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Abstract

Faced with massive data, subsampling is
a commonly used technique to improve
computational efficiency, and using nonuni-
form subsampling probabilities is an effec-
tive approach to improve estimation effi-
ciency. For computational efficiency, subsam-
pling is often implemented with replacement
or through Poisson subsampling. However,
no rigorous investigation has been performed
to study the difference between the two sub-
sampling procedures such as their estimation
efficiency and computational convenience. In
the context of maximizing a general target
function, this paper derives optimal subsam-
pling probabilities for both subsampling with
replacement and Poisson subsampling. The
optimal subsampling probabilities minimize
variance functions of the subsampling estima-
tors. Furthermore, they provide deep insights
on the theoretical similarities and differ-
ences between subsampling with replacement
and Poisson subsampling. Practically imple-
mentable algorithms are proposed based on
the optimal structural results, which are eval-
uated by both theoretical and empirical anal-
ysis.

1 Introduction

With fast development of technology, data collecting is
becoming easier and easier, and the volumes of avail-
able data sets are increasing exponentially. To ex-
tract useful information from these massive data, a
major challenge lies with the thirst for computing re-
sources. Subsampling is a commonly used technique to
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reduce computational burden, and it has been an im-
portant topic in computer science and statistics with
a long standing of literature, such as Drineas et al.
(2006a,b,c); Mahoney and Drineas (2009); Drineas
et al. (2011); Mahoney (2011); Clarkson and Woodruff
(2013); Kleiner et al. (2014); McWilliams et al. (2014);
Yang et al. (2016); Wang and Ma (2020); Yu et al.
(2020).

To improve the estimation efficiency, nonuniform sub-
sampling probabilities are often used so that more in-
formative data points are sampled with higher prob-
abilities. A popular choice is the leverage-based sub-
sampling in which the subsampling distribution is the
normalized statistical leverage scores of the design ma-
trix (Drineas et al., 2012; Ma et al., 2015). Yang et al.
(2015) showed that if statistical leverage scores are
very nonuniform, then using their normalized square
roots as the subsampling distribution yields better
approximation. For logistic regression, Wang et al.
(2018) derived an optimal subsampling distribution
that minimizes the asymptotic variance of the sub-
sampling estimator, and Wang (2019) further devel-
oped a more efficient estimation approach based on
the selected subsample. Ting and Brochu (2018) in-
vestigated optimal subsampling with influence func-
tions. Wang et al. (2019) proposed a method called
information-based optimal subdata selection which se-
lects data points deterministically for linear regression.
The subsampling approach has a close connection to
the technique of coreset approximation (Campbell and
Broderick, 2018, 2019), which also use a subset of the
data with associated weights instead of the full data
to perform calculations. The coreset approximation
is often used in Bayes analysis and the problem is of-
ten to better approximate the objective function in a
functional space, while this paper focuses on approxi-
mating the full data estimator.

For computational efficiency, subsampling is often im-
plemented with replacement or through Poisson sub-
sampling. Nonuniform subsampling without replace-
ment for a fixed sample size can also be implemented
with one-pass of the data through reservoir sampling
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(Efraimidis and Spirakis, 2006; Tillé, 2019). However,
these algorithms are not widely implemented in exist-
ing software such as in the R programming language
(R Core Team, 2020), so we do not consider this sam-
pling procedure in this paper. Subsampling with re-
placement needs to use all subsampling probabilities
simultaneously to generate random numbers from a
multinomial distribution. The resultant subsample ob-
servations are independent and identically distributed
(i.i.d.) conditional on the full data, but their uncondi-
tional distributions are not independent. Poisson sub-
sampling looks at each data point and determine if it
should be included in the subsample by generating a
random number from the uniform distribution. If the
subsampling probabilities in Poisson subsample are all
equal, then the subsampling procedure is also called
the Bernoulli subsampling (Särndal et al., 2003). For
Poisson subsampling, the resultant subsample obser-
vations do not have identical distributions, but their
unconditional distributions can be independent.

This paper has the following major contributions.

• For estimators obtained through maximizing tar-
get functions, we derive asymptotic distributions
for both subsampling with replacement and Pois-
son subsampling. These asymptotic distributions
accurately characterize the subsampling approxi-
mation errors, and we derive general structure re-
sults of optimal subsampling probabilities to min-
imize these errors for the two subsampling proce-
dures.

• We systematically compare subsampling with re-
placement and Poisson subsampling, both theo-
retically and empirically, and identify conditions
when they are equivalent and when they differ.

• Based on the optimal subsampling probabilities,
we propose practical algorithms and evaluate
their performance.

The rest of the paper is organized as follows. We
present the model setup and asymptotic distributions
in Section 2. In Section 3, we derive optimal subsam-
pling probabilities and propose practical algorithms.
We will also obtain theoretical properties for the prac-
tical algorithms. In Section 4, we perform numeri-
cal experiments demonstrating the performance of the
proposed methods. Proofs of our theoretical results
are provided in the appendix.

Here are some notation conventions to be used in the
paper. We use ∗ to indicate subsample quantities; use
ˆ to indicate full data estimator; use˜ to indicate sub-
sample estimator; use R and P to indicate subsam-
pling with replacement and Poisson subsampling, re-
spectively; use ṁ and m̈ to denote the gradient and

Hessian matrix of a function m; and use ‖v‖ to denote
the spectral norm of a vector or matrix v.

2 Problem setup and asymptotic
distributions

Suppose that a set of training data Dn = {Zi}ni=1 con-
sists of independent observations from a common dis-
tribution. To estimate some parameter θ ∈ Rd about
the data distribution, we want to calculate θ̂, the max-
imizer of

Mn(θ) =
1

n

n∑
i=1

m(Zi,θ).

Here the dimension of Zi does not have to be the same
as θ, e.g., in softmax regression. Usually, there is no
closed-form solution to θ̂, and an iterative algorithm
is required to find the solution numerically. For mas-
sive data, iterative calculations on the full data of size
n are often too expensive to afford, so subsampling is
adopted to produce a subsampling estimator θ̃ to ap-
proximate θ̂. Nonuniform subsampling probabilities
are often used to improve the estimation efficiency.

Let π = {πi}ni=1 be a subsampling distribution such
that πi ≥ 0 and

∑n
i=1 πi = 1. For Poisson subsam-

pling, we further assume that πi ≤ s−1, where s is
the expected subsample size. As stated earlier, we use
∗ to indicate quantities with randomness due to sub-
sampling. For instance, {Z∗1 , ..., Z∗s } denote the data
observations in a subsample and {π∗1 , ..., π∗s} are the
associated subsampling probabilities.

We present the general subsampling estimators θ̃R
based on subsampling with replacement and θ̃P based
on Poisson subsampling in the following.

Sampling with replacement:

• Calculate π = {πi}ni=1 based on Dn;

• generate s independent random numbers from
multinomial distribution with π to determine a
subsample D∗s = {Z∗1 , Z∗2 , ..., Z∗s };

• record {π∗1 , π∗2 , ..., π∗s} in the subsample;

• obtain the subsample estimator

θ̃R = arg max
θ

s∑
i=1

m(Z∗i ,θ)

nsπ∗i
. (1)

Poisson Sampling:

• For each i = 1, ..., n, calculate an individual πi
such that πi ≤ s−1 based on Zi;

• generate ui ∼ U(0, 1);
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• if ui ≤ sπi, include Zi in the subsample and record
πi;

• obtain the subsample estimator

θ̃P = arg max
θ

s∗∑
i=1

m(Z∗i ,θ)

ns∗π∗i
. (2)

Remark 1. Subsampling with replacement requires
to access the whole sampling distribution π = {πi}ni=1,
i.e., all πi’s. On the other hand, Poisson subsampling
only needs to access one πi in each sampling itera-
tion. This makes the Poisson subsampling more con-
venient to implement, especially in distributed com-
puting platforms or when the available memory cannot
hold all πi’s. For subsampling with replacement, the
subsample size is equal to s and there may be repli-
cates in the subsample. Here πi is the probability that
observation Zi is selected when only one data point is
selected, and the probability to include Zi in the sub-
sample of size s is 1− (1− πi)s, which is smaller than
sπi. For Poisson subsampling, the subsample size s∗

is random with E(s∗) = s; there is no replicates in the
subsample; and sπi is the probability of including Zi
in the subsample of expected size s.

We now derive asymptotic properties of θ̃R in (1) and
θ̃P in (2), respectively, to compare their estimation
efficiency theoretically. We need some regularity as-
sumptions listed below.

Assumption 1. The parameter θ belongs to a com-
pact set.

Assumption 2. The function m(Z,θ) is a concave
function of θ with a unique and finite maximum, and
it satisfies that E{m2(Z,θ)} <∞ for any θ.

Assumption 3. Assume that −E{m̈(Z,θ)} is
positive-definite, E{m̈2

k,l(Z,θ)} < ∞, and m̈(Z,θ)
is Lipschitz continuous in θ so that there exists a
function ψ(z) with E{ψ2(Z)} < ∞ and for every θ1
and θ2, |m̈k,l(z,θ1) − m̈k,l(z,θ2)|≤ ψ(z)‖θ1 − θ2‖,
k, l = 1, 2, ..., d.

Assumption 4. Assume that E{ṁ(Z,θ)ṁT(Z,θ)} is
a positive-definite matrix and for θ in the neighbor-
hood of θ̂, 1

n

∑n
i=1‖ṁ(Zi,θ)‖4= OP (1) , where OP (1)

means bounded in probability (with high probability).

Assumption 5. Assume that maxi=1,...,n(nπi)
−1 =

OP (1).

Assumptions 1 and 2 are very mild, and they assure
that the target function has a finite and unique maxi-
mum. Assumptions 3 and 4 impose some constrains on
the Hessian matrix and gradient, and they are required
so that the asymptotic distributions of parameter es-
timators are asymptotically normal. Assumption 5 es-
sentially requires that the minimum subsampling prob-
ability is at the same order of 1

n in probability. Here,

πi can be random as it is allowed to depend on the
data, so the notation OP (1) is used.

The following Theorems 1 and 2 present asymptotic
distributions of θ̃R in (1) and θ̃P in (2), respectively.

Theorem 1. Under Assumptions 1-5, as s→∞ and
n→∞, the estimator θ̃R in (1) satisfies that,

√
s{VR(θ̂)}−1/2(θ̃R − θ̂)

D−→N(0, I), (3)

where
D−→ means convergence in distribution, N(0, I)

is a multivariate Gaussian distribution with mean 0
and variance I (the identity matrix), and VR(θ̂) =

M̈−1n (θ̂)ΛR(θ̂)M̈−1n (θ̂),

M̈n(θ̂) =
1

n

n∑
i=1

m̈(Zi, θ̂), (4)

ΛR(θ̂) =
1

n2

n∑
i=1

ṁ(Zi, θ̂)ṁT(Zi, θ̂)

πi
. (5)

Theorem 2. Under Assumptions 1-5, as s→∞ and
n→∞, the estimator θ̃P in (2) satisfies that,

√
s{VP (θ̂)}−1/2(θ̃P − θ̂)

D−→N (0, I) , (6)

where VP (θ̂) = M̈−1n (θ̂)ΛP (θ̂)M̈−1n (θ̂), M̈n(θ̂) is the
same as in (4), and

ΛP (θ̂) =ΛR(θ̂)− s

n2

n∑
i=1

ṁ(Zi, θ̂)ṁT(Zi, θ̂). (7)

Remark 2. The asymptotic distributions in (3) and
(6) mean that given a full data set for any δ > 0, the

probability that ‖θ̃R − θ̂‖> δ is accurately approxi-

mated by P(‖UR‖> δ) where UR ∼ N(0, VR(θ̂)), and

the probability that ‖θ̃P − θ̂‖> δ is accurately ap-

proximated by P(‖UP ‖> δ) where UP ∼ N(0, VP (θ̂)).
Thus, a smaller variance means a smaller probability
of excess error at the same error bound, or a smaller
error bound for the same excess probability.

Remark 3. Both θ̃R and θ̃P have Gaussian asymp-
totic distributions, but they have different asymptotic
variances VR(θ̂) and VP (θ̂), respectively. Under As-
sumption 4, the second term on the right-hand-side
of (7) goes to zero in probability if s/n → 0, and it
converges to a positive-definite matrix in probability if
s/n→ c > 0. Thus, the difference VR(θ̂)−VP (θ̂)→ 0
in probability if s/n → 0, and it converges to a
positive-definite matrix in probability if s/n converges
to a positive constant. This means that subsampling
with replacement and Poisson subsampling have the
same asymptotic estimation efficiency only if the sub-
sampling ratio s/n goes to zero; otherwise, Poisson
subsampling has a higher estimation efficiency. Thus,
to obtain more accurate estimates in practice, Poisson
subsampling is recommended unless the subsampling
ratio s/n is very small.
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3 Optimal subsampling probabilities

From the results in Theorems 1 and 2, the asymptotic
variances VR(θ̂) and VP (θ̂) depend on π = {πi}ni=1. To
improve the estimation efficiency, we want to choose
optimal π to minimize VR(θ̂) or VP (θ̂). Specifically,
we consider the L-optimality criterion (Atkinson et al.,
2007). The L-optimality minimizes the trace of the
variance matrix for some linear transformation, say L,
of the parameter estimator. If we take L = I, then
the resulting criterion is also called the A-optimality.
This is to minimize the average of the variances for
all parameter components by minimizing the trace of
the variance matrix. For our case, this is to mini-
mize tr{VR(θ̂)} or tr{VP (θ̂)}. If we take L = M̈n(θ̂),

then the resultant criterion is to minimize tr{ΛR(θ̂)}
or tr{ΛP (θ̂)}. This has a computational advantage
compared with other choices, so we focus more on this
choice in this paper. The following Theorems 3 and 4
present the optimal subsampling probabilities for sub-
sampling with replacement and Poisson subsampling,
respectively.

Theorem 3. For the subsampling with replacement
estimator in (1), the L-optimal subsampling probabili-

ties with L = M̈n(θ̂) that minimize tr{ΛR(θ̂)} are

πopt
Ri =

‖ṁ(Zi, θ̂)‖∑n
j=1‖ṁ(Zj , θ̂)‖

, i = 1, ..., n. (8)

Theorem 4. For the Poisson subsampling estimator
in (2), the L-optimal subsampling probabilities with

L = M̈n(θ̂) that minimize tr{ΛP (θ̂)} are

πopt
Pi =

‖ṁ(Zi, θ̂)‖∧H∑n
j=1{‖ṁ(Zj , θ̂)‖∧H}

, i = 1, ..., n, (9)

where a ∧ b = min(a, b),

H =

∑n−g
i=1 ‖ṁ(Z, θ̂)‖(i)

s− g
, (10)

‖ṁ(Z, θ̂)‖(1)≤ ... ≤ ‖ṁ(Z, θ̂)‖(n) are the order statis-

tics of ‖ṁ(Z1, θ̂)‖, ..., ‖ṁ(Zn, θ̂)‖, and g is an integer
such that

‖ṁ(Z, θ̂)‖(n−g)∑n−g
i=1 ‖ṁ(Z, θ̂)‖(i)

<
1

s− g
, (11)

‖ṁ(Z, θ̂)‖(n−g+1)∑n−g+1
i=1 ‖ṁ(Z, θ̂)‖(i)

≥ 1

s− g + 1
, (12)

in which we define ‖ṁ(Z, θ̂)‖(n+1)=∞.

Remark 4. For a general choice of L, we can ob-
tain optimal subsampling probabilities by replacing
‖ṁ(Zi, θ̂)‖ with ‖ṁ(Zi, θ̂)‖L= ‖LM̈−1n (θ̂)ṁ(Zi, θ̂)‖.

However, these quantities require O(nd2) time to com-

pute when M̈−1n (θ̂) and ṁ(Zi, θ̂) are available, where

n is the full data sample size and d is dimension of θ̂.
On the other hand, it only takes O(nd) time to com-

pute all ‖ṁ(Zi, θ̂)‖’s. Thus the choice of L = M̈n(θ̂)
has a significant computational advantage.

Remark 5. In Theorems 3 and 4, πopt
Ri in (8) and πopt

Pi

in (9) have both similarities and differences. Assum-

ing that ‖ṁ(Zi, θ̂)‖> 0 for all i, then 0 < πopt
Ri < 1

while 0 < πopt
Pi ≤

1
s . This means that the inclusion

of any data point through optimal subsampling with
replacement is random, while the inclusion of data
points with πopt

Pi = 1
s is deterministic through opti-

mal Poisson subsampling. The order statistics con-
straints in (11) and (12) indicate that if there are data

points such that s
n‖ṁ(Zi, θ̂)‖> 1

n

∑n
j=1‖ṁ(Zj , θ̂)‖,

then πopt
Ri and πopt

Pi are different. This indicates that
if the subsampling ratio s

n is larger or if the tail of

the distribution of ‖ṁ(Z, θ̂)‖ is heavier, then optimal
probabilities for Poisson subsampling and subsampling
with replacement are more likely to be different. If
s‖ṁ(Z, θ̂)‖(n)<

∑n
i=1‖ṁ(Zi, θ̂)‖, then πopt

Ri and πopt
Pi

are identical.

Remark 6. In Theorem 4, H is the threshold so that
all πopt

Pi are no larger than 1
s , and it satisfies that

‖ṁ(Z, θ̂)‖(n−g)< H ≤ ‖ṁ(Z, θ̂)‖(n−g+1). (13)

Here g is the number of cases that πopt
Pi = 1

s , i.e., the
number of data points that will be included in the
subsample for sure.

Now we discuss examples to illustrate the optimal
structural results.

Example 1 (Binary response models). Consider a bi-
nary classification model such that

P(yi = 1) = p(xi,θ), i = 1, ..., n,

where yi ∈ {0, 1} is the binary class label, xi is the co-
variate, and θ is the unknown parameter. To estimate
θ using the maximum likelihood estimator (MLE), let
Zi = (xi, yi) and m(Zi,θ) = yi log{p(xi,θ)} + (1 −
yi) log{1− p(xi,θ)}. Direct calculations yield that

ṁ(Zi, θ̂) =
yi − p̂i
p̂i(1− p̂i)

ˆ̇pi, (14)

where p̂i = p(xi, θ̂), and ˆ̇pi = ṗ(xi, θ̂) is the gradi-

ent of p(xi,θ) evaluated at θ̂. We can obtain opti-
mal sampling probabilities by inserting the expression
in (14) into Theorems 3 and 4. From (14), the optimal
subsampling probabilities are proportional to |yi− p̂i|.
Thus if yi = 1, data points with smaller values of p̂i
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are sampled with higher probabilities; if yi = 0, data
points with larger values of p̂i are sampled with higher
probabilities. The optimal subsampling probabilities
give higher preference to data points that are closer
to the class boundary. This increases the classification
accuracy because if these data points can be classified
correctly, then other data points are easier to classify.

Specifically for Logistic regression in which p(xi,θ) =

ex
T
i θ/(1 + ex

T
i θ), we have

‖ṁ(Zi, θ̂)‖ = |yi − p̂i|‖xi‖, (15)

With this expression, the structural results for opti-
mal probabilities of subsampling with replacement are
identical to those in Wang et al. (2018).

Form Theorem 4 we see that if there are data points
such that s

n |yi − p̂i|‖xi‖>
1
n

∑n
j=1|yj − p̂j |‖xj‖, then

optimal probabilities for Poisson subsampling are dif-
ferent from that for subsampling with replacement.

Example 2 (Least-squares). Consider least-squares
estimator

θ̂ = arg min
θ

n∑
i=1

{yi − g(xi,θ)}2,

where yi is the response, xi is the covariate, and
g(xi,θ) is a smooth function. The least-squares es-
timator of θ can be presented in our framework by
letting Zi = (xi, yi) and defining m(Zi,θ) = − 1

2{yi −
g(xi,θ)}2. From direct calculation, we have

ṁ(Zi, θ̂) = ε̂iġ(xi, θ̂), (16)

where ε̂i = yi− g(xi, θ̂), and ġ(xi, θ̂)is the gradient of

g(xi,θ)evaluated at θ̂.

Specifically for ordinary least-squares (OLS) in lin-

ear regression, ‖ṁ(Zi, θ̂)‖= |ε̂i|‖xi‖, and the sam-
pling probabilities reduce to gradient-based sampling
probabilities (Zhu, 2016). Furthermore, if we use the
L-optimality criterion with L = (XTX)1/2 where
X = (x1, ...,xn)T, then the optimal probabilities for
subsampling with replacement satisfy that

πopt
Ri ∝ |ε̂i|

√
hi, i = 1, ..., n, (17)

where hi’s are statistical leverage scores of X. This
clearly shows the connection between leverage scores
and the L optimality.

Form (17) and Theorem 4, optimal probabilities
for Poisson subsampling and subsampling with re-
placement differ if there are data points such that
s
n |ε̂i|
√
hi >

1
n

∑n
j=1|ε̂j |

√
hj . This is more likely to

happen if |ε̂i|’s or
√
hi’s are more nonuniform. Yang

et al. (2015) showed that if statistical leverage scores

are very nonuniform, then using the square roots of
statistical leverage scores to construct subsampling
probabilities yields better approximation than using
the original leverage scores. An intuitive explanation
for their conclusion is that taking square roots on lever-
age scores has some shrinkage effect on the resulting
probabilities toward the uniform subsampling proba-
bility. Our results echos their conclusion, and further
indicates that for optimal Poisson subsampling it may
be necessary to perform truncation for high leverage
scores.

Example 3 (Generalized linear models). Let yi be
the response and xi be the corresponding covariate.
A generalized linear model (GLM) assumes that the
conditional mean of the response yi give the covariate
xi, E(yi|xi), satisfies

g{E(yi|xi)} = xT
i β,

where g is the link function, xT
i β is the linear pre-

dictor, and β is the regression coefficient. For most
of the commonly used GLMs, it is assumed that the
distribution of the response yi given the covariate xi
belongs to the exponential family, namely,

f(yi|xi;β, φ) = a(yi, φ) exp
[yib(xT

i β)− c(xT
i β)

φ

]
,

where a, b and c are known scalar functions, and
φ is the dispersion parameter. Let Zi = (xi, yi).
To estimate θ = β, the MLE of θ corresponds to
m(Zi,θ) = yib(x

T
i β)− c(xT

i β), and thus

ṁ(Zi,θ) = {yib′(xT
i β)− c′(xT

i β)}xi, (18)

where b′ is the first derivative of b. Optimal sampling
probabilities can be obtained by using the expressions
in (18) for Theorems 3 and 4.

3.1 Practical algorithms

The optimal subsampling probabilities depend on the
full data estimator θ̂, so the structural results in the
previous section do not translate into useful algorithms
directly. We need a pilot estimator to approximate
the optimal subsampling probabilities in order to ob-
tain practically implementable algorithms. This can
be done by taking a pilot subsample of size s0 through
a subsampling distribution that does not depend on
θ̂. We use the uniform subsampling distribution, and
present the approximated optimal subsampling with
replacement procedure in Algorithm 1.

Compared with the exact πopt
Ri , the approximated π̃opt

Ri

in (21) are subject to additional disturbance due to
the randomness of θ̃0∗R , the maximizer of (19). From
Theorem 1, the subsampling probabilities are in the
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Algorithm 1 Practical algorithm based on optimal
subsampling with replacement

• Pilot subsampling: use sampling with replacement
with πuni = {πi = 1

n}
n
i=1 to obtain {Z0∗

1 , ..., Z0∗
s0 };

obtain θ̃0∗R through maximizing

M0∗
R (θ) =

s0∑
i=1

m(Z0∗
i ,θ)

s0
. (19)

• Approximated optimal subsampling:
calculate the whole subsampling distribution
π̃Rαi = {π̃opt

Rαi}ni=1, where α ∈ (0, 1),

π̃opt
Ri =

‖ṁ(Zi, θ̃
0∗
R )‖∑n

j=1‖ṁ(Zj , θ̃0∗R )‖
, (20)

and π̃opt
Rαi = (1− α)π̃opt

Ri + α
1

n
; (21)

use π̃Rαi to take a subsample {Z∗1 , ..., Z∗s },
and record the corresponding probabilities
{π̃opt∗

Rα1 , ..., π̃
opt∗
Rαs}.

• Estimation: obtain θ̃αR through maximizing

M∗Rα(θ) =

s∑
i=1

m(Z∗i ,θ)

nsπ̃opt∗
Rαi

. (22)

denominators of ΛR(θ̂). Thus the additional distur-
bance may be amplified for data points with πopt

Ri be-
ing close to zero, and this may inflate the asymptotic
variance of the subsample estimator. To protect the
estimator from these data points, we adopt the idea
of defensive importance sampling (Hesterberg, 1995;
Owen and Zhou, 2000) and mix the approximated op-
timal subsampling distribution with the uniform sub-
sampling distribution. Specifically, we use π̃opt

Rαi in (21)

instead of π̃opt
Ri in (20) to perform the subsampling.

The same idea was also adopted in Ma et al. (2015).

In π̃Rαi = {π̃opt
Rαi}ni=1, α controls the proportion of

mixture, and π̃Rαi is close to the optimal subsampling
distribution if α is close to 0 while it is close to the
uniform subsampling distribution if α is close to 1. If
α > 0, then nπopt

Rαi are bounded away from zero, which
add to robustness of the subsampling estimator.

For the optimal Poisson subsampling probability πopt
Pi ,

we also need to use the pilot subsample to approx-
imate H and Ψ = 1

n

∑n
i=1{‖ṁ(Zi, θ̂)‖∧H} in order

to determine the inclusion probability based on each
data point itself, as described in Algorithm 2. From
(13), H is between the (n− g)-th and the (n− g+ 1)-

th order statistics of {‖ṁ(Zi, θ̂)‖}ni=1, and g is be-
tween 0 and s, so we can roughly approximate H with
‖ṁ(Z0∗

i , θ̃
0∗
P )‖ s

bn
, the upper s

bn -th sample quantile of

{‖ṁ(Z0∗
i , θ̃

0∗
P )‖}s0i=1, where b ≥ 1 is a tuning parame-

ter. Since g is typically closer to 0 and farther from s,

Algorithm 2 Practical algorithm based on optimal
Poisson subsampling

• Pilot subsampling: use Poisson sampling with πuni

to obtain {Z0∗
1 , ..., Z0∗

s∗0
};

obtain θ̃0∗P through maximizing

M0∗
P (θ) =

s∗0∑
i=1

m(Z0∗
i ,θ)

s∗0
; (23)

calculate

H0∗ = ‖ṁ(Z0∗
i , θ̃

0∗
P )‖ s

bn
, (24)

Ψ0∗ =

s∗0∑
i=1

{‖ṁ(Z0∗
i , θ̃

0∗
P )‖∧H0∗}
s∗0

. (25)

• Approximated optimal subsampling: For each i of
i = 1, ..., n, calculate

π̃opt
Pi =

‖ṁ(Zi, θ̃
0∗
P )‖∧H0∗

nΨ0∗ , (26)

π̃opt
Pαi = (1− α)π̃opt

Pi + α
1

n
; (27)

generate ui ∼ U(0, 1);
if ui ≤ sπ̃opt

Pαi, include Zi in the subsample and

record π̃opt
Pαi.

• Estimation: obtain θ̃αP through maximizing

M∗Pα(θ) =
1

n

s∗∑
i=1

m(Z∗i ,θ)

(sπ̃opt∗
Pαi ) ∧ 1

. (28)

taking b = 1 underestimates H and the resulting sub-
sampling probabilities lean towards the uniform sub-
sampling probability (if H ≤ ‖ṁ(Z, θ̂)‖(1), then πopt

Pi

would be all equal to 1
n ). When subsampling from

massive data, s is often much smaller than n and the
number of cases for ‖ṁ(Zi, θ̂)‖ to be larger than H
is small. For this scenario, one may simply ignore H
and use ∞ to replace H. This simple option in gen-
eral overestimates H, but it may perform reasonably
well for small subsampling ratios. For Ψ, it can be
approximated by Ψ0∗ defined in (25).

When we use Ψ0∗ and H0∗ to replace Ψ and H in (27),
it is possible that some π̃opt

Pi in (27) are larger than 1
s

and thus sπ̃opt
Pi are larger than one. Thus, we use one

as a threshold in the denominator of (28).

Remark 7. In Algorithm 1, θ̃0∗R and θ̃αR can be
combined to obtain an aggregated estimator, θ̌R =
{s0M̈0∗

R +sM̈∗R}−1×{s0M̈0∗
R ×θ̃0∗R +sM̈∗R×θ̃αR}. where

M̈0∗
R is the Hessian matrix of M0∗

R (θ) in (19) evalu-

ated at θ̃0∗R and M̈∗R is the Hessian matrix of M∗R(θ)

in (22) evaluated at θ̃αR. Here, θ̌R is obtained as a

linear combination of θ̃0∗R and θ̃αR in a way similar to
the aggregation step in the divide-and-conquer method
(Lin and Xie, 2011; Schifano et al., 2016). This fur-



HaiYing Wang, Jiahui Zou

ther improves the estimation efficiency. Similarly, in
Algorithm 2, θ̃0∗P and θ̃αP can be combined to obtain
an aggregated estimator.

3.2 Theoretical analysis of practical
algorithms

We obtain the following distributional results in The-
orems 5 and 6 for Algorithms 1 and 2, respectively.

Theorem 5. For θ̃αR obtained from Algorithm 1,
under Assumptions 1-4, as s0, s, and n get large, the
following result hold.

√
s{V αR (θ̂)}−1/2(θ̃αR − θ̂)

D−→N (0, I) ,

where V αR (θ̂) = M̈−1n (θ̂)ΛαR(θ̂)M̈−1n (θ̂), πopt
Rαi(θ̂) =

(1− α)πopt
Ri (θ̂) + α 1

n , and

ΛαR(θ̂) =
1

n2

n∑
i=1

ṁ(Zi, θ̂)ṁT(Zi, θ̂)

πopt
Rαi(θ̂)

.

Theorem 6. For θ̃αP obtained from Algorithm 2,
under Assumptions 1-4, as s0, s, and n get large,
if s0 = o(n), %n = s/(bn) → % ∈ [0, 1), and the
distribution of Z is continuous, the following result
hold. If % = 0, then

√
s{V αP (θ̂)}−1/2(θ̃αP − θ̂)

D−→N (0, I) ,

where V αP (θ̂) = M̈−1n (θ̂)ΛαP (θ̂)M̈−1n (θ̂), πopt
Pαi(θ̂) =

(1− α)πopt
Pi (θ̂) + α 1

n , and

ΛαP (θ̂) =
1

n2

n∑
i=1

{1− sπopt
Pαi(θ̂)}ṁ(Zi, θ̂)ṁT(Zi, θ̂)

πopt
Pαi(θ̂)

;

if % > 0, then πopt
Pi (θ̂) in ΛαP (θ̂) is replaced by πopt

Pi =
‖ṁ(Zi,θ̂)‖∧H%n∑n

j=1{‖ṁ(Zj ,θ̂)‖∧H%n}
, where H%n is the %n-th upper

sample quantile of ‖ṁ(Z1, θ̂)‖, ..., ‖ṁ(Zn, θ̂)‖.

Remark 8. Denote Λopt
R (θ̂) and Λopt

P (θ̂) as ΛR(θ̂)

and ΛP (θ̂) with optimal subsampling probabilities
that produce the minimum trace values, respectively.
In Theorems 5 and 6, ΛαR(θ̂) and ΛαP (θ̂) are different

from Λopt
R (θ̂) and Λopt

P (θ̂), respectively. However, it
can be shown that

tr{Λopt
R (θ̂)} < tr{ΛαR(θ̂)} <

tr{Λopt
R (θ̂)}

1− α
, and

tr{Λopt
P (θ̂)} < tr{ΛαP (θ̂)} <

tr{Λopt
P (θ̂)}

1− α
.

Thus, if α is small enough, tr{ΛαR(θ̂)} and

tr{Λopt
R (θ̂)} can be arbitrarily close, and tr{ΛαP (θ̂)}

and tr{Λopt
P (θ̂)} can be arbitrarily close.

4 Numerical experiments

We compare the estimation efficiency for the two sub-
sampling procedures using both synthetic and real
data sets.

Example 4 (Logistic regression). Form model

P(yi = 1|xi) = eθ0+x
T
i θ1/(1 + eθ0+x

T
i θ1), i = 1, ..., n,

we generate synthetic data sets by setting n = 105,
θ0 = 0.5, and θ1 to be a 9 dimensional vector of 0.5.
We consider the following three cases to generate xi.
In Cases 1 and 3, the responses yi are balanced, while
in Case 2 about 98% of the data points are with yi = 1.

Case 1: Normal. Generate xi from a multivariate
normal distribution, N(0,Σ), where the (i, j)-th
element of Σ is Σij = 0.5I(i 6=j) and I() is the in-
dicator function. This distribution is symmetric
with light tails.

Case 2: LogNormal. Generate vi from N(0,Σ) as
defined in Case 1 and then set xi = evi , where the
exponentiation is element-wise. This distribution
is asymmetric and positively skewed.

Case 3: T3. We generate xi from a multivariate t dis-
tribution with three degrees of freedom t3(0,Σ)
with Σ defined in Case 1. This distribution is sym-
metric with heavy tails.

We also consider two real data sets: the covtype data
from the LIBSVM data website (https://www.csie.
ntu.edu.tw/~cjlin/libsvm/) and the SUSY data
(Baldi et al., 2014), as Cases 4 and 5 below.

Case 4: Covtype Data. It has n = 581, 012 obser-
vations with about 48.76% of the responses are
yi = 1. We use the ten quantitative covariate vari-
ables as xi’s.

Case 5: SUSY Data. It has n = 5, 000, 000 obser-
vations with about 54.24% of the responses are
yi = 1. We use the 18 kinematic features to clas-
sify whether new SUSY particles are produced.

We set α = 0.1, and choose s0 = 0.01n and different
values for s so that the sampling ratio (s0 + s)/n =
0.02, 0.05, 0.1, 0.2, and 0.5. Two different options
of H0∗ are considered: H0∗ = ‖ṁ(Z0∗

i , θ̃
0∗
P )‖ s

5n
and

H0∗ =∞. We aggregate the pilot estimator using the
procedure described in Remark 7. For comparison, we
also implement the uniform subsampling method with
expected subsample sizes s0 + s. Newton’s method is
used for optimization on all subsamples. We repeat
the simulation for T = 1000 times to calculate the
empirical mean squared error (MSE).

Figure 1 plots log(MSE) against (s0 + s)/n. When
the subsampling ratio (s0 + s)/n is close to zero, sub-
sampling with replacement and Poisson subsampling

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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have similar performance for both approximated op-
timal subsampling and uniform subsampling. How-
ever, when (s0 +s)/n gets larger, Poisson subsampling
outperforms subsampling with replacement, and the
improvement from subsampling with replacement to
Poisson subsampling is more significant for approxi-
mated optimal subsampling than for uniform subsam-
pling. For Poisson subsampling, the results for the two
choices of H0∗, H0∗ =∞ and H0∗ = ‖ṁ(Z0∗

i , θ̃
0∗
P )‖ s

5n
,

are similar when (s0 + s)/n is small, but they start to
differ for larger (s0 + s)/n.
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Figure 1: Log(MSE) against (s0 + s)/n for logis-
tic regression. Here, “optR” means optimal subsam-
pling with replacement; “uniR” means uniform sub-
sampling with replacement; “optP∞” means approx-
imated optimal Poisson subsampling with H0∗ = ∞;
“optPb=5” means approximated optimal Poisson sub-
sampling with H0∗ = ‖ṁ(Z0∗

i , θ̃
0∗
P )‖ s

5n
; and“uniP”

means uniform Poisson subsampling.

Example 5 (Linear regression). We consider a lin-
ear model yi = θ0 + xT

i θ1 + εi, i = 1, ..., n, with
n = 105, θ0 = 1, θ1 being a 50 dimensional vector of
ones, and εi being i.i.d. N(0, 1). We use the same dis-
tributions in Cases 1-3 to generate xi and refer them
as Cases 1’-3’. We also consider a gas sensor data
(Fonollosa et al., 2015) from the UCI data repository
(Dheeru and Karra Taniskidou, 2017), as Case 6.

Case 6: Gas Sensor Data. After cleaning, the data
contain n = 4, 188, 261 readings on 15 sensors. We

use log of readings from the last sensor as responses
and log of other readings as covariates.

We use the same setup for α, s0, s, and H0∗, as used in
logistic regression. Figure 2 presents the results. The
overall pattern in Figure 2 is similar to that in Figure 1.
We observe that the advantage of Poisson subsmapling
over subsampling with replacement is more significant
for approximated optimal subsampling, and the advan-
tage of Poisson subsampling compared with subsam-
pling with replacement is more significant. For exam-
ple, in Case 4’, the synthetic data sets with xi’s from
the t3 distribution, the uniform Poisson subsampling
can even outperform the approximated optimal sub-
sampling with replacement when (s0 +s)/n = 0.5. We
also observe that approximated optimal subsampling
methods outperform the uniform subsampling meth-
ods, and the gap between their performance in terms
of estimation efficiency is larger for larger (s0 + s)/n.
Another pattern is that when the approximated op-
timal subsampling probabilities are more nonuniform,
their advantage over uniform subsampling is more sig-
nificant.

0.1 0.2 0.3 0.4 0.5

-7

-6

-5

-4

-3

lo
g(

M
S

E
)

(a) Case 1’: Normal

0.1 0.2 0.3 0.4 0.5

-9

-8

-7

-6

-5

lo
g(

M
S

E
)

(b) Case 2’: LogNormal

0.1 0.2 0.3 0.4 0.5
-9

-8

-7

-6

-5

-4

lo
g(

M
S

E
)

(c) Case 3’: T3

0.1 0.2 0.3 0.4 0.5

-12

-11

-10

-9

-8

-7

lo
g(

M
S

E
)

(d) Case 6: Gas Sensor

Figure 2: Log Empirical MSEs (y-axis) against sub-
sampling ratio (s0 + s)/n (x-axis) for linear regres-
sion. Here, “optR” means optimal subsampling with
replacement; “uniR” means uniform subsampling with
replacement; “optP∞” means approximated optimal
Poisson subsampling with H0∗ = ∞; “optPb=5”
means approximated optimal Poisson subsampling
with H0∗ = ‖ṁ(Z0∗

i , θ̃
0∗
P )‖ s

5n
; and“uniP” means uni-

form Poisson subsampling.

5 Conclusion and Discussion

In this paper, we derived optimal subsampling proba-
bilities in the context of maximizing an additive tar-
get function for both subsampling with replacement
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and Poisson subsampling. Theoretical and empirical
results show that the two different subsampling proce-
dure have similar performance when the subsampling
ratio is small. However, when subsampling ratio does
not converge to zero, Poisson subsampling has a higher
estimation efficiency. One problem warrants for fur-
ther investigation is how to chose the tuning parame-
ter b in Algorithm 2 so that the approximated optimal
subsampling probabilities produce an estimator with
an asymptotic variance-covariance matrix that is near
optimal even when the subsampling ratio does not con-
verge to zero.
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