more coordinators for the swarm’s manipu-

lation than the conventional PSO and the enhanced GPAC and

LPAC (to be specific, the conventional PSO considers only two

coordinators, namely, the best position a particle has ever en-

countered and the global/local best in the swarm, while in the

enhanced GPAC and LPAC, only one more, namely, the passive

congregator, is added), and 3) it adopts a stochastic coordination

for the manipulation of swarm similar to the craziness concept

[1]. These advantages provide the CA more possibilities than

the conventional and passive congregated PSO, in exploring the

decision space around local minima and escaping from them.
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VIII. CONCLUSIONS

This paper proposed three types of PSO algorithms: the

enhanced GPAC and LPAC with constriction factor approach

based on the passive congregation operator and the CA based

on the coordinated aggregation operator. The proposed PSO

algorithms as well as the state-of-the-art PSO and the con-

ventional interior-point OPF-based algorithm competed in the

optimization problems of reactive power and voltage control.

The results obtained in IEEE 30-bus and IEEE 118-bus systems

indicated an improved performance of LPAC and an excellent

performance of CA. The CA achieves the global optimum solu-

tion and exhibits better convergence characteristics, regulating

the fewest random parameters than others. However, its main

drawback remains the computing time. For future research,

the feasibility of the enhanced GPAC, LPAC, and CA in more

nonlinear optimization problems in power systems with harder

constraints, non-differentiable functions, and non-convex de-

cision space can be studied. Moreover, other types of CA can

be implemented, where, for instance, the number of leader

particles, which move randomly, could be more than one. Other

more optimal processes can be used in choosing the number

of coordinators for each particle in CA, such as resemblance

coefficients process, in order to reduce the computing time.
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