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Abstract: In New Zealand, housing is typically low density, with light timber framing being the
dominant form of construction with more than 90% of the market. From 2020, as a result of the global
pandemic, there was a shortage of timber in New Zealand, resulting in increased popularity for
light steel framing, the main alternative to timber for housing. At the same time, the New Zealand
government is committed to sustainability practises through legislation and frameworks, such as
the reduction of whole-of-life carbon emissions for the building industry. New Zealand recently
announced reducing its net greenhouse gas emissions by 50% within 2030. Life cycle assessment
(LCA) is a technique for assessing the environmental aspects associated with a product over its life
cycle. Despite the popularity of LCA in the construction industry of New Zealand, prior research
results seem varied. There is no unified NZ context database to perform an LCA for buildings.
Therefore, in this paper, a comprehensive study using LCA was conducted to quantify and compare
the quantity of carbon emissions from two commonly designed houses in the Auckland region,
one built from light timber and the other from light steel, both designed for a lifespan of 90 years.
The cradle-to-cradle system boundary was used for the LCA. From the results of this study, it was
found that the light steel house had 12.3% more carbon in total (including embodied and operational
carbons) when compared to the light timber house, of which the manufacturing of two houses had
a difference of 50.4% in terms of carbon emissions. However, when the end-of-life (EOL) analysis
was included, it was found that the extra carbon could be offset due to the steel’s recyclability,
reducing the amount of embodied carbon in the manufacturing process. Therefore, there was no
significant difference in carbon emissions between the light steel and the light timber building, with
the difference being only 12.3%.

Keywords: life cycle assessment; carbon emissions; embodied carbon; operational carbon; cradle-to-
cradle; light timber house; light steel house; New Zealand

1. Introduction

As the population increases globally, the demand for housing will also naturally
increase [1]. Current housing development predominantly relies on non-environment-
friendly building technologies [2]. Furthermore, building construction generally produces
a large amount of carbon, which is the leading cause of climate change [3]. Nevertheless, the
consequences of global climate change caused by carbon emissions include global warming,
sea-level rises, the disruption of ecosystems, and consequences to human health [4]. The
global construction industry accounts for about 40% of primary energy use and one-third
of global carbon emissions [5].

In New Zealand, the building and construction sector contributes 20% of the nation’s
total carbon emissions [6]. In addition, the national gross carbon emissions increased by
26.4% between 1990 and 2019 (17,188.6 to 82,317.9 kt CO, eq), which accounts for an annual
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growth of 0.8% of carbon emissions [7]. The New Zealand government set its carbon
reduction target to reach net-zero carbon by 2050 through the Climate Change Response
(Zero-Carbon) Amendment Act 2019, contributing to the international commitment under
the Paris Agreement [8,9]. Accordingly, in 2020, the Ministry of Business, Innovation and
Employment (MBIE) published the Whole-of-Life Embodied Carbon Emissions Reductions
for Buildings framework, which contains a systematic guideline for responding to the
reduction target in the building industry [6]. In addition, looking at national building
practice, timber became the most used material for constructing a house [10], and it is
a preferable material with a sustainable approach [11]. However, the nation is currently
experiencing a material shortage due to the pandemic. The COVID-19 pandemic is affecting
the nation’s supply chain, and 53% of construction enterprises have reported shortages
of materials and supplies [12]. The timber shortage is also caused by the lack of national
investment in the manufacturing capacity of timber products and unbalances in supply
and demand in the market [13]. Therefore, alternative materials for buildings are expected,
for example, cold-formed steel (CFS), but they also must consider the sustainability aspect.
CFS has been gaining popularity in the construction sector in recent years due to its
superior strength-to-weight ratio, and ease of formability, when compared to hot-rolled
steel (HRS) [14-19]. CFS members can be rolled into different cross-sectional shapes
and optimizing these shapes can further improve their load-bearing capacities, resulting
in a more economical and efficient building solution. These CFS members (especially
channels) are often used in beams [20-23], columns [24-32], shear walls [33], and cladding
systems [34]. Conversely, the high thermal conductivity of steel can lead to thermal bridges,
which can significantly reduce the building’s thermal performance and energy efficiency.
Hence, it is also essential to consider the energy performance of the CFS structures.

The life cycle assessment (LCA) is a well-known methodology to measure and analyse
the potential environmental impacts of products’ life cycles, including building prod-
ucts [35-38]. When utilising LCA for buildings, two main focuses are usually considered
by the practice: analysing the carbon emissions from the overall performance of the struc-
ture and evaluating some building elements [39]. Using this method, some studies have
contrasted the building materials to select the preferred materials based on environmental
performance [40,41]. Despite the challenges of applying LCA to building products, it is still
widely used in the building industry as an essential evaluation method for analysing and
proposing solutions to environmental issues arising from building practises [42,43]. Case
studies have produced a variety of results due to the diverse concepts of goal, scope, and
limitations [44]. Therefore, the complexities are to be considered while applying LCA in
the construction industry [45].

Alhazmi et al. conducted an LCA to analyse the environmental impacts of a typical
residential building during the whole life cycle (50-year building lifetime) in Saudi Arabia
with a cradle-to-grave system boundary. They found that the operational phase had the
most significant influence on the global warming potential (GWP) (93%) over the 50 years of
the product’s life cycle [46]. The result was similar to another study by Petrovic et al., which
assessed a single-family timber house with a 100-year lifespan and used a cradle-to-grave
system boundary. The building’s use phase contributed the most total carbon emissions
(64%), while the production stages contributed 30% [47]. Chastas et al. conducted a review
of the embodied carbon of residential buildings based on 95 case studies. They revealed
that the range of embodied carbon of residential buildings in a 50-year building lifespan
ranges between 179 and 1050 kg CO, eq/m?, while the operational carbon varies between
156 and 4049.9 kg CO, eq/m? [48].

Several studies have performed comparative LCAs to compare the effects of carbon
emissions due to different types of building materials. Vitale et al. compared two different
building material types (cold-formed steel and reinforced concrete) in residential buildings
with a cradle-to-grave system boundary and a building lifespan of 50 years. The study
concluded that cold-formed steel (CFS) structures outperform concrete in terms of envi-
ronmental performance (24% GWP) [49]. Hawkins et al. contrasted the embodied carbon
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of concrete, steel, and timber building structures. They found that when using a fixed
time horizon metric with a cradle-to-cradle system boundary, the timber materials had
a lowest result (130 kg CO, eq/m?) compared to steel (269 kg CO, eq/m?) and concrete
(348 kg CO, eq/m?) when the sustainably managed forest was assumed to be applied [50].
Johnston et al. contrasted the CFS and hot-rolled steel (HRS) as the portal frames using a
cradle-to-gate system boundary. The study revealed that using CFS as the primary framing
material resulted in better embodied carbon (up to 30%) than using HRS for the 18 m and
24 m spans [51]. In addition, Ortiz-Rodriguez et al. conducted a comparative whole LCA
study in the context of different geographical conditions. They showed that Colombian
houses release fewer carbon emissions (65%) than the Mediterranean house, caused by
differences in bioclimatic and electricity consumption behaviours in each location [35].

Looking at the LCA of buildings in New Zealand, Moradibistouni et al. examined
carbon emissions from a residential building that used polymers. The study revealed that
carbon emissions from the house were 20 kg CO, eq/m? /year [52]. Chandrakumar et al.
analysed the whole carbon emissions from a house in New Zealand with a 90-year building
lifetime. The research found the carbon emitted from the house was 16 kg CO, eq/m? /year.
They compared the result with other nations’ residential building climate impacts, which
ranged between 10 and 90 kg CO, eq/m?/year [53].

Despite the popularity of LCA in construction industry, prior research results seem
varied. There is no unified NZ context database to perform an LCA for buildings. Many
factors are analysed which influence the various buildings” carbon emissions data, such
as the system boundary, geographical horizon, time horizon, methodology or tool, and
materials used. In New Zealand, between 2010 and 2019, timber framing became the most
popular material (90% of market share) compared with steel and concrete [10]. The use
of each of these materials will also result in a different process or work method. Hence,
the energy use and carbon emissions will differ. In addition, when analysing the carbon
emissions from a building, the availability of an Environmental Product Declaration (EPD)
is crucial. The EPD is used as the basis of carbon emission calculations from materials based
on the product manufacturing processes to the EOL scenarios. However, the published
EPDs across many countries seem to have varied values, which results in variations of
total carbon emissions when they are compared. Rasmussen et al. conducted a compre-
hensive review of the EPDs of structural woods in which they analysed 81 EPDs across
several countries. They found that the investigated EPDs had varied values (up to 90%
uncertainty for GWP), which were caused by different specificities such as manufacturer,
facility, co-production, time of data representation, and supply chain [54]. Janjua et al.
investigated the effect of service life on a building’s environmental performance. They
discovered that the service life of a building and its components had a direct link with the
environmental performance, namely the replacement intervals, and that it was recognised
as the third major contributing factor to the overall environmental effects after use and
pre-use [55]. Referring to previous building LCA studies [46-53], it seemed that the lifespan
of buildings has ranged between 50 and 100 years, resulting in varied assessment outcomes.
The condition leads to a knowledge gap in implementing environmental assessment of
building products and results in varied assessment results, primarily caused by the various
scopes of assessment and the unidentical design of the buildings. Therefore, the total
carbon emissions from residential buildings cannot be generalised and applied to all types
of houses.

Hence, with a range of previous LCA results for building products, this study ex-
amined a house in New Zealand using the local embodied carbon data and the national
electricity consumption scenario to determine the carbon emissions from NZ houses in the
current condition. The assessment was conducted in the design phase, which was specific
to the technical design, where the carbon footprints of the building were quantified based
on the designed structure and generic material data. The main objective of this research
was to compare the carbon emissions of two types of houses, one built from light timber
and the other from light steel. The comparison between the two houses was based on the
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carbon produced during the whole-building life cycle and the potential carbon offset from
materials used in the buildings.

2. Methodology

An LCA was performed to investigate the environmental impact in terms of carbon
emissions from two New Zealand residential buildings, one made from light timber and
the other from CFS. The design of the two houses is the most common design used in New
Zealand. The carbon emissions were computed at each step of the life cycle of the materials
(including production to the EOL stage), and a comparison of the carbon emissions from the
two buildings was calculated. The analysis included both the embodied and operational
carbon emissions, and considered the carbon offset from the materials used in the buildings.
The LCA was performed using the NZ-based LCA tool LCAQuick V3.4.4 [56], which was
developed by BRANZ.

Figure 1 illustrates the methodology used in this study. The method for performing
the LCA followed the LCA framework stated in the ISO 14040 series [57]. According to
ISO 14040:2006, there are four steps in conducting LCA: (1) goal and scope definition,
(2) inventory analysis (LCI), (3) impact assessment (LCIA), and (4) interpretation of the
results. In the first step, the goal and scope were identified to achieve the purpose of the
study. Some elements were included in the scope of the study, such as system boundary
and functional units, which are crucial in the LCA. The second step was to set up the LCI,
where the data were collected. The primary data required for this LCA was the quantity
of the building materials. Afterward, the LCIA was performed, in which the impact
category and assessment tool were selected, and the LCA calculation was performed.
Finally, the interpretation of the results was undertaken to present the difference between
the carbon emissions from the two investigated houses, one made from CFS and the other
from light timber. In order to check the validity of the results, they were compared with
previous studies.

Goal and Scope Definition

Goal:
* Intended use -
+ Reason for study

Scope:

+ System boundaries
+ Functional unit

= Study limitations

* Assumptions

l Interpretation
Inventory Analysis

* Result and discussion performance
g * Significant problems identification
* Comparison with other studies

« Building's material data
= Building's operational energy use
= Building's operational water use

l

Impact Assessment

\J

* Impact category assessment
method
» Assessment tool

Figure 1. Life cycle analysis framework for the research.

2.1. Goal of the LCA

As mentioned previously in the introduction section, this LCA aimed to study the
impact of carbon emissions from light timber and light steel houses. The need for buildings’
LCA has been reflected in the past, which was assessed herein. The comparison of carbon
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emissions from the selected two houses can provide some basic understanding of decision-
making at the governmental level.

2.2. Scope of the LCA
2.2.1. System Boundaries

The system boundary used in this LCA was cradle-to-cradle. Therefore, the study
examined the carbon produced by the houses from the material production stage to the
EOL stage and considered the potential carbon offset. Figure 2 shows the building life
stages used in the LCA study, which adopted the standard building life cycle [58,59].

| BUILDING LIFE CYCLE |

) Construction . Benefit and loads b d
Production stage Use stage End-of-life stage enclit and foads beyon
process stage the system boundary
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Figure 2. Different life stages of timber and steel materials used in the LCA.

Furthermore, the selected geographical boundary in this study was the Auckland
region, New Zealand. Based on the BRANZ database for building service life in NZ [59],
90 years of building lifetime was applied in this study.

2.2.2. Functional Unit

The functional unit in this LCA study was the annual carbon emissions per gross floor
area (GFA), kg CO, eq/m?/year. Therefore, by calculating the carbon emission results per
GFA, it was possible to compare the impact of light timber and light steel construction in
terms of their carbon emissions.

2.2.3. Assumptions

Several assumptions were made in the LCA study. Due to the unavailability of the
data for staircase material quantities, they were excluded from the LCA. The quantity of
floor coverings (e.g., floor tiles or carpet) and paint were not included in this study because
they were assumed to be identical and did not result in any significant changes in terms of
impacts [49]. Both houses’” annual electricity consumption and water demand scenarios
were assumed to be steady over their lifetimes. Therefore, the values were not changed.

2.2.4. Limitations

This study was New Zealand-specific, where the local carbon coefficient and energy
consumption were applied. The result of the study cannot be applied directly to other
buildings outside the scope of the study because the result is highly dependent on the
geographical regions, time horizon, and building material types. However, this study
can provide an understanding of the potential building materials available in the NZ'’s
housing market when choosing the most environmentally friendly material. It also shows
the relationship between the material volume or weight of the two houses (light timber and
light steel houses) and the carbon emissions from the production stages of the materials to
their EOL stages, which can be useful in the planning phase of future housing projects to
use more sustainable materials for building houses in New Zealand.
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3. Life Cycle Inventory and Impact Assessment of Case Study Buildings
3.1. Housings Material Data
The material quantities and architectural drawings of the two investigated buildings
were collected from the local contractors and manufacturers of the building materials. The
light timber house plan (House A) is illustrated in Figure 3, while the light steel house plan
(House B) is shown in Figure 4.
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Figure 3. House A—light timber house plan (a) ground floor; (b) upper floor (all measurements are
in millimetres and scaled at 1:100).
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Figure 4. House B—light steel house plan (a) ground floor; (b) upper floor (all measurements are in
millimetres and scaled at 1:100).
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According to the floor plans, both houses were two-story buildings with different floor
areas on each level. Table 1 shows the gross floor area (GFA) of the two investigated buildings.

Table 1. Area of the buildings.

Building Type Ground Floor Area (m?)  Upper Floor Area (m?) Gross Floor Area (m?)
House A (light timber) 50.40 56.60 107.00
House B (light steel) 85.25 60.75 146.00

Furthermore, when conducting the LCA, the material quantities were input in the
LCAQuick software [56]. The type of material and volume were calculated from the data
sources (i.e., architectural plan and elevation drawings and material take-off sheets). Table 2

shows the material quantities obtained from both the buildings studied herein.

Table 2. Material take-off data of two investigated houses.

Constuction System

Material Description

Volume (m3)

House A House B
Foundation Reinforced concrete, 25 MPa, OPC 8.194 10.361
Engineered wood, glued laminated timber (glulam) 0.298 -
Column Timber softwood, dressed kiln-dried - 0.041
Timber softwood, dressed kiln-dried 2.905 -
Engineered wood, glued laminated timber (glulam) 0.284 -
Engineered wood, laminated veneer lumber (LVL) 3.758 -
Plywood (A bond) 0.808 -
Reinforced concrete, 30 MPa, OPC 4.536 7.673
Floor and ceiling Reinforced concrete, 30 MPa, composite floor decking, OPC - 7.565
Steel (primary), structural, columns and beams 0.011 -
Cold-rolled profile metal sheet - 0.100
Steel, primary, profile metal sheet - 0.010
Plasterboard (GIB® standard) 1.065 1.766
Plasterboard (GIB aqualine®) 0.094 0.174
Insulation, polyester 9.222 10.451
Timber softwood, dressed kiln-dried 6.645 0.261
200 x 75, parallel flange channels (PFC), steel (primary) 0.028 -
200UC-46.2, steel (primary) 0.056 -
Cold-rolled profile metal sheet - 0.235
Wall Fibre cement sheet 2.122 2.463
Plasterboard (GIB® standard) 3.317 2.767
Plasterboard (GIB aqualine®) 0.527 0.441
Insulation, glass wool 9.285 13.105
Timber softwood, dressed kiln-dried 2.786 -
Cold-rolled profile metal sheet - 0.052
Roof Aluminijum, primary, profile sheet metal 0.054 0.090
Fibre cement sheet 0.191 0.061
. Glass, single pane, heat-strengthened 0.140 0.321
Windows and doors Door, inte%ios MDF s 0.678 0.652

3.2. Operational Energy Data

The operational energy consumptions in both houses were calculated using the rec-
ommendations in the LCAQuick database [56] and the guidelines in the 2018 Electricity
New Zealand report. House A was assumed to be occupied by three people, while House
B had five occupants. The annual electricity consumption for House A was found to be
7000 kWh/year, and this value was calculated based on the per capita electricity demand
in New Zealand [60]. For House B, the annual electricity demand was 9618 kWh/year,
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referring to the BRANZ datasheet available in the LCAQuick [56] for five occupants. The
annual electricity consumption for both houses is illustrated in Table 3. Plug loads con-
sumed the most extensive electricity for two houses, with approximately 50% of the total
electricity consumption of the houses.

Table 3. Operational energy consumption.

Annual Electricity Consumption

Item Description (kWh per Year)
House A House B
Plug load/small power equipment electricity use 3823 5619
Interior lighting electricity use 335 380
Hot water electricity use 2453 3188
Heating electricity use 320 349
Cooling/humidification/dehumidification electricity use 49 61
Fan electricity use 20 21
Total annual electricity consumption 7000 9618

In this study, the operational water demand referred to the annual water consumption
as per the recommendations given in LCAQuick [56], which is 67.60 kL/person/year.
Therefore, due to the different numbers of occupants in two houses, the houses had
different water demands. Table 4 shows the annual water demand for both houses during
the entire lifespan of the buildings.

Table 4. Operational water demand.

kL or m3
Water Demand
House A House B
Annual 202.8 338.0
90 years lifetime 18,252 30,420

3.3. Impact Assessment

The LCIA can be classified into two methods: midpoints and endpoints (damaged-
oriented) [61,62]. Midpoints are known to be ties in the cause-effect chain (an environmental
mechanism) of the impact group (e.g., GWP and acidification) [63]. In contrast, endpoints
consider the end of the cause-effect chain, such as human health and the ecosystem [64].
Therefore, this study used the midpoints approach to analyse a single environmental
problem directly influenced by carbon emissions, namely the GWP. The calculation of
the carbon emissions was performed using the NZ-based LCA tool called LCAQuick
V3.4.4 [56], which enables the midpoints analysis and contains the local emission database.

4. Results and Discussions of the Case Study
4.1. Assessment of Results

House A produced 13.72 kg CO, eq/m?/year for the whole building’s life cycle, in
which the benefits of recycling, recovery, and reuse of materials were considered. By adding
Module D in the LCA process, the materials used in House A received a carbon offset of
—0.74 kg CO, eq/m? /year. Furthermore, House B produced 15.41 kg CO, eq/m?/year
in total during its whole life cycle. The materials used in House B had —1.53 kg CO,
eq/m?/year of carbon offsets after being processed in the EOL stage. Hence, House A
produced fewer carbon emissions than House B. Table 5 shows the LCA results of the two
investigated houses.
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Table 5. LCA results of the two investigated houses.

Building Life Cycle Module

A1-A3 A4-A5 B2, B4 B6 B7 C1-C4 D
& gm)o < 3 E:TE
Building , & & ¥ Ty T g 28
Unit » £ E g5 g » e 35
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g 2 g8 EB T | & o
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g g & b= )]
- S = ~ &
House A kg CO, eq/m? /year 2.31 0.49 1.16 8.34 1.52 0.64 —074  13.72
House B kg CO, eq/m? /year 4.66 0.31 147 8.39 1.85 0.27 ~153 1541

4.2. Comparison of the Results Obtained from the Two Houses

The comparison of carbon emissions between the two investigated houses having
different materials showed that the selected materials massively contributed to the carbon
emissions from the two houses. Figure 5 illustrates the comparative LCA results of two
houses in the context of the GWP per building during their life cycles.

Total 15.41

Total 13.72

-2-1012 3 456 7 8 91011121314 1516 17 18 19 20

kg CO,eq/m?/year
A1-A3: Product Stage A4-AS5: Construction Stage
B2: Maintenance & B4: Replacement B B6: Operational Energy Use
m B7: Operational Water Use m C1-C4: End of Life

m D: Materials Benefit
Figure 5. The comparative results of the GWP from the two houses.

From Figure 5, it can be seen that the difference of carbon emissions obtained from
the two houses was 1.69 kg CO, eq/m?/year. House B emitted 12.32% higher carbon than
House A. In comparing the carbon emissions obtained from both buildings, during the pro-
duction stages of the building materials, it was found that House A emitted around 50.43%
fewer carbon when compared to the carbon emissions of House B. Cole and Kernan [65]
found that timber frames’ extraction and manufacturing processes have fewer energy usage
when compared to other building materials such as concrete and steel. A comparative
study between a mid-rise mass timber building and a steel building also indicated that the
timber building produced between 28.99% and 34.08% of fewer embodied carbon (A1-A5)
than the steel building [66], which confirms that the results obtained in this study are in
line with the literature findings. In addition, carbon emissions from the two buildings
during their remaining life stages were shown to be similar. The difference in carbon
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emissions obtained from the construction stages (A4—-A5) of both the houses was 0.18 kg
CO, eq/m? /year, where House B released 37% fewer carbon than House A. This difference
may be attributed to the fewer waste materials generated from light steel than light timber
during their construction processes.

The maintenance (B2) and replacement (B4) stages of House B produced more carbon
emissions than House A, with 27% higher carbon emissions, while the operational energy
usage (B6) of both houses was found to be very similar, with the difference being only 1%.
The operational water usage (B7) of House A was 17% fewer than that of House B. This is
because of the different numbers of occupants present in the two evaluated houses: House
A had only three occupants, while House B had five occupants. House B released 42%
fewer carbon than House A during its EOL stage (C1-C4).

The light steel house had almost double the carbon offset when compared with the
light timber house. This was because of the higher recyclability of light steel than light
timber at their EOL stages. According to the BRANZ EOL module [59] (which is specific to
New Zealand applications), the recyclability of steel sheet is around 65% higher than that
of timber. Hence, the GWP of two investigated houses was highly affected by the choice of
material and the quantity of those materials assigned to the investigated buildings.

4.3. Life Cycle Analysis of the Two Houses

From the results of the LCA, it was found that different stages of the buildings’ life
cycle had different impacts in terms of carbon emissions. Figure 6 shows the buildings’ life
stages and its corresponding carbon emissions for both House A and House B.

House A House B
15.98% A1-A3: Product Stage A1-A3: Product Stage
A4-AS: Construction Process A4-AS: Construction Process
Stage Stage
3.39% e £

B2: Maintenance & B4:
Replacement

B2: Maintenance & B4:

8.04% Replacement

m B6: Operational Energy Use » B6: Operational Energy Use

= B7: Operational Water Use = B7: Operational Water Use

m C1-C4: End of Life = C1-C4: End of Life

(a) (b)

Figure 6. Carbon emissions from the buildings during their life stages: (a) light timber house
(House A); (b) light steel house (House B).

From Figure 6, both houses emitted a significant amount of embodied and operational
carbon. The operational energy usage (B6 module) was the most significant carbon con-
tributor during the whole building’s life cycle. The B6 module of House A had a 57.67%
carbon contribution, whereas for House B, this contribution was 49.53%. The production
stages (A1-A3) contributed the second largest carbon emissions, with 15.98% of carbon for
House A and 27.49% for House B.

In addition, it was identified that the time horizon of the building’s life stages could
influence the amount of carbon produced. By having a 90-year service life for the two
houses, the operational stage was the primary contributor to the total carbon emissions
when compared to the other stages. The early phases of the building (production to
construction) had less completion time, while the operational stage of the building was
dependent on the building’s life span. Hence, the operational stage in this study contributed
to the majority of the carbon emissions for both houses. This finding was also in line
with Petrovic et al. (2019), who conducted an LCA of a wooden single-family house.
With a 100-year lifespan, the operational stage of the building had an enormous carbon
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contribution, with about 64% of the total carbon emissions coming from the operation
phase of the building [47].

4.4. A Comparative Analysis of Carbon Emissions Obtained from Different Building Materials

House A used timber as the main building material for structural elements (e.g.,
wall framing and roof trusses), whereas House B used CFS. Both buildings also had
other materials such as concrete, aluminium, and fibre cement used in other primary and
secondary structural and non-structural members. Therefore, Figures 7 and 8 show the
amount of carbon emissions obtained from seven different building materials that were
installed in both houses.

House A

Fibre cement sheet

Timber, softwood, dressed kiln-dried

Aluminium, primary, profile sheet metal
Reinforced concrete, 25 Mpa, OPC

Reinforced concrete, 30 Mpa, OPC

Engineered wood, laminated veneer lumber (LVL)
Glass, single pane, heat strengthened

All other materials

-0.5 -0.3 0.0 0.3 0.5 0.8 1.0 13
kg CO,eq/m?/year
uD uCl-C4 B2,B4 mA4-AS Al-A3

Figure 7. The amount of carbon emissions obtained from 7 different building materials for House A.

House B

Cold-rolled profile metal sheet

Fibre cement sheet

Reinforced concrete, 30 MPa, composite floor decking, OPC o
0.56
Aluminium, primary, profile sheet metal o)
0.27
Reinforced concrete, 25 Mpa, OPC I O
0.24
Steel, primary, profile metal sheet
0.22
Reinforced concrete, 30 Mpa, OPC (]
0.59
All other materials m (@)
-0.8 -0.4 0.0 0.4 0.8 12 1.6 2.0 24
kg CO,eq/m?/year
uD uC1-C4 B2,B4 mA4-AS Al-A3

Figure 8. The amount of carbon emissions obtained from 7 different building materials for House B.

Figure 7 shows the amount of carbon emissions from the building materials used in
House A. Fibre cement sheet was the highest contributor to the total carbon emissions of
the house, with 1.19 kg CO, eq/m?/year, or 30.88% of the total carbon emissions. The
maintenance and replacement of fibre cement seemed to have the biggest carbon emissions
among the other life stages. It was caused by the service life of fibre cement sheets, which
need to be replaced after 50 years [59]. As a result, with the buildings’ service life of 90 years,
the fibre cement sheets needed to be replaced at least once for House A. Consequently,
additional carbon was released from House A during the production and construction
processes of the new fibre cement sheets. The second biggest carbon contributor was timber
softwood, with 0.86 kg CO, eq/m?/year, or 22.24% of the total carbon emissions coming
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from the softwood. The timber material absorbed a significant amount of CO, throughout
the growth of the trees from where the timber was cut [67]. In addition, all timber used
in this study was assumed to come from non-sustainable forest management practices.
Sustainable forest management practises are defined as forestry activities that involve the
planting of trees to replace those that have been cut down for exploitation [68]. Hence,
using timber with non-sustainable practises increased the amount of carbon emissions
produced by House A.

Furthermore, Figure 8 shows the amount of carbon emissions from the building ma-
terials used in House B. CFS had the most significant carbon footprint, with 1.63 kg CO,
eq/m?/year, or 31.50% of the total carbon emissions. According to the Environmental
Product Declaration (EPD) published by the Steel Recycling Institute [69], the CFS produc-
tion processes consist of several activities, such as the manufacturing of hot-dip galvanised
steel, which produce a significant amount of carbon. Therefore, the large quantity of CFS
used in House B resulted in the considerable contribution of this material to the total result.
However, this study found that CFS had the highest carbon offset after the EOL stage. The
high carbon offset was due to the very high recovery rates of steel material for recycling [67].
Afterward, the fibre cement sheet was the second highest carbon contributor, with 0.97 kg
CO, eq/m? /year, or 18.77% of the total carbon emissions.

4.5. Comparison of LCA Results Obtained from the Current Study with Other Studies Available in
the Literature

A comparison between the results of this study and the previous studies reported in
the literature was conducted to check the validity of the LCA results. This study identified
that House A released 13.72 kg CO, eq/m?/year and House B released 15.41 kg CO,
eq/m?/year of total carbon emissions for the whole life cycle of the buildings. In order
to check the validity of the LCA results, the findings of Chandrakumar et al. [53] were
used. Their research found that the investigated house emitted 16 kg CO, eq/m?/year of
embodied and operational carbon, and their results were acceptable to the climate impact
of residential buildings from around the world, where the total carbon emissions range
between 10-90 kg CO, eq/m? /year [53]. By referring to this previous research, which had
an identical geographical condition to the houses studied in the current paper, it could be
seen that the results of this study have a close match with the previously reported results
in terms of total carbon emissions.

However, the LCA performed on different buildings showed a wide range of results.
This variation can be justified by the fact that the design for each of these buildings is
unique [45]. Other studies also revealed that errors in the data collection and quality, as
well as the geographical location, can impact the findings [70]. The scope and methodology
or LCA tool, while performing an LCA of any building, can highly influence the outcomes.
Therefore, these factors should not be used to compare the results of other buildings outside
the defined scope.

5. Recommendations

Some suggestions based on the outcome of this research that can improve the energy
efficiency of houses to be built in the future are listed below:

e  The operational stages of the investigated houses contributed the maximum amount of
carbon from both buildings. Accordingly, the electricity consumption of houses needs
to be minimised, i.e., by controlling the use of plug loads and hot water electricity use,
as these can lead to significant energy consumption in houses.

e New Zealand’s electricity comes mainly from renewable sources, while 17.5% of the
total electricity supply in 2019 was from burning fossil fuels [7]. More houses should
incorporate photovoltaic (PV) panels to reduce carbon emissions from burning fossil
fuels.

e A strategy to reduce carbon emissions from the production stages is needed due to
their significance as being the second largest contributor of carbon emissions. The
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material selection process also plays a crucial role in achieving better energy efficiency
of the houses. Hence, selecting more sustainable materials is suggested in the design
phase to reduce the total carbon emissions from the houses.

6. Conclusions

Carbon emissions from buildings cannot be generalised due to many factors that
influence the values, such as the material types, geographical horizon, and time horizon.
This study used the LCA to evaluate and compare two different two-story houses (one
built from light timber and the other one was constructed from light steel) in Auckland,
New Zealand. In this LCA, cradle-to-cradle system boundaries were used. From the results
of this study, the following conclusions were drawn:

e  The LCA results confirmed that the light timber house emitted 13.72 kg CO, eq/ m2/ year,
while the light steel house emitted 15.41 kg CO, eq/m?/year of total carbon. The two
houses had comparable carbon emissions, which the light steel house had around 12%
higher total carbon emissions (embodied and operational, including carbon offset)
than the light timber house. Therefore, there was no significant difference in carbon
emissions between those two houses, considering the carbon offset from the building
materials after their EOL stages.

e  The study identified a large difference in carbon emissions in the production stages
between the two investigated houses. The light timber house had around 50% fewer
carbon emissions than the light steel house during its material production stages.
However, the carbon offset from the light steel house was twice as high as the light
timber house. The higher carbon offset was caused by the higher recyclability of steel
than timber. The recyclability of steel used in House B was around 65% higher than
the recyclability of the timber house (House A).

e  The operational energy emissions of the two houses became the most significant
carbon contributors (49.5-57.6%) during the whole building’s life cycle, followed by
the production stages (A1-A3). The reason behind such high operational carbon
emissions from both houses is that the design life of the houses was 90 years, requiring
operational energy for such a prolonged lifespan when compared with the other
stages of the building’s life cycle. Therefore, controlling human behaviour in terms of
electricity consumption and promoting the use of renewable energy can decrease the
amount of carbon emissions from the operational stages of houses.

According to the research outcomes, the LCA was a useful approach for assessing
the carbon emissions from the buildings and deriving a reliable comparison of the options
based on their environmental performance. Using this LCA approach, the study can
conclude that light steel can substitute light timber as the housing material to address the
current national timber shortage of New Zealand due to the slight difference in carbon
emissions produced by these materials.
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