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 Industrial robots are mainly employed to perform repetitive and hazardous production jobs, 
multi-shift operations etc. to reduce the delivery time, improve the work environment, lower the 
production cost and even increase the product range to fulfill the customers’ needs. When a 
choice is to be made from among several alternative robots for a given industrial application, it 
is necessary to compare their performance characteristics in a decisive way. As the industrial 
robot selection problem involves multiple conflicting criteria and a finite set of candidate 
alternatives, different multi-criteria decision-making (MCDM) methods can be effectively used 
to solve such type of problem. In this paper, ten most popular MCDM methods are considered 
and their relative performance are compared with respect to the rankings of the alternative 
robots as engaged in some industrial pick-n-place operation. It is observed that all these 
methods give almost the same rankings of the alternative robots, although the performance of 
WPM, TOPSIS and GRA methods are slightly better than the others. It can be concluded that 
for a given industrial robot selection problem, more attention is to be paid on the proper 
selection of the relevant criteria and alternatives, not on choosing the most appropriate MCDM 
method to be employed.  

  © 2011 Growing Science Ltd.  All rights reserved
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1. Introduction 

An industrial robot is a reprogrammable multifunctional manipulator designed to move materials, 
parts, tools or other devices by means of variable programmed motions and to perform a variety of 
other tasks (Rao, 2007). Industrial robots can perform repetitious, difficult and hazardous tasks (like 
assembly, machine loading, material handling, spray painting and welding) with precision, and can 
also significantly improve quality and productivity of the manufacturing organizations. Robots with 
varying capabilities and specifications are now available in the market dedicated to perform a wide 
range of operations. Selection of the robot to suit a particular application and manufacturing 
environment from a large number of candidate alternatives has now become a challenging task. Since 
a huge amount of initial investment is required for robot acquisition and installation, appropriate 
robot selection calls for a careful examination and assessment of the requirements as well as 
characteristics of the alternatives, which is a process that can only be achieved from the use of 
quantitative tools. The complexity of the problem can be better understood when one realizes that 
there are over 75 attributes that are to be considered while selecting a robot for a particular industrial 
application (Bhangale et al., 2004). Among these attributes, cost, load carrying capacity, velocity, 
weight of the robot, material of robot, drive systems, size of the robot, accuracy of the robot, 
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geometrical dexterity, path measuring systems, programming flexibility, man-machine interface and 
availability of the diagnostic software are considered to be the most important ones. Many of these 
attributes are conflicting in nature and have different units, which cannot be unified and compared as 
they are. Thus, the decision makers are experiencing difficulties in determining the most suitable 
robot alternative due to the involvement of a large number of conflicting and non-commensurate 
robot performance characteristics.  

Although a good amount of research work has been carried out in the past on solving industrial robot 
selection problems using different mathematical approaches, specially employing multi-criteria 
decision-making (MCDM) methods, very little attempt has been made to compare the relative 
performance of the MCDM methods while solving the decision-making problems. This paper mainly 
focuses on comparing the relative performance of ten most well-known MCDM methods with respect 
to the observed rankings of the alternative robots for a given pick-n-place operation (Bhangale et al., 
2004). In this paper, attempts are made to find the answers of the questions, like a) Which MCDM 
method is more appropriate for solving the industrial robot selection problem? and b) Does the best 
robot selection decision change while using different MCDM methods? 

2. Literature review 

Agrawal et al. (1991) proposed a robot selection procedure to rank the alternatives in a shortlist by 
employing TOPSIS (technique for order preference by similarity to ideal solution) method. An expert 
system was also developed to assist the decision maker to establish priorities and visualize the 
selection process at various stages. Khouja (1995) applied data envelopment analysis (DEA) to 
identify the robots with the best combination of vendor specifications based on the robot performance 
parameters. Then, a multi-attribute decision-making method was adopted to select the best robot. 
Zhao et al. (1996) combined a multi-chromosome genetic algorithm with first-fit bin packing 
algorithm for solving the robot selection and workstation assignment problems for a computer 
integrated manufacturing system. Goh et al. (1996) developed a revised weighted sum decision model 
taking into account both the objective and subjective attributes while selecting a robot for an 
industrial application. Baker and Talluri (1997) proposed an industrial robot selection methodology 
based on cross efficiencies in DEA without considering the criteria weights or the decision maker’s 
preferences. Goh (1997) applied analytic hierarchy process (AHP) for robot selection that could 
simultaneously consider both the objective and subjective attributes. Braglia and Petroni (1999) 
proposed a methodology for selection of industrial robots using DEA which aims at identification of 
the best robot by measuring the relative efficiency for each robot through the resolution of linear 
programming problems. Parkan and Wu (1999) presented the applications and interrelationship of the 
operational competitiveness rating and TOPSIS methods in a robot selection problem, and compared 
their performance with other approaches. Khouja and Kumar (1999) proposed a robot selection 
model, which would, in turn, give the decision maker the option of replacing the selected robot with a 
better one during the life of products with uncertain demand. Braglia and Gabbrielli (2000) 
considered the applicability of a mathematical method based on dimensional analysis theory to robot 
selection problems. Talluri and Yoon (2000) utilized a combination of the cone-ratio DEA which 
would integrate the decision maker’s preferences, and a new methodological extension in DEA for 
selection of industrial robots. Chu and Lin (2003) proposed a fuzzy TOPSIS method for robot 
selection, where the ratings of various alternatives with respect to different subjective criteria and the 
weights of all the criteria had been assessed using fuzzy numbers. Bhangale et al. (2004) presented a 
robot selection methodology using TOPSIS and graphical methods, and compared the relative 
rankings of the alternative robots as derived using those two methods. Bhattacharya et al. (2005) 
integrated AHP and quality function deployment (QFD) methods for solving industrial robot 
selection problems, while considering seven technical requirements and four alternative robots. 
Karsak and Ahiska (2005) applied a practical common weight MCDM methodology with an 
improved discriminating power for robot selection. It was observed that the proposed methodology 
could enable further ranking of the DEA-efficient decision-making units with a notable saving in 
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computations compared with cross-efficiency analysis. Rao and Padmanabhan (2006) employed the 
diagraph and matrix methods for evaluating and ranking of the alternative robots for a given 
industrial application. Kahraman et al. (2007) developed a hierarchical fuzzy TOPSIS method to 
solve the multi-attribute robot selection problems. Karsak (2008) proposed a decision model for robot 
selection based on QFD and fuzzy linear regression methods while integrating the user demands with 
the technical characteristics of the robots. Chatterjee et al. (2010) applied two MCDM methods, i.e. 
VIKOR (VIse Kriterijumska Optimizacija kompromisno Resenje) and ELECTRE II (ELimination 
and Et Choice Translating REality) to solve robot selection problems. Kumar and Garg (2010) 
proposed a deterministic quantitative model based on distance-based approach for evaluation, 
selection and ranking of robots. Koulouriotis and Ketipi (2011) developed a fuzzy digraph method for 
robot evaluation and selection according to a given industrial application. Singh and Rao (2011) 
developed a hybrid decision-making technique combining graph theory and matrix approach, and 
AHP method. Kentli and Kar (2011) applied satisfaction function and a distance measure technique 
for solving the robot selection problems. Rao et al. (2011) proposed a subjective and objective 
integrated multiple attribute decision-making method for robot selection. 

Karni et al. (1990) applied AHP, simple additive weighting (SAW), ELECTRE and weighted linear 
assignment method (WLAM) to three real time cases and observed that the AHP, SAW and 
ELECTRE rankings did not differ significantly, however, the WLAM would tend to exhibit more 
disagreement. Guitouni and Martel (1998) proposed a conceptual framework for articulating tentative 
guidelines to choose an appropriate MCDM method and presented the results of the comparison of 
some well-known multi-criteria aggregation procedures on the basis of these guidelines. Zanakis et al. 
(1998) compared the performance of eight MCDM methods, e.g. ELECTRE, TOPSIS, multiplicative 
exponential weighting (MEW), SAW and four versions of AHP (original vs. geometric scale and 
right eigenvector vs. mean transformation solution), and observed that all the AHP versions behaved 
similarly and closer to SAW than the other methods. ELECTRE was the least similar to SAW, 
followed by MEW. TOPSIS behaved closer to AHP and differently from ELECTRE and MEW, 
except for problems with few criteria. Raju and Pillai (1999) compared the ranking performance of 
some MCDM methods, e.g. ELECTRE II, preference ranking organization method for enrichment 
evaluation (PROMETHEE II), AHP, compromise programming (CP) and EXPROM II (extension of 
PROMETHEE II in distance- based environment) using Spearman’s rank correlation coefficient 
value. Hajkowicz and Higgins (2008) employed SAW, range of value method, PROMTHEE II, 
Evamix and CP to six water management decision problems, and suggested that more emphasis has 
to be given on the initial structuring of the decision problem, involving choosing the relevant criteria 
and alternative decisions. Caterino et al. (2009) compared the relative performance of eight MCDM 
methods, e.g. TOPSIS, weighted sum method, weighted product method, ELECTRE, multi-attribute 
utility theory, VIKOR, PROMETHEE I and PROMETHEE II for seismic retrofit of structures. 
TOPSIS and VIKOR methods seemed to be more appropriate for solving the retrofit selection 
problem because they are more capable to deal with each kind of judgment criteria, having clarity of 
results and easiness to deal with attributes and decision options. 

3. MCDM methods  

Multi-criteria decision-making refers to making decisions in the presence of multiple conflicting 
criteria. An MCDM method ranks the alternatives and the highest ranked one is recommended as the 
best alternative to the decision maker. In strategic planning, various MCDM methods are presently 
being applied which can also be effectively used to select the most appropriate robot for a given 
industrial application. But the vast array of available MCDM methods, of varying complexity and 
possibly solutions, confuses the potential decision maker. Several MCDM methods may appear to be 
suitable for a particular robot selection problem. Hence, the decision maker also faces the problem of 
selecting the most appropriate MCDM method from among several feasible alternatives. 

 The performance of different MCDM methods may be compared along varied dimensions, such as 
perceived simplicity, trustworthiness, robustness and quality. In this paper, in order to compare the 
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ranking performance of different MCDM methods while solving a pick-n-place type of industrial 
robot selection problem, the following ten MCDM methods are considered.  

a) Simple Additive Weighting (SAW) method,  
b) Weighted Product Method (WPM),  
c) Analytic Hierarchy Process (AHP),  
d) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method,  
e) Graph Theory and Matrix Approach (GTMA),  
f) VIKOR (VIse Kriterijumska Optimizacija kompromisno Resenje) method, 
g) ELECTRE II (ELimination and Et Choice Translating REality) method, 
h) PROMETHEE II (Preference Ranking Organization METHod for Enrichment Evaluation), 
i) Grey Relational Analysis (GRA), and 
j) Range of Value Method (ROVM). 

The computational details of these MCDM methods are presented here-in-under. 

3.1 Simple additive weighting method 

Any MCDM problem can be represented by a matrix (X) consisting of m alternatives and n criteria. 
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where ijx  is the performance measure of ith alternative on jth criterion. In MCDM methods, it is also 
required to determine the priority weight (wj) of each criterion such that the sum of weights for all the 
criteria equals to one. These priority weights can be determined using AHP or entropy method (Rao, 
2007). In SAW method, each alternative is assessed with respect to every criterion. The overall 
performance score (Pi) of ith alternative is calculated as follows:  
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where ( )ij normal
x is the normalized value of ijx . The alternative having the highest Pi value is the best 

choice. 

3.2 Weighted product method  

This method is similar to SAW method. The main difference is that, instead of addition, there is 
multiplication in this method. The overall performance score (Pi) for ith alternative is computed as 
below: 
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Here, the normalized value of ith alternative on jth criterion is raised to the power of the relative 
weight of the corresponding criterion. The best alternative is the one having the highest Pi value. 

3.3 Analytic hierarchy process  

The AHP method (Saaty, 1980) involves a general theory of measurement, which is used to derive 
ratio scale from both the discrete and continuous paired comparisons in multi-level hierarchical 
structures. The procedural steps of AHP are as follows: 
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Step 1: Define the problem and structure the corresponding hierarchy with a goal/objective at the top 
level, criteria and sub-criteria at the intermediate levels and alternatives at the lowest level. 

Step 2: a) Construct a set of pair-wise comparison matrices for each level in the hierarchy and make 
all the pair-wise comparisons using the fundamental scale of absolute numbers from 1 to 9. An 
element when self-compared is assigned a value of one. Assuming that there are N number of criteria 
in a decision-making problem, the pair-wise comparison of ith criterion with respect to jth one yields a 
square matrix, A1, where aij = 1 when i = j and aji = 1/aij (aij is the comparative importance of ith 
criterion with respect to jth one).                                                                                                                                             

b) Find the relative normalized weight (wj) for each criterion by (i) calculating the geometric mean of 
ith row, and (ii) normalizing the geometric mean of rows in the pair-wise comparison matrix. This can 
be represented by the following equations: 
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c) Calculate matrices A3 and A4 such that A3 = A1 x A2 and A4 = A3/A2. 

where A2 = [w1, w2,…, wN]T. 

d) Determine the maximum eigenvalue (λmax) which is the average of matrix A4. 

e) Calculate the consistency index (CI) as follows: 

CI = (λmax – N)/(N – 1)        (6)
                

The smaller is the value of CI, the smaller is the deviation from consistency. 

f) Calculate the consistency ratio as CR = CI/RI, where RI is the random index obtained by different 
orders of the pair-wise comparison matrices. Usually, a CR of 0.1 or less is considered as acceptable 
which reflects an unbiased judgment of the decision maker. 

Step 3: Compare the alternatives pair-wise with respect to how much better they are in satisfying each 
of the considered criterion.  

Step 4: Obtain the overall performance score for an alternative by multiplying the relative normalized 
weight (wj) of each criterion with its corresponding normalized weight value for each alternative and 
summing up over all the criteria for the alternative. A ranking of the alternatives is obtained in 
descending order, depending on the overall performance scores indicating the best and the worst 
choices for a given problem. 

3.4 TOPSIS method  

This method is based on the concept that the chosen best alternative should have the shortest 
Euclidean distance from the ideal solution and is the farthest from the negative ideal solution. The 
main steps involved in TOPSIS method are presented as below: 

Step 1: Determine the goal/objective of the problem and identify the pertinent selection criteria. 

Step 2: From the original decision matrix, obtain the normalized decision matrix, Dij using the 
following equation: 
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Step 3: Obtain the weighted normalized matrix, Vij.  

ij j ijV w D= , (8)

Step 4: Derive the ideal (best) and the negative ideal (worst) solutions as follows: 
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where ( )J j 1,2,...,n / j= =  is associated with beneficial criteria and ( )J j 1,2,...,n / j′= =  is associated 
with non-beneficial criteria. 

Step 5: Calculate the separation measures of each alternative from the ideal and the negative ideal 
solutions using the following equations: 
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Step 6: The relative closeness of an alternative to the ideal solution can be expressed as below: 

)/( −+− += iiii SSSC  (13)

Step 7: Based on the relative closeness measures, the alternatives are ranked in descending order, 
indicating the best and the worst choices. 

3.5 Graph theory and matrix approach  

Graph theory is a logical and systematic approach for modeling and analyzing different types of 
systems and problems as encountered in different fields of science and technology. On the other hand, 
the matrix approach is useful in analyzing the graph/digraph models expeditiously to derive the 
system functions so as to meet the objectives (Rao, 2007). A digraph usually contains a set of nodes, 
N = {ni} and a set of directed edges, D = {dij}. A node ni represents ith criterion and the edges 
represent the relative importance among the criteria. If ith criterion is having relative importance over 
jth criterion, a directed edge (dij) is drawn from ith node to jth node  and vice-versa. 

Matrix representation of a digraph gives a one-to-one representation of the entire problem. This is an 
NxN matrix and considers all the criteria (Xi) and their relative importance (xij). In general, if there 
are N number of criteria and the relative importance exist among them, then the following matrix can 
be constructed: 
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where Xi is the value of ith criterion represented by node ni and xij is the relative importance of ith 
criterion over jth one represented by edge dij. In order to select the best alternative using this approach, 
the permanent of the above matrix is to be computed. The permanent function is the determinant of a 
matrix, but considering all the determinant terms as positive ones. If the decision matrix consists of 
five criteria, the expression for the permanent function can be written as below: 
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The computational steps of the graph theory and matrix approach are given as below:  

Step 1: Identify the pertinent selection criteria for the given problem and shortlist the alternatives on 
the basis of the identified criteria satisfying the requirements.  

Step 2: After shortlisting the alternatives, find out the relative importance (xij) relation between 
various criteria and normalize the values of criteria (Xi) for different alternatives. 

a) Develop the related digraph considering the identified criteria and their relative importance.  
b) Construct the decision matrix for the developed digraph. This is an NxN matrix with diagonal 

elements of Xi and off-diagonal elements of xij. 
c) Obtain the permanent function for the matrix. 
d) Substitute xij and Xi values in the permanent function to evaluate the related indices for the 

considered alternatives. 
e) Arrange the alternatives in descending order based on the selection index values. The 

alternative having the highest index is the best choice. 
 

3.6 VIKOR method 

The VIKOR (the Serbian name is ‘VIse Kriterijumska Optimizacija kompromisno Resenje’ which 
means multi-criteria optimization and compromise solution) method (Zeleny, 2002, Opricovic & 
Tzeng, 2004, 2007) is developed to solve MCDM problems with conflicting and non-commensurate 
criteria, assuming that compromise can be acceptable for conflict resolution, when the decision maker 
wants a feasible solution that is the closest to the ideal solution and the alternatives can be evaluated 
according to all the established criteria. The following multiple attribute merit for compromise 
ranking is developed from the Lp-metric used in compromise programming method (Rao, 2007).  
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In VIKOR method, 1,iL and ,iL∞ are used to formulate the ranking measure. The procedural steps for 
VIKOR method are as follows: 

Step 1: Identify the major selection criteria and shortlist the alternatives.  

Step 2: a) From the decision matrix, determine the best, (xij)max and the worst, (xij)min values of all the 
criteria.  

b) Calculate Ei and Fi values. 
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For non-beneficial criteria, Eq.  (17) can be rewritten as: 
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c) Calculate Pi value 

Pi = v ((Ei – Ei-min) / (Ei-max – Ei-min)) + (1– v) ((Fi – Fi-min) / (Fi-max – Fi-min))                  (20)
 where Ei-max and Ei-min are the maximum and minimum values of Ei respectively, and Fi-max and Fi-min 
are the maximum and minimum values of Fi respectively. v is introduced as weight of the strategy of 
‘the majority of attributes’ (or ‘the maximum group utility’). The value of v lies in the range of 0 to 1. 
Normally, its value is taken as 0.5.  

d) Arrange the alternatives in ascending order, according to Pi values. The best alternative is the one 
having the minimum Pi value. 

3.7 ELECTRE II method 

The ELECTRE method (Roy & Vincke, 1981) is based on multi-attribute utility theory with the 
intention to improve efficiency without affecting the outcome while considering less information. It is 
a procedure that sequentially reduces the number of alternatives the decision maker is faced within a 
set of non-dominated alternatives. The aim of this outranking method is to find all alternatives that 
dominate other alternatives while they cannot be dominated by any other alternative. In ELECTRE 
method, every pair of the alternatives Ai and Ak is assigned a concordance index, c(i,k) which can be 
expressed as below: 
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where gj(i) and gj(k) are the normalized measures of performance of ith and kth alternative respectively 
with respect to jth criterion. Thus, for an ordered pair of alternatives (Ai,Ak), the concordance index, 
c(i,k) is the sum of all the weights for those criteria where the performance score of Ai is at least as 
that of Ak. A discordance index, d(i,k) is also calculated as given below: 

( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

≠=
−

−
=≥

=

=

> kimki
igkg

igkg
njkgkg

kid

jj
nj

jj
gkg

jj

ijj ,,1,     otherwise
)()(max

)()(max
,,1     ),()( if0

),(

,,1

)( )(  

 

 
(22)

Once these two indices are determined, an outranking relation S can be defined as: 

dkidckicSAA ki
ˆ),(  and  ˆ),( ifonly  and if  ≤≥  (23)

where ĉ and d̂ are the threshold values as set by the decision maker. For an outranking relation to be 
judged as true, both the concordance and discordance indices should not violate their corresponding 
threshold values. The steps for ELECTRE method are described as below: 

Step 1: Obtain the normalized values of all the criteria. 
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Step 2: Construct the outranking relations by following the concordance and discordance definitions, 
and develop a graph representing the dominance relations among the alternatives. In this graph, if 
alternative Ai outranks alternative Ak, then a directed arc exists from Ai to Ak.  

Step 3: Obtain a minimum dominating subset by using the minimum concordance and maximum 
discordance indices.  

Step 4: If the subset has a single element or is small enough to apply value judgment, select the final 
decision. Otherwise, steps (2)-(4) are repeated until a single element or small subset exists. 

Step 5: If a full ranking of the alternatives is required, apply an extension of ELECTRE (ELECTRE 
II) method.  

Calculate another two indices as follows: 
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a) Once these two indices are estimated, obtain two rankings on the basis of these indices. 

b) Determine an average ranking from the two rankings, as obtained in step 5(a). 

c) Select that alternative which has the best average rank. 

3.8 PROMETHEE II method 

Preference function based outranking method is an MCDM approach that can provide a ranking 
ordering of the decision options (Rao & Patel, 2009, Behzadian et al., 2010). PROMETHEE I method 
can provide the partial ordering of the alternatives, whereas, PROMETHEE II method can derive the 
full ranking of the alternatives by using a net flow, though it loses much information of preference 
relations. The procedural steps of PROMETHEE II method are enlisted as below:  

Step 1: Normalize the decision matrix.  

Step 2: Calculate the evaluative differences of ith alternative with respect to other alternatives. This 
step involves pair-wise calculation of differences in criteria values between different alternatives.  

Step 3: Calculate the preference function, )',( iiPj     

There are mainly six types of generalized preference functions, e.g. usual criterion, U-shape criterion, 
V-shaped criterion, level criterion, V-shape with indifference criterion and Gaussian criterion. But 
these preference functions require the definition of some preferential parameters, such as preference 
and indifference thresholds. However, in real time applications, it may be difficult for the decision 
maker to specify which specific form of preference function is suitable for each criterion. To avoid 
this problem, the following simplified preference function is used here: 

jiijj RRiiP '   if                   0)',( ≤=  (26)

jiijjiijj RRRRiiP ''    if     )()',( >−=  (27)

where Rij is the performance of ith alternative on jth criterion in the normalized decision matrix. 

Step 4: Calculate the aggregated preference function, )',( iiPj considering the criteria weights.  
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Step 5:  Determine the leaving and the entering outranking flows as follows:  
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The leaving flow expresses how much an alternative dominates the other alternatives, while the 
entering flow denotes how much an alternative is dominated by the other alternatives.  

Step 6: Calculate the net outranking flow for each alternative. 

φ(i) = φ+(i) – φ–(i) (31)

Step 7: Determine the rankings of all the considered alternatives depending on the values of φ(i). 
Thus, the best alternative is the one having the highest  φ(i) value. 

3.9 Grey relational analysis  
 

The initial step of GRA method is to translate the performance of all the alternatives into a 
comparability sequence. According to these sequences, a reference sequence (ideal target sequence) 
is defined. Then, the grey relational coefficient between all the comparability sequences and the 
reference sequence are calculated. Finally, based on these grey relational coefficients, the grey 
relational grade (GRG) between the reference sequence and each comparability sequence is 
computed. If a comparability sequence translated from an alternative has the highest GRG between 
the reference sequence and itself, that alternative will be the best choice. The procedural steps of 
GRA method are described as follows:  

Step 1: Generate the grey relation using an appropriate normalization procedure.  

Step 2: Define the reference sequence.  

For jth criterion of ith alternative, if the value xij is equal to 1, or nearer to 1 than the value of the other 
alternatives, the performance of ith alternative is the best one for that jth criterion. Therefore, an 
alternative will be the best choice if all of its performance values are closest to or equal to 1. The 
reference alternative is defined as x0.   

Step 3: Calculate the grey relational coefficient.  
 

Grey relational coefficient is used to determine how close xij is to x0j. The larger the grey relational 
coefficient, the closer xij and x0j are. It is calculated using the following equation: 

0j ij min max ij maxγ(x , x ) (Δ ζΔ ) / (Δ ζΔ )= + +       (32)
where γ(x0j, xij) is the grey relational coefficient between xij and x0j, Δij = |x0j – xij|, Δmin is the 
minimum value of Δij and Δmax is the maximum value of Δij. ζ is the distinguishing coefficient which 
ranges from 0 to 1 and generally, is taken as 0.5.  

Step 4 Compute the GRG value as follows:  

∑=
=

n

j
ijjji xxwxx

1
00 ),( and between GRG γ   

(33)
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The GRG represents the level of correlation between the reference sequence and the comparability 
sequence. If the comparability sequence for an alternative gets the highest GRG value with the 
reference sequence, it means that the comparability sequence is most similar to the reference 
sequence and that alternative is the best choice. 

3.10 Range of value method  
 

The range of value method calculates the best and the worst utility for each alternative. This is 
achieved by maximizing and minimizing a utility function. For a linear additive model, the best 
utility (ui

+) and the worst utility (ui
-) for ith alternative are obtained using the following equations: 

∑=
=

+
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j
jiji wvu

1
max   

(34)

∑=
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−
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j
jiji wvu

1
min   

(35)
If ui

- > ui
+ then alternative i outperforms alternative k regardless of the actual quantitative weights. If 

it is not possible to differentiate the alternatives on this basis, then a scoring (enabling subsequent 
ranking) can be attained from the midpoint, which can be calculated as below: 

i i
i

u uu
2

− ++=  
      (38)

The alternative having the highest ui value is the best choice. 

4. Illustrative Example 

This example (Bhangale et al., 2004) deals with the selection of the most appropriate industrial robot 
for some pick-n-place operations where it has to avoid certain obstacles. Performance of an industrial 
robot is often specified using different attributes. Repeatability, accuracy, load capacity, memory 
capacity, manipulator reach and velocity are observed to be the most critical attributes affecting the 
robot selection decision. Repeatability is the measure of the ability of a robot to return to the same 
position and orientation over and over again, while accuracy is the measure of closeness between the 
robot end effectors and the target point, and can usually be defined as the distance between the target 
point and the center of all points to which the robot goes on repeated trials. It is easier to correct poor 
accuracy than repeatability and thus, repeatability is generally assumed to be a more important 
attribute. Load capacity is the maximum load that a manipulator can carry without affecting its 
performance. Maximum tip speed is the speed at which a robot can move in an inertial reference 
frame. Memory capacity of a robot is measured in terms of number of points or steps that it can store 
in its memory while traversing along a predefined path. Manipulator reach is the maximum distance 
that can be covered by the robotic manipulator so as to grasp objects for the given pick-n-place 
operation. In this example (Bhangale et al., 2004), five different robot selection attributes are 
considered as load capacity (LC), repeatability (RE), maximum tip speed (MTS), memory capacity 
(MC) and manipulator reach (MR), among which load capacity, maximum tip speed, memory 
capacity and manipulator reach are beneficial attributes (where higher values are desirable), whereas, 
repeatability is a non-beneficial attribute (where lower value is preferable). Thus, the industrial robot 
selection problem consists of five criteria and seven alternative robots, as shown in Table 1. Bhangale 
et al. (2004) estimated the criteria weights as wLC = 0.1761, wRE = 0.2042, wMTS = 0.2668, wMC = 
0.2430 and wMR = 0.2286 using AHP method. But the sum of these criteria weights exceeds one. 
Hence, these are re-normalized as wLC = 0.1574, wRE = 0.1825, wMTS = 0.2385, wMC = 0.2172 and 
wMR = 0.2043, and used for subsequent analyses. 
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Table 1  
Quantitative data for robot selection  (Bhangale et al., 2004)  
Sl. 
No. 

Robot Load capacity  
(kg) 

Repeatability  
(mm) 

Maximum tip 
speed  (mm/s) 

Memory 
capacity  

Manipulator 
reach (mm)  

1. ASEA-IRB 60/2 60 0.40 2540 500 990 
2. Cincinnati Milacrone T3-726 6.35 0.15 1016 3000 1041 
3. Cybotech V15 Electric Robot 6.8 0.10 1727.2 1500 1676 
4. Hitachi America Process Robot 10 0.20 1000 2000 965 
5. Unimation PUMA 500/600 2.5 0.10 560 500 915
6. United States Robots Maker 110 4.5 0.08 1016 350 508 
7. Yaskawa Electric Motoman L3C 3 0.10 177 1000 920 

 

4.1 Simple additive weighting method 

In this method, the performance scores for all the alternative robots are calculated using Eq.  (2), as 
shown in Table 2. Based on the descending values of the performance score, the alternatives are 
arranged as 2-3-1-5-7-6-4 which reveals that Cybotech V15 Electric Robot is the best choice 
followed by ASEA-IRB 60/2 robot. Robot 5 (Unimation PUMA 500/600) is the worst choice. 

Table 2  
Performance scores using SAW method 
Robot 1 2 3 4 5 6 7 
Pi 0.5893 0.5535 0.6390 0.4556 0.3529 0.3770 0.5054 
 

4.2 Weighted product method 

Using Eq. (3), the performance scores of the alternative robots are calculated, as given in Table 3. 
When arranged in descending order according to the values of the performance score, the ranking of 
the alternatives is obtained as 2-3-1-4-7-6-5 which suggests that Cybotech V15 Electric Robot and 
ASEA-IRB 60/2 are the first and second best choices. 

Table 3  
Performance scores using WPM 
Robot 1 2 3 4 5 6 7 
Pi 4.3210 4.3048 4.4422 4.2099 3.8250 3.8795 4.1749 
 

4.3 Analytic hierarchy process  

At first, in this method, all the alternative robots are pair-wise compared with respect to all the 
selection criteria using Saaty’s 1-9 absolute scale of measurement. Table 4 shows such a pair-wise 
comparison matrix when all the considered alternatives are pair-wise compared with respect to ‘load 
capacity’ criterion.  

Table 4  
Pair-wise comparison matrix of the alternatives with respect to ‘load capacity’ criterion 
Robot 1 2 3 4 5 6 7 PW 
1 1     2     1     2     3     4     2     0.2542 
2  1/2 1     1      1/2 3     1     1     0.1271 
3 1     1     1     3     2     2     1     0.1888 
4  1/2 2      1/3 1      1/2  1/3 1     0.0876 
5  1/3  1/3  1/2 2     1      1/2  1/3 0.0749 
6  1/4 1      1/2 3     2     1     1     0.1271 
7  1/2 1     1     1     3     1     1     0.1403 
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The last column of this table gives the priority weights (PW) as calculated using the steps shown in 
sub-section 3.3. Likewise, another four sets of priority weights are also obtained when the alternative 
robots are pair-wise compared with respect to the remaining four criteria, i.e. repeatability, maximum 
tip speed, memory capacity and manipulator reach. Now, these normalized priority weights of the 
alternative robots with respect to different criteria and the criteria weights are multiplied to yield the 
performance scores for the robots. The detailed calculations are given below.  
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1093.0
1031.0
1288.0
2209.0
1605.0
1415.0

2043.02172.02385.01825.01574.0

1025.01624.01606.01050.01403.0
1112.00846.01081.01228.01271.0
1323.00723.01265.01007.00749.0
1379.02098.01396.01413.00876.0
2301.02098.02110.02647.01888.0
1681.02098.01396.01497.01271.0
1179.01332.01145.01159.02542.0

            

 

After arranging these scores in descending order, the ranking of the robots is obtained as 3-2-1-5-7-6-
4, indicating that Cybotech V15 Electric Robot is the best choice for the given application. 
 

4.4 TOPSIS method 

In this method, from the normalized decision matrix, the corresponding weighted normalized decision 
matrix is obtained, applying Eq.  (8) and is shown in Table 5. Now, using Eq. (9) and Eq. (10), the 
ideal and the negative ideal solutions are respectively computed, as given in Table 6. Then applying 
Eq. (11) and Eq. (12), the separation measures of each alternative robot from the ideal and the 
negative ideal solutions are estimated, as shown in Table 7. Finally, the relative closeness values of 
all the candidate robots with respect to the ideal solution are computed and are shown in Table 8, 
which results in a ranking of robots as 1-3-2-5-7-6-4. This reveals that ASEA-IRB 60/2 is the best 
robot, followed by Cybotech V15 Electric Robot. 

 
Table 5  
Weighted normalized decision matrix 

Robot LC   RE  MTS   MC MR  
1 0.1528 0.1435 0.1516 0.0264 0.0727 
2 0.0162 0.0538 0.0606 0.1586 0.0764 
3 0.0173 0.0359 0.1031 0.0793 0.1231 
4 0.0255 0.0717 0.0597 0.1058 0.0709 
5 0.0064 0.0359 0.0334 0.0264 0.0672 
6 0.0115 0.0287 0.0606 0.0185 0.0373 
7 0.0076 0.0359 0.1061 0.0529 0.0675 
 

Table 6  
Ideal and negative ideal solutions 
V+ 0.1528 0.0287 0.1516 0.1586 0.1231
V– 0.0064 0.1435 0.0334 0.0185 0.0373 
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Table 7  
Separation measures 

Robot 1 2 3 4 5 6 7 
Si

+ 0.1822 0.1724 0.1645 0.1790 0.2367 0.2350 0.1935 
Si

– 0.1916 0.1733 0.1661 0.1222 0.1120 0.1181 0.1377 
 

Table 8  
Relative closeness values 
Robot 1 2 3 4 5 6 7 
Ci 0.5126 0.5013 0.5026 0.4058 0.3211 0.3344 0.4157 

 

4.5 Graph theory and matrix approach  
 

Based on the five robot selection criteria, the corresponding robot selection digraph is developed, as 
shown in Fig. 1. This digraph gives a graphical representation of the considered criteria and their 
relative importance for quick visual appraisal. Using an 11-point scale, as proposed by Rao (2007), 
the matrix of Table 9 is developed which shows the relative importance between different criteria. 
The numerical value of the robot selection criteria function or the permanent function is called the 
robot selection index (RSI) which is a measure of degree or extent by which a robot can be 
successfully selected. The robot selection indices for different alternatives are calculated by solving 
the permanent function, as given in Eq.  (15), while substituting the values of Xi and xij. The robot 
with the highest RSI value is the best choice.  

Table 10 shows the RSI values for the alternative robots, which gives a ranking as 2-3-1-5-7-6-4 
showing that Cybotech V15 Electric Robot and ASEA-IRB 60/2 are the first and second best choices. 

 

 

Fig. 1. Developed digraph 

Table 9  
Relative importance between different criteria 
Criteria LC   RE  MTS   MC MR  
LC  - 0.590 0.665 0.590 0.745 
RE 0.410   - 0.590 0.410 0.745 
MTS 0.335 0.410   - 0.335 0.865 
MC 0.410 0.590 0.665   - 0.865 
MR 0.255 0.255 0.135 0.135  - 
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Table 10  
Robot selection indices 
Robot 1 2 3 4 5 6 7 

RSI 2.8790 2.6802 3.2780 2.2558 1.8092 1.8151 2.4108 

 

4.6 VIKOR method 

For solving this problem using VIKOR method, at first, the best and the worst values of all the 
criteria are identified. Now, the values of Ei and Fi are calculated using Eqns. (17) or (19) and (18) 
respectively, as given in Table 11. Table 11 also shows the Pi values (for v = 0.5) which when 
arranged in ascending order, gives a relative ranking of robots as 4-3-1-5-7-6-2. The best choice of 
robot for the given pick-n-place operation is robot 3 (Cybotech V15 Electric Robot). Yaskawa 
Electric Motoman L3C is the second choice and the last choice is robot 5 (Unimation PUMA 
500/600). 

Table 11  
Ei, Fi and Pi values  
Robot 1 2 3 4 5 6 7 
Ei 0.5075 0.4815 0.3779 0.5972 0.7454 0.7571 0.5554 
Fi 0.2049 0.1836 0.1456 0.1855 0.2385 0.2172 0.1639 
Pi 0.4901 0.3408 0 0.5038 0.9846 0.8854 0.3326 
 

4.7 ELECTRE II method 

To solve this problem using ELECTRE II method, the original decision matrix is first normalized. 
Then, using Eqns. (21) and (22), the concordance and discordance indices are calculated, as shown in 
Table 12 and 13 respectively. In order to obtain the full ranking of the alternative robots, the 
corresponding pure concordance and discordance indices are also computed, as given in Table 14. 
The final ranking is obtained as 2-3-1-6-7-5-4. Cybotech V15 Electric Robot and ASEA-IRB 60/2 
obtain the first and second ranks respectively. 

Table 12  
Concordance matrix  
Robot 1 2 3 4 5 6 7 
1  - 0.3959 0.3959 0.6002 0.7088 0.8174 0.6002 
2 0.6041  - 0.2172 0.8426 0.8175 0.6982 0.5790 
3 0.6041 0.7828  - 0.6254 0.9087 0.8175 0.6702 
4 0.3997 0.1574 0.3746  - 0.8175 0.5790 0.5790 
5 0.2911 0.1825 0.0913 0.1825  - 0.4216 0.0913 
6 0.1825 0.3018 0.1825 0.4210 0.5784  - 0.3399 
7 0.3997 0.4210 0.3298 0.4210 0.9087 0.6601  - 
 
Table 13  
Discordance matrix 
Robot 1 2 3 4 5 6 7
1  - 0.9678 0.3904 0.6229 0 0 0.1819
2 1.0000  - 0.3847 0 0 1.0000 1.0000 
3 1.0000 1.0000  - 0 0  0 
4 0.6581 0 0 - 0 1.0000 1.0000
5 0 1.0000 0.3150 0  - 1.0000 0.5556 
6 0 0.5984 1.0000 0.2500 1.0000  - 1.0000 
7 0.1444 0 0.6618 0.4500 1.0000 1.0000  - 
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Table 14  
Ranking of robots using ELECTRE II method 

Robot Pure concordance 
index 

Initial 
rank 

Pure discordance 
index 

Initial 
rank 

Average 
rank 

Final 
rank 

1 1.0373 3 -0.6396 2 2.5 2 
2 1.5171 2 -0.1815 4 3 3 
3 2.8174 1 -0.7518 1 1 1 
4 -0.1856 5 1.3352 7 6 6 
5 -3.4794 7 0.8705 6 6.5 7 
6 -1.9875 6 -0.1516 5 5.5 5 
7 0.2807 4 -0.4812 3 3.5 4 
 

4.8 PROMETHEE II method 

In this method, at first, using Eqs.  (26) or (27), the preference functions are calculated for all the 
pairs of alternatives. Table 15 shows the aggregated preference function values for all the paired 
alternatives, computed using Eq.  (28). Now, the leaving and the entering flows for different 
alternative robots are estimated, using Eqns. (29) and (30) respectively, and are given in Table 16. 
Based on these leaving and entering flows, the net outranking flow values for the alternative robots 
are then determined, as given in Table 17. The alternatives are now ranked in descending order 
according to the net outranking flow value, which results in a comparative ranking of robots as 3-2-1-
5-6-7-4. Here, Cybotech V15 Electric Robot and Cincinnati Milacrone T3-726 are the first and 
second best choices.    

Table 15  
Aggregated preference function values  
Robot 1 2 3 4 5 6 7 
1  - 0.3304 0.2435 0.3267 0.4090 0.4321 0.2601 
2 0.3564  - 0.1230 0.1257 0.3662 0.3155 0.1943 
3 0.3731 0.2265  - 0.2690 0.3675 0.3906 0.1837 
4 0.2370 0.0100 0.0497  - 0.2052 0.2303 0.1090 
5 0.1711 0.0285 0 0.0570  - 0.0835 0 
6 0.1825 0.0399 0.0114 0.0704 0.0718  - 0.0155 
7 0.2121 0.1203 0.0061 0.1508 0.1899 0.2171  - 
 
Table 16  
Leaving and entering flows  
Robot 1 2 3 4 5 6 7 

(i)φ+  0.3337 0.2469 0.3017 0.1402 0.0567 0.0653 0.1494 

(i)φ−  0.25539 0.12595 0.07229 0.16661 0.26828 0.27819 0.12709 
 

Table 17  
Net outranking flow values 
Robot 1 2 3 4 5 6 7 
Net outranking  
flow 

0.0783 0.1209 0.2294 -0.0264 -0.2116 -0.2129 0.0223 

 

4.9 Grey relational analysis 

In this method, after normalizing the original decision matrix, the grey relational coefficients are 
calculated using Eq.  (32), where the value of the distinguishing coefficient (ζ) is taken as 0.5. Table 
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18 shows the grey relational coefficients for all the alternative robots with respect to five different 
selection criteria. Now, the corresponding GRG values are determined, as shown in Table 19. After 
arranging the GRG values in descending order, the ranking of the alternative robots is obtained as 2-
3-1-5-7-6-4. Cybotech V15 Electric Robot is the best choice followed by ASEA-IRB 60/2.  

Table 18  
Grey relational coefficients 
Robot LC RE MTS MC MR 
1 1.0000 0.3333 1.0000 0.3464 0.4598 
2 0.3489 0.6957 0.3938 1.0000 0.4791 
3 0.3508 0.8889 0.5491 0.4690 1.0000 
4 0.3651 0.5714 0.3913 0.5699 0.4510 
5 0.3333 0.8889 0.3333 0.3464 0.4342 
6 0.3412 1.0000 0.3938 0.3333 0.3333 
7 0.3353 0.8889 0.5651 0.3985 0.4358 
 

Table 19  
Grey relation grades 
Robot 1 2 3 4 5 6 7 
GRG 0.6260 0.5909 0.6547 0.4710 0.4582 0.4707 0.5254 

 

4.10 Range of value method 

Here, the best and the worst utility functions for each alternative robot are calculated applying Eqns. 
(34) and (35) respectively. These are shown in Table 20, where the midpoints of the best and the 
worst utility functions are also determined to obtain the comparative ranking of the alternatives as 3-
2-1-5-6-7-4, when sorted in descending order. It reveals that Cybotech V15 Electric Robot and 
Cincinnati Milacrone T3-726 are the first and second choices respectively.  

Table 20  
Best and worst utility functions 

 

5. Comparative Analysis 

To determine the applicability and suitability of the ten above-cited MCDM methods to solve this 
industrial robot selection problem, their relative ranking performance are compared using the 
following measures:  

(a) Spearman’s rank correlation coefficient, 
(b) Kendall’s coefficient of concordance, 
(c) Agreement between the top three ranked alternatives, and 
(d) Number of ranks matched, as the percentage of the number of considered alternatives. 

Robot ui
+ ui

- ui 

1 0.4925 0.0000 0.2463 
2 0.3759 0.1426 0.2593 
3 0.4510 0.1711 0.3110 
4 0.2887 0.1141 0.2014 
5 0.0835 0.1711 0.1273 
6 0.0604 0.1825 0.1215 
7 0.2734 0.1711 0.2223 
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Using Spearman’s rank correlation coefficient (rs) value, the similarity between two sets of rankings 
can be measured (Sheskin, 2004). Usually, its value lies between –1 and +1, where the value of +1 
denotes a perfect match between two rank orderings. Table 21 shows the Spearman’s rank correlation 
coefficients when the rankings of the alternative robots as obtained using all the ten MCDM methods 
are compared between themselves and also with respect to the rank ordering as derived by Rao 
(2007). It is observed that the rs value ranges between 0.5952 and 1.000. The performance of WPM 
and TOPSIS methods are satisfactory with respect to rs value. Other MCDM methods also perform 
well. It is also observed that SAW is similar to GTMA and GRA, GTMA to GRA, and 
PROMETHEE II to ROVM with respect to their ranking performance. The relative performance of 
the ten MCDM methods with respect to the ranking of the alternative robots as obtained by Rao 
(2007) can also be visualized if another parameter (Z) is introduced expressed as follows, 

sZ r m 1= −  (39)

Fig. 2 shows the Z values for all the considered MCDM methods and it reveals that WPM, TOPSIS 
and GRA are the best methods. On the other hand, ELECTRE II does not perform well due to its 
mathematical complexity.   
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Fig. 2. Z values for different MCDM methods 

The similarity of rankings obtained using the ten MCDM methods is also measured using Kendall’s 
coefficient of concordance (z) value which lies from 0 to 1, where a value of 1 results in a perfect 
match (Hajkowicz & Higgins, 2008). In this case, the value of Kendall’s coefficient of concordance 
(z) is computed as 0.8583, which suggests that there is an almost perfect agreement between the 
considered MCDM methods.  

Table 21  
Performance test results 
Method SAW WPM AHP TOPSIS GTMA VIKOR ELECTRE II PROMETHEE II GRA ROVM 
Rao (2007) 0.7143 

(#,2,#,57.14) 
0.7857 
(#,2,#,42.86) 

0.6429 
(#,#,#,42.86) 

0.7381 
(#,2,#,42.86) 

0.7143 
(#,2,#,57.14) 

0.6190 
(#,#,#,28.57) 

0.5952 
(#,2,#,42.86) 

0.6190 
(#,#,#,14.29) 

0.7143 
(#,2,#,57.14) 

0.6190 
(#,#,#,14.29) 

SAW  0.9762 
(1,2,3,71.43) 

0.9762 
(1,#,#,71.43) 

0.9762
(#,#,3,51.43) 

1.0000
(1,2,3,100) 

0.9048
(1,#,3,71.43) 

0.9762
(1,2,3,71.43) 

0.9524
(1,#,#,42.86) 

1.0000 
(1,2,3,100) 

0.9524
(1,#,#,42.86) 

WPM   0.9524 
(1,#,#,42.86) 

0.9524 
(#,#,3,42.86) 

0.9762 
(1,2,3,71.43) 

0.8333 
(1,#,3,57.14) 

0.9286 
(1,2,3,57.14) 

0.9286 
(1,#,#,14.29) 

0.9762 
(1,2,3,71.43) 

0.9286 
(1,#,#,14.29) 

AHP    0.9286 
(#,#,#,57.14) 

0.9762 
(1,#,#,71.43) 

0.9286 
(1,#,#,57.14) 

0.9524 
(1,#,#,42.86) 

0.9762 
(1,2,3,71.43) 

0.9762 
(1,#,#,71.43) 

0.9762 
(1,2,3,71.43) 

TOPSIS     0.9762 
(#,#,3,71.43) 

0.8333 
(#,#,3,57.14) 

0.9524 
(#,#,3,42.86) 

0.9048 
(#,#,#,28.57) 

0.9762 
(#,#,3,71.43) 

0.9048 
(#,#,#,28.57) 

GTMA      0.9048 
(1,#,3,71.43) 

0.9762 
(1,2,3,71.43) 

0.9524 
(1,#,#,42.86) 

1.0000 
(1,2,3,100) 

0.9524 
(1,#,#,42.86) 

VIKOR    0.8810
(1,#,3,42.86) 

0.9048
(1,#,3,28.57) 

0.9048 
(1,#,3,71.43) 

0.9048
(1,#,#,28.57) 

ELECTRE II        0.9048 
(1,#,#,28.57) 

0.9762 
(1,2,3,71.43) 

0.9048 
(1,#,#,28.57) 

PROMETHEE II         0.9524 
(1,#,#,42.86) 

1.0000 
(1,2,3,100) 

GRA          0.9524 
(1,#,#,42.86) 
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Here, it does not matter which MCDM method has been used as the relative ranking will be more or 
less the same. As the decision maker may be sometimes interested to select the best robot as the 
single choice, another test is performed based on the agreement between the top three ranked robot 
alternatives. Here, a result of (1,2,3) means the first, second and third ranks match; (1,2,#) means the 
first and second ranks match; (1,#,#) means only the first ranks match; and (#,#,#) means no match.  
Table 21 shows the results of this test which indicates that PROMETHEE II results in the maximum 
number of mismatches with respect to the ranking of the top three alternative robots.  The last test is 
performed with respect to the number of ranks matched, expressed as the percentage of the number of 
alternatives considered. These values are also shown in Table 21. In this test, it is observed that GRA 
evolves out as the best MCDM method. 

6. Conclusions  

This paper studies the ranking performance of ten most well-known MCDM methods while solving 
an industrial robot selection problem. Four performance tests are conducted to measure the degree of 
agreement between the rankings derived by these MCDM methods. It is observed that although 
WPM, TOPSIS and GRA methods have slight advantage over the others, change of the MCDM 
method produces minor differences in the final ranking of the alternative robots. Thus, the rankings 
are not significantly affected by the choice of the MCDM method employed. The minor discrepancy 
that appears between the rankings obtained by different MCDM methods is only due to the difference 
in their mathematical modeling while solving a decision problem. Thus, the main focus must lie not 
on the selection of the most appropriate MCDM method to be adopted, but on proper structuring of 
the decision problem considering the relevant criteria and decision alternatives. The future scope of 
this paper may include comparing the relative permanence of the other newly developed MCDM 
methods, like Evamix, Regime, COPRAS (complex proportional assessment), LINMAP (linear 
programming technique for multi-dimensional analysis of preference) and NAIADE (novel approach 
to imprecise assessment and decision environments) while solving the robot selection problems. 
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