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Abstract: The significant advancements in intelligent transportation systems (ITS) have contributed
to the increased development in traffic modeling. These advancements include prediction and
simulation models that are used to simulate and predict traffic behaviors on highway roads and
urban networks. These models are capable of precise modeling of the current traffic status and
accurate predictions of the future status based on varying traffic conditions. However, selecting the
appropriate traffic model for a specific environmental setting is challenging and expensive due to the
different requirements that need to be considered, such as accuracy, performance, and efficiency. In
this research, we present a comprehensive literature review of the research related to traffic prediction
and simulation models. We start by highlighting the challenges in the long-term and short-term
prediction of traffic modeling. Then, we review the most common nonparametric prediction models.
Lastly, we look into the existing literature on traffic simulation tools and traffic simulation algorithms.
We summarize the available traffic models, define the required parameters, and discuss the limitations
of each model. We hope that this survey serves as a useful resource for traffic management engineers,
researchers, and practitioners in this domain.

Keywords: traffic; modeling; spatiotemporal

1. Introduction

Traffic modeling is beneficial in controlling the high volume of vehicular traffic on
major roadways and optimizing the level of complexity of the road networks’ infrastructure.
It has been used quite extensively in recent years to analyze, simulate, and predict traffic
behavior at different levels of complexity, from congested urban settings to rural modeling
at the macro and micro scales [1]. Traffic behavior is defined as the volume, speed, and
density of traffic flow as estimated by given data, whether historical or real-time. Further-
more, with the tremendous growth in the number of intelligent transportation services,
traffic monitoring applications, and the emergence of the Internet of Things (IoT), traffic
modeling has received substantial attention from the research community [2]. The majority
of traffic modeling research focuses on proposing models to analyze and predict traffic
congestion problems as well as simulate the traffic flow in different road environments,
such as freeways, junctions, and intersections [3]. The availability of these models plays an
essential role in traffic engineering and in assessing the performance of road traffic facilities.
These models study the spatial and temporal interactions within the traffic status to capture
their significant effect on traffic behavior. The temporal factor in traffic models is used to
identify a directional movement in a time series format, while the spatial factor will take
into account the geographical space to build the prediction outcome. By combining the
temporal and spatial factors in traffic prediction models, an improvement in the prediction
results is noticeable [4]. Numerous studies have proven that machine learning models are
capable of modeling the spatiotemporal correlations in continuous spatiotemporal traffic
data [5]. On the other hand, traffic simulation models are used to simulate vehicle move-
ments and describe the traffic flow realistically [6]. Traffic simulation models are used to
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optimize road design and assess the effects of road network design on vehicle movements.
These models provide a geographical environment to plan scenarios of driver behavior
in a wide variety of road types, such as urban and freeway networks. Traffic simulation
uses mathematical models to demonstrate how vehicles would move in real time using
car-following theories. The difference between traffic prediction and traffic simulation
models is that in prediction, we estimate the traffic value (volume, speed, density, etc.) at a
future time point using historical data under given conditions. In traffic simulation, models
estimate the traffic value (volume, speed, density, etc.) under given conditions.

In this paper, we examine the implementations of the most common spatiotemporal
machine learning models, focusing on nonparametric models that are widely used to
estimate and predict traffic status. In addition, we provide a comprehensive comparison
of the existing traffic simulators used in smart cities and intelligent transportation appli-
cations, specifically for traffic flow modeling. This study aims to explore spatiotemporal
nonparametric traffic models and microscopic simulation models. Although there has been
a considerable amount of survey papers introduced in traffic modeling, none has been
found focusing on nonparametric modeling techniques for traffic prediction or methods for
traffic data analysis and the prediction of different time intervals. A number of advanced
models will be critically examined and compared in this survey. This paper seeks to ad-
dress the following questions: What are the suitable models for long-term and short-term
predictions in traffic modeling? What are the performance metrics used to evaluate the
efficiency of each model? What are the drawbacks of each model, and how can these
issues be overcome? In which ways does the nonparametric predictive method differ from
the parametric predictive method? What is the required data structure that is suitable
to implement the predictive model? The findings of this paper will make an important
contribution to the field of spatiotemporal prediction of traffic flows. In addition, it will
highlight a number of common nonparametric statistical methods. By demonstrating the
challenges in the long-term and short-term prediction of traffic modeling in this survey,
abundant room for further development in traffic modeling will be considered.

In addition to the above-mentioned questions on nonparametric modeling techniques,
we provide a comparative study on the most used simulation models in the traffic modeling
literature, where we explore the state of the art of these simulation tools and discuss their
functionalities and characteristics. A number of criteria, such as the nature of the tool (e.g.,
free, open source, or commercial) and functional capabilities of the simulator, are addressed
in this section [7]. Figure 1 shows a high-level overview of the papers discussed in this
survey, categorized into techniques that are applied to achieve traffic prediction.

The remainder of the paper is structured as follows. Section 2 presents the motivation
for traffic modeling and identifies its significant impact on smart city systems and intelligent
transportation applications. Section 3 gives a brief overview of the different types of
spatiotemporal models and real-world applications that benefit from them. In Section 4,
we discuss the challenges of traffic modeling for long-term prediction. Section 5 provides
a comprehensive review of the traffic modeling approaches for long-term prediction. In
Section 6, we discuss the challenges of each approach and how they could be further
explored. Lastly, the Conclusions section gives a brief summary of the implications of the
findings on future research directions in this area.
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Figure 1. Structure of the survey.

2. Motivations

The need for traffic modeling can be seen in its reliability in predicting the changes
in traffic behavior and demonstrating the traffic status under different road network con-
ditions. For example, modeling the characteristics of some traffic-related problems, such
as traffic congestion, travel delays, and traffic accidents, will provide a description of the
traffic status to help traffic management to control these traffic problems.

Furthermore, when constructing a new urban plan, traffic management will employ
the findings of the traffic modeling study to test and assess a set of transportation road
systems offline. According to a number of research studies on the topic of road networks
and transportation planning, urban areas that are poorly designed, such as Mumbai, New
Delhi, and Mexico City, experience increased traffic congestion problems. As claimed in
a statement by TomTom, a well-known GPS company, driving in cities that are poorly
designed will require between 56% to 65% extra time for travel due to traffic congestion [8].
The use of traffic simulation models can aid in determining the level of improvement
required in road networks designed to alleviate traffic congestion.

Another significant motivation for traffic modeling studies is to improve road safety
and reduce accident severity. As heavy traffic slows down on highways, drivers can begin
cutting in front of others or engaging in distracting behaviors such as texting or making
phone calls before the congestion eases. This type of behavior may result in accidents
and raise the likelihood of traffic collisions. The Canadian Motor Vehicle Traffic Collision
Statistics [9] show that traffic collisions led to more than 1900 premature deaths and 9000
serious injuries in Canada in 2018. Using traffic modeling to predict traffic collisions raises
public awareness of the causes of these collisions in order to avoid them.

Recognizing the importance of traffic modeling studies in assessing urban transporta-
tion systems has led to numerous research studies in traffic modeling. The following section
of the survey begins with a brief comparison of the time intervals used in spatiotempo-
ral traffic prediction and demonstrates the challenges in long-term and short-term traffic
modeling prediction.

3. Traffic Status Prediction

A number of traffic modeling studies have been proposed to predict traffic conditions
according to the length of the prediction period, such as short-term prediction and long-
term prediction. The characteristics of each prediction require a different modeling process
to suit the temporal components and the targeted prediction period. Defining the length
of the prediction period will help to decide the best technique to adopt for the traffic
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modeling study. Short-term and long-term predictions are used to define the time intervals
in traffic flow prediction. Short-term prediction involves a short range of time periods such
as seconds, minutes, hours, days, or weeks, while long-term prediction involves a long
range of time periods such as several months or several years [10].

3.1. Short-Term Traffic Prediction

Research on traffic prediction has been mostly restricted to short-term prediction.
According to a definition provided by Vlahogianni et al. [11], short-term traffic predictions
are made to predict a period of time in the future that can range between a few seconds and
a few days. The authors listed two reasons why short-term traffic prediction has become
so dominant in the traffic prediction models field. The first reason is the availability of
traffic data that represents a short period of time. The second reason is the availability
of many traffic data analytical models that can be used to explore the data. However,
traffic data that are collected every 10 s or less is meaningless and not useful for short-term
traffic prediction [12]. A number of studies claimed that collecting traffic conditions every
15–30 min would be more effective for prediction results [13,14]. A study by Song et al. [15]
on short-term traffic speed prediction provided a comparison between four prediction
methods under different data collected in time windows that ranged from 1 min up to
30 min [15]. The study proposed a seasonal discrete grey model (SDGM) and compared the
prediction accuracy with the seasonal autoregressive integrated moving average (SARIMA)
model, artificial neural network (ANN) model, and support vector regression (SVR) model.
The findings of this study show that the prediction accuracy increases when the targeted
time window is more than 10 min, while the prediction of a time window that is less than
10 min suffers from instability. Additionally, the study shows that the SARIMA model’s
performance had the highest error indicator in the prediction results. A probable explana-
tion regarding these results is that SARIMA cannot capture the variation characteristics of
the traffic data in a small time window.

3.2. Long-Term Traffic Data Prediction

Regardless of the importance of long-term traffic prediction in enhancing the city roads
infrastructure, most of the literature in traffic modeling is focused on short-term prediction.
The time intervals of the long-term traffic prediction study the time window that ranges
from several months to several years. Although studies claimed that long-term traffic
prediction is not beneficial to obtain an accurate prediction, other studies that apply traffic
modeling for long-term prediction highlighted the importance of long-term prediction to
improve traffic management systems [16]. Because of the large time window in the long-
term prediction, seasonal patterns and cycle patterns will be detected in the traffic data,
therefore, models that are able to identify these patterns are strongly recommended such as
the SARIMA model, and seasonal autoregressive fractionally integrated moving average
(SARFIMA) model [17]. Another study indicates that exponential smoothing models are
powerful in capturing seasonality in the traffic data as well as handling trends and white
noise satisfactorily [18].

3.3. Challenges in Traffic Prediction

There are a number of challenges in the field of traffic prediction modeling concerning
time intervals. Employing the traffic prediction modeling for long-term time intervals faces
several issues [19]. First, the uncertainties of the prediction increase due to the lack of data
associated with short time intervals. Second, aggregating traffic data will lead to a high
rate of errors in the prediction outcome. On the other hand, modeling short-term traffic
prediction requires high computations and is highly sensitive to outliers. Therefore, using
data analysis in traffic modeling plays an important role in reducing the drawbacks of
predicting short-term or long-term traffic status, where it provides tools and functions that
help in cleansing and transforming data into useful information before applying prediction
models [20].
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4. Spatiotemporal Traffic Prediction Models

Spatiotemporal traffic prediction techniques are statistical methods that model given
traffic data to study the patterns of traffic flow and construct knowledge to predict the future
traffic status [5]. Figure 2 shows the schematic diagram of the most common spatiotemporal
models that are used in predicting different real-world applications, such as environment
and healthcare. Among these spatiotemporal models are Bayesian inference, ST-Kriging,
and artificial neural networks (ANNs). ANNs are considered one of the most widely used
models in the traffic domain. The following section provides a comprehensive review of
three state-of-the-art spatiotemporal methods and investigates the research gap in these
existing models.

Figure 2. A schematic diagram of spatiotemporal models.

4.1. The ST-Kriging Approach

The Kriging method [21] was first developed by George Matheron in 1960 and is
mainly used for spatial interpolation prediction. Kriging techniques are well known for
optimal spatial prediction and Gaussian process regression. Kriging is a common statistical
prediction method that is used by geologists. Subsequently, Kriging became widely used in
numerous research works and studies, which made Kriging an essential tool in statistical
studies of geographical data. Kriging was later generalized for spatiotemporal prediction
and given the name ST-Kriging. The main idea in ST-Kriging is that spatial variability can
be characterized by two major components. The first one deals with large-scale variation,
exploring the data distribution and capturing trends and outliers. The second component
deals with small-scale spatial variation to calculate the spatial autocorrelation and fitting
semivariogram to obtain the prediction [22]. Spatial autocorrelation will take into account
two functions—the distance and the degree of variation between known data points—when
estimating values in unknown areas. Formally, the ST-Kriging equation can be derived
from the following:

[Z(s, t) : s ∈ Ds ⊂ Rd, t ∈ Dt ⊂ Rd] (1)

In Equation (1), the random variable Z is the value at location s at time t, and Ds is a
vector of spatial coordinates (xi, yi), where i = 1, 2, 3, ..., n:

Z(s;t) = µ(s;t) + ε(s; t) (2)

µ(s;t) = χβ (3)

In Equation (2), Z is a function of random variables at location s at time t, and µ is the
conditional mean of large-scale variability. The second component that defines the spatial
variability of the Kriging architecture is the small-scale variability that is represented as
ε, or it can be defined as the noise that captures the large-scale variation. The mean in
Equation (3) refers to a function of the observed variables χ through the parameter β.
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A major step in fitting the ST-Kriging model is to estimate the space–time covariance
model, which will be estimated by cross-validation (CV) methods. The covariance function
shown in Equation (4) estimates the covariance of the observation of random variables
at two spatial points. ST-Kriging is governed by a prior covariance matrix based on the
data distribution:

Cov(Xi, Yi) = covZ(Xi), Z(Yi) (4)

The ST-Kriging method yields the mean square error (MSE) of the variance (σ2)
and a number of linear predictors. It develops its prediction by selecting the minimum
variance linear unbiased predictors. A study conducted by Brent and Kara [23] provided a
comparison between Kriging methods and geographically weighted regression (GWR) to
predict the annual average daily traffic (AADT) counts when the temporal component was
excluded. The findings observed in this study have shown that the prediction accuracy of
AADT that was provided by Kriging achieved more confidence than GWR. Kriging can
control the spatial attributes at unsampled locations by calculating the distance using the
spatial autocorrelation function. This function reduces the error in the AADT prediction,
with their results indicating that the average absolute error was reduced by up to 63%
and the mean square error was reduced by 50%. However, this study highlights a number
of challenges when using Kriging for prediction. First, Kriging’s prediction lies on a
covariance matrix and an inverse covariance matrix, and with large-scale data, matrix
inversion is difficult. Therefore, Kriging prediction is implemented on data with a limited
size. Another challenge is optimizing the semivariogram estimation and selecting the
optimal lag size and number of lags.

Another piece of research by Kennedy et al. [24] studies the problem of modeling
the missing values in traffic data that are collected by road sensors. One of the more
significant aspects of this study is modeling traffic data that have a high ratio of missing
values collected from 1000 road networks. To identify the most information-rich segments,
the authors used a method called reduced measurement space [25]. The study indicates the
ability of ST-Kriging methods in handling missing observations, where they recommend
modeling the road networks as one connected spatial component. This approach helps
in reducing the impact of the missing observation on the prediction accuracy, but it does
increase the computational overhead. In contrast, the prediction accuracy was reduced
when each road network was considered separately. Therefore, the authors suggested using
a distributed approach with a central control unit in future work.

Another study by Son et al. [26] applied ST-Kriging methods to handle road segments
that take into consideration spatial characteristics and spatial homogeneity. Unlike other
approaches, point-based Kriging considers the road segments as a single point and ignores
these two factors, despite their importance in building more accurate traffic prediction.
Their study proposes a segment-based regression Kriging (SRK) method to predict the
traffic volume with a comparison between heavy vehicles, such as trucks, and light vehicles.
There was a slight improvement in the prediction accuracy compared with point-based
Kriging prediction. In the case of heavy vehicles, the prediction accuracy improved by
0.67%, whereas the uncertainty estimation showed significant results and improved by
53.63% compared with point-based Kriging. On the other hand, there was no increase in
the prediction accuracy of the light vehicle, where the prediction accuracy results were less
than the prediction accuracy in the point-based ST-Kriging approach.

Much of the usage of the ST-Kriging approach in traffic modeling research to date has
been for improving the traffic system by modeling traffic conditions, such as by analyzing
traffic congestion [27] or predicting traffic speed and travel time [28,29].

4.2. Bayesian Inference Approach

There are several similarities between the ST-Kriging approach and the Bayesian
approach in terms of employing the covariance matrix in estimating the minimum variance
and mean. However, the Bayesian approach yields a posterior and probability density
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function (PDF) of the conditional distribution which defines the probability distribution of
a random variable. In addition, the Bayesian approach does not depend on assumptions in
the model settings, unlike ST-Kriging. It computes the prediction probability by sampling
the data using the Markov chain Monte Carlo (MCMC) algorithm. Bayesian inference
approaches use Bayes theory to produce statistical inference. To simplify the concept
of Bayesian inference, three main terminologies need to be defined: prior, likelihood,
and posterior. The prior refers to a prior probability of knowledge that is modeled by a
probability distribution. This prior will be updated on a continuous basis as new data are
acquired, as will the so-called likelihood probability. Incorporating the prior probability
and the likelihood probability gives the posterior probability [10].

Equation (5) refers to the Bayes theorem that is used in the Bayesian inference process,
where P(θ) is the initial prior probability distribution of the parameter from the current
observation, also known as the initial hypothesis, and P(Y|θ) is the likelihood probability
distribution of the observed data given a parameter value. The product of the likelihood
and the prior gives P(θ|Y), which is the posterior probability of the parameter given the
observed data [30]:

P(θ|Y) = P(Y|θ)P(θ)
P(Y)

(5)

In the literature, P(Y) tends to be used to refer to the marginal likelihood or the
evidence, but Bayesian inference treats the evidence as a normalizing constant [31].

DAZIAN et al. [32] employed Bayesian methods in a study on analyzing road safety
and modeling travel behavior. Additionally, a Gibbs sampler was used in MCMC com-
putation, which is considered one of the common sampling methods used in Bayesian
approaches. In their study, they modeled data into samples that were different in size,
consisting of 30, 50, and 100 sites. Furthermore, they applied the experiment to data with
missing observations. A comparison was introduced to evaluate two different Bayesian
approaches: the empirical Bayesian (EB) approach and the hierarchical Bayesian (HB)
approach, which estimates the posterior within multiple levels. The results of this study
show that in both approaches, modeling different sizes of samples is effective. However,
the EB approach has a drawback in that other studies [33] have criticized the need for
a repeated process, in which in the first run, the process uses the data to determine the
model parameters, and in the second run, the process uses the data again to identify the
posterior. In comparison, the HB approach can overcome this problem and provide a more
flexible framework to determine the model hyperparameters and the posterior through its
hierarchy. On the other hand, both the EB and HB approaches handle missing observations
and multidimensional attributes appropriately.

In 2019, Zheng and Sayed [34] proposed a study that applied to traffic safety, where
they used the HB approach in predicting traffic accidents, particularly rear-end accidents
that occur at intersections. The traffic data followed a generalized Pareto distribution,
which is described as a probability distribution that is used to model the tails of another
distribution. Additionally, a comparison was conducted between Bayesian hierarchical gen-
eralized Pareto distribution models (BHM-GPD) and the hierarchical generalized extreme
value model (BHM-GEV), which models a distribution that has very rare or extreme behav-
iors [35]. The traffic data included a few traffic conflict (e.g., accident) observations that
represented extreme events at a specific intersection. The results show that the BHM-GEV
approach performs better when the traffic conflict observations are distributed over differ-
ent intersections. However, the BHM-GEV approach may provide inefficient performance
when there is a limited number of traffic conflict observations. A number of limitations are
discussed in the study, where there are still some challenges in predicting traffic accidents
at intersections, such as having short traffic observations at intersections, which are not
preferable for modeling. However, the authors recommended collecting data over a longer
period of time, with temporal dimensions such as days, weeks, and months. The limited
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number of traffic observations that are collected at intersections restricts other researchers
from tackling this important topic in traffic modeling.

4.3. The Artificial Neural Network Approach

In the 1990s, artificial neural networks (ANNs) became a popular approach for binary
and numerical data prediction. ANNs are data-driven machine learning algorithms that
work similarly to smoothing algorithms in terms of learning the patterns from the data.
It also works similarly to regression algorithms, in that, they are designed to capture a
relationship between the input and output using cross-sectional data. In the literature, the
ANN approach has mixed results regarding the performance of neural networks compared
with other prediction methods, where neural networks work best with high-frequency
data [36]. As we can see from Figure 3, a basic ANN model has an input layer and an
output layer [37]. All the layers in between the input and output layers are denoted as
hidden layers. The neurons between different layers are connected via an edge associated
with a certain weight. The ANN computes the values of these neurons in association with
their weights and forwards the values to an activation function. An activation function
maps the aggregated values from the input layer to the output layer.

Figure 3. The basic components of an ANN.

One of the earliest studies on traffic modeling using ANNs was proposed by Ledoux
in 1997 [38], where she designed a traffic modeling system based on ANNs. The system
has the capability to simulate the traffic flow for connected junctions and then model the
traffic flow over a wide range of intersections. The study confirms the potential of using
ANNs in traffic prediction modeling and recommends further investigation.

A predictive model based on the ANN approach was introduced by Li et al. [39] to
predict traffic accidents and improve traffic safety. They discussed integrating backpropa-
gation neural networks with genetic algorithms to identify potential jamming spots that
were likely to cause traffic accidents. The model analyzes the traffic conditions and then
produces samples of the possible road accident spots. Additionally, they applied the model
on real-time data to predict traffic accident spots. Their conclusion was that integrating
ANNs and genetic algorithms as a hybrid genetic algorithm backpropagation (GA-BP)
model helped in optimizing the network. The computational overhead of this process
produces the local minimum problem, which means that the ANN will continue training
the data and updating the network’s weights until it reaches the lowest point of the error
function. The model has the ability to classify the static factors and the dynamic factors
within the road traffic conditions to achieve a high prediction accuracy.

Çetine et al. [40] proposed a study to model historical traffic data using the ANN
approach. The study focused on predicting the traffic flow at each main intersection in
the city of Istanbul. The model predicted the traffic based on a specific scenario, such as
during holidays and school hours. One of the model’s features is informing the drivers of
the traffic status for the next hour. This study proposed testing the feasibility of applying
the ANN approach in the traffic modeling domain. The findings of this study show that
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ANNs successfully provide accurate predictions in different scenarios. However, the lack
of long-term data might enhance the results, as was recommended by the authors.

4.4. Summary of Spatiotemporal Traffic Prediction Models

Having discussed the concepts of the previous models and how they were used in
various traffic modeling studies, constructing a comparison to evaluate different aspects of
each model will help to decide which one is more suitable for our research. The compari-
son was restricted to evaluating the predictive accuracy, computational complexity, and
evaluation criteria (see Table 1).

Table 1. Comparison between ST-Kriging, Bayesian inference, and ANNs.

Bayesian Inferences ST-Kriging ANNs

Computational
Complexity NP-hard. [41] O(N2). O(i× o× n + n× o) or O(n× o× (i + 1)) for

training a single epoch [42].

Performance Eval-
uation

Provides a posterior probability dis-
tribution with confidence interval. Ensure linear unbiased predictors. Epoch with the lowest sum of squared error.

Weaknesses Very computationally intensive due to
choosing the proper prior distribution.

• Missing value causes error in
unmatched dimensions.

• Cannot handle large datasets.
• Requires normal distribution.

Requires intensive data training, and this
might lead to an overfitting problem.

Strengths

• Handles large and small data.
• Handles missing values.
• Prior knowledge about uncer-

tain input is not required.

• Handles small data.
• Computational efficiency.

• Handles big data and small data.
• Accommodates missing values without

a separate estimation step [43]
• Computational efficiency due to the

parallelity feature.
• Prior knowledge about uncertain input

is not required.

Overcoming the
Limitation

Use uninformative prior to reducing
the computational time, but it can
affect the prediction accuracy nega-
tively.

Remove observations that include
missing values.

• Decrease the number of layers in the
network.

• Use iterative methods to stop the train-
ing process such as gradient descent.

In terms of prediction accuracy, ST-Kriging prediction accuracy relies on the covari-
ance matrix to produce data samples that are highly correlated. Therefore, defining the
correct correlation function in the correlation matrix is important for obtaining an accurate
prediction. The Gaussian correlation function and Matérn correlation function are two of
the most commonly used correlation functions in the correlation matrix in the ST-Kriging
method. To identify the best correlation function, estimation tools are required to estimate
the correlation function parameters, such as maximum likelihood estimation (MLE) and
semivariogram estimation [44]. However, these tools suffer from a number of challenges. In
the case of using semivariogram estimation, a plotted semivariogram will be given to de-
termine the appropriate function parameter. Yet, the process of optimizing semivariogram
estimation requires deep knowledge of the ST-Kriging approach.

On the other hand, maximum likelihood estimation requires a large sample size to
identify the correct function parameters. Additionally, the distance between the spatial
points in each sample needs to be small [45]. These factors affect the prediction accuracy
and need to be taken into consideration when applying the ST-Kriging approach in traffic
prediction. Another point to consider is the computational cost of the model, where in
ST-Kriging, the computational complexity will be estimated based on the number of data
spatial points N. When having a large number of spatial points, the covariance matrix
becomes more complex, and thus detecting correlation in space and time becomes more
complex as well [46]. In addition, ST-Kriging methods require high training times with a
computational complexity of O(N3) [47]. This leads to the conclusion that the overhead
cost of the ST-Kriging methods is represented in the high complexity when computing
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traffic data that are large in size. In contrast, large traffic data produce samples that help to
improve the prediction accuracy [47].

From the perspective of evaluating the model performance, ST-Kriging methods can
be evaluated using cross-validation techniques and fundamental statistical parameters
such as the variance of errors. Additionally, examining the model residuals helps assess the
minimum variance of linear unbiased predictors [48]. Turning now to the data structure,
ST-Kriging methods were implemented to model data with a Gaussian distribution. ST-
Kriging does not perform the best when the value we want to predict indicates that there
is a non-normal distribution, where the values either are higher or lower than the real
values [49]. Cooper et al. [41] showed that probabilistic inference by using Bayesian belief
networks is NP-hard. As a result, it is unlikely that a generalized algorithm will be designed
in order to perform probabilistic inference efficiently in Bayesian belief networks over all
possible classes. Therefore, for each of the special case, average case, and approximation
algorithms, specific domain-centric Bayesian inference needs to be applied.

In Bayesian inferences, the prediction accuracy depends on reducing the uncertainty
of the posterior distribution, where the Bayesian inference generates samples θ1, θ2, . . . , θn
from the posterior distribution. These generated samples will be updated using the Markov
chain Monte Carlo (MCMC) algorithm until reaching the accurate posterior predictive
distribution, which can be represented by the maximum likelihood [46]. Informative
priors increase the accuracy of the Bayesian inference since they provide prior knowledge
to help build the likelihood function. However, using informative priors requires more
data to update the posterior since the posterior will be very much driven by the prior
information. Computing more data can dominate the posterior distribution and cause an
overfitting problem.

The computational complexity in a Bayesian inference manifests in the MCMC algo-
rithm’s intensive computation required to compute the maximum likelihood estimation.
Furthermore, when modeling traffic data that have a short temporal component using
Bayesian inference, the MCMC algorithm’s computational cost increases dramatically due
to the high dimension of the temporal component [47]. In addition, improper priors can
maximize the variance in the posterior samples, and hence more computational time is
needed to identify the proper prior in order to reduce the variance in each sample [50].
Overall, estimating priors is a computationally intensive process, and this is considered
one of the drawbacks of the Bayesian inference approach. Despite this, Bayesian inference
has the capability to handle large traffic data with missing values and assign priors to these
missing values [48]. It can also model data that are small in size, such as one observation,
and be able to compute the prior of one observation. This process can be performed it-
eratively in real time [49]. Another advantage of Bayesian inference is that it can handle
multilevel models and compute its hyperparameters [34]. In terms of evaluating the model
performance, it is recommended to use coefficient estimates and standard deviation errors
to measure the uncertainty of the model performance.

When comparing the neural network approach to the previous approaches, specifying
the proper network structure can affect the prediction accuracy, while optimizing the
network structure can be achieved through experience [40]. Moreover, training ANNs
can lead to an overfitting problem. Therefore, it is important to ensure that the validation
accuracy is higher than the training accuracy [51].

Various ANN architectures, such as the multilayer perceptron (MLP) and fuzzy neural
network (FNN), can be combined to predict the values of MPEG and JPEG video, Ethernet,
and Internet traffic data one step ahead. The output of the individual ANN predictors
is combined to enhance the prediction accuracy using an adaptive updating scheme that
allows the predictors to be dynamic. Moreover, this type of combined model can capture
the non-stationary traffic characteristics, as it considers prediction at different time scales so
that the predicted values can be applied to the congestion control schemes. This approach
outperformed the parametric autoregressive (AR) model, as the combination of ANN pre-
dictors enhanced the prediction accuracy [52]. The use of ANNs overcomes many failings
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related to traditional methods for the prediction of a congested freeway’s traffic status, as
most data prediction techniques highly depend on the accuracy of the stochastic processes
governing the freeway [42]. The freeway modeling process is not mandatory for ANNs
because the multilayer perceptron (MLP) type of ANN requires only an input training set
along with appropriate outputs for prediction. As a result, this ANN architecture can be
applied generally since it is not dependent on the particular geometry of a freeway section.
Artificial neural networks are relatively insensitive to missing data for predicting traffic
conditions and faulty data. In addition, ANNs can deal with nonlinear systems to handle
highly dynamic traffic data. However, for traffic speed prediction problems, ANN models
are time-consuming to train with high-dimensional data. Therefore, dimension reduction
through proper feature selection would help to improve the modeling accuracy [53].

5. Traffic Simulation Models

In spite of the fact that traffic analytical models are helpful in giving insights into traffic
status, traffic simulation systems play a significant role in representing and evaluating traffic
behavior under a number of circumstances [54]. Traffic simulators are also considered a key
enabler in the effective implementation of smart mobility services. Extensive simulation to
evaluate and test the impact of such services will be essential prior to real-world testing.
Hence, traffic analysis and modeling of ‘what if’ scenarios assist policymakers and traffic
planners with making informed decisions regarding infrastructure planning and invest-
ments. The ability of these traffic simulators to model various levels of traffic complexity
and city-wide scales ranging from a single detailed intersection to a specific region will
provide valuable insights into traffic modeling and analysis [55]. This provides different
levels of granularity among commercial and open-source traffic simulators which can vary
extensively. Hence, these traffic simulators can be classified into three categories based
on their level of representation, which are macroscopic, microscopic, and mesoscopic [7].
Macroscopic models formulate the relationships between traffic flow, traffic speed, and
traffic density. These models adopt an abstracted level of traffic details, and the simulation
occurs on a segment basis approach rather than individual vehicle tracking [56]. The travel
demand models associated with the macroscopic-based simulators have a prime focus
on the traffic flow of vehicles and the vehicles’ routing choices that are selected based on
algorithms that optimize the vehicles’ travel time. While microscopic models capture traffic,
dynamic factors are processed in more detail [54]. Therefore, microscopic models are suitable
when simulating traffic in large network areas. In these simulators, vehicles’ movements
are simulated according to car-following and lane-changing algorithms . Due to the high
level of traffic details, these simulators are considered efficient in modeling and evaluating
complex scenarios such as rush hour traffic congestion cases, complicated geometric traffic
configurations, and many others [57]. Even with the aforementioned benefits offered by
these simulators, microscopic models are considered time-consuming and expensive, and
they suffer from calibration challenges [56]. The third model that represents some of the
features of both microscopic and macroscopic models is the mesoscopic model [6]. All
three of these different types of traffic simulation models are used to simulate the driving
experiments and utilize their results in order to enhance the facilities and intelligent trans-
portation systems (ITS). However, these traffic simulation systems are limited to specific
scenarios, where they simulate the traffic status and interaction of vehicles under specific
conditions [58].

To simulate the traffic status, simulation models primarily focus on the number of
input and output parameters. The trip description is an input used to specify the destination
and departure time. The second input is the network geometry layout, which describes the
network’s length, the number of lanes, etc. The third input is traffic flow, which indicates
the number of vehicles on the network [59]. In terms of the simulation model output
parameters, the outputs can be defined as the travel cost of the simulated scenario and
the updated traffic flow value when the network layout has been changed. For instance, it
simulates the traffic flow behavior when vehicles travel from location A to location B. The
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simulation’s output will show the road capacity as well as how traffic congestion breaks
down or spreads across different networks [60]. Therefore, traffic simulation models may
have various adjustable parameters that can detail underlying traffic behavior such as
vehicles’ routing choices, the selection of a shorter planned path, and driving behavior.
Calibration, prediction, and validation of the inputs and parameters are considered data-
demanding and require efficient computation tools [55]. These simulation models also use
a number of algorithms, such as the car following algorithm, the lane changing algorithm,
and the gap acceptance algorithm. These algorithms are used to view the traffic status
dynamically when increasing the speed of the vehicle or driving within multiple lanes. We
describe these different algorithms in the traffic simulation models to comprehend how
these models work realistically. Figure 4 shows a typical illustration of the car following,
lane change, and gap acceptance algorithms used in traffic simulation models.

Figure 4. Illustration for the car-following, lane-change, and gap-acceptance algorithms.

Traffic simulation models are implemented in different traffic and transport planning
software to show the traffic behavior in a graphical user interface, where the user can define
the input parameters and view the output parameters [61]. According to Ejercito et al. [7],
the seven most widely known traffic simulation tools are SUMO, MATSim, AIMSUN,
CORSIM, Paramics, VISSIM, and TRANSIMS. We can consider traffic simulators to be
dynamic visualization models that use statistical methods to examine traffic behavior and
provide statistical reports for the simulated scenario.

There are also some useful traffic simulators such as FreeSim [62], Traffsim [63],
SUMMIT [64], and SifTraffic [65] that are designed for either microscopic or macroscopic
traffic simulation. FreeSim traffic simulator is designed to conduct traffic simulations of
freeways in real-time [62]. Traffsim simulator is widely known for modeling isolated traffic
control strategies in different complex traffic environments [63]. In large traffic scenarios
with massive and mixed traffic, SUMMIT traffic simulator provides useful features and
functionalities to simulate vehicle driving, especially in urban scenarios [64]. SifTraffic is
a traffic simulation tool that provides practical implications for different types of traffic
applications [65].

5.1. Traffic Simulation Algorithms

The car-following algorithm, the lane-changing algorithm, and the gap-acceptance
algorithm are used in microscopic traffic simulation models. However, they can be im-
plemented differently in terms of the vehicle’s process of speed deceleration increasing,
the gap size, and the accepted and rejected procedures for determining the safe distance
between floating vehicles [66]:

• Car following models: A car-following algorithm is intended to describe how the
simulated vehicles interact with the preceding vehicle in the same lane. For any car-
following algorithm, the basic parameters used to define the speed–spacing relations
are the capacity of a lane, the speed, and the average spacing between the preceding
vehicle and the following vehicle [67]. Let n be the preceding vehicle, and n + 1 be
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the following vehicle with a speed s and vehicle position x at time t. Therefore, the
speed and position of the preceding vehicle are denoted by xt

n and st
n, respectively.

Similarly, the speed and position of the following vehicle are given by xt
n+1 and st

n+1,
respectively [66,68]. The acceleration in speed is denoted by α at time t, and the
difference in speed between the preceding and the following vehicle is denoted by
s∆. Let t+T∆ be the time period when the vehicle accelerates, where T∆ is the time
required for the driver to respond to a changing scenario. As a result, the safe distance
between the preceding and the following vehicle is computed as xt

n − xt
n+1, which we

refer to as the space headway X∆sa f e. Let λ be the sensitivity coefficient parameter that
is estimated by modeling the sensitivity of the relative distance between the following
and preceding vehicles as well as the sensitivity of the relative speed for the subject
vehicle [67,69]. The notations used to describe the car-following algorithm are shown
in Figure 5, and the basic equation of the car-following algorithm can be represented
as follows:

α(n+1)(t + T∆) = λsn+1(t + T∆)
T∆(t)
X∆(t)

(6)

Let λ be the sensitivity coefficient parameter that is estimated by modeling the sensi-
tivity of the relative distance between the following and preceding vehicles, as well as
the sensitivity of the relative speed for the subject vehicle.

Figure 5. Basic car-following model.

In traffic simulators, car-following algorithms adopt exact replicas of the car-following
maneuvers which are carried out by drivers or automated vehicles in real driving
conditions. The essential concept of the car following algorithms is to control the
longitudinal motion of vehicles [70]. In real-world settings, autonomous vehicles
such as Google cars or Apple cars integrate the data-driven machine learning car by
following the model’s approach. This approach extracts the patterns or associated
rules of drivers’ car following strategies and behaviors, in addition to capturing
the relationships among variables that can have an impact on the car’s following
behaviors. This approach yields high accuracy in replicating drivers’ car following
behaviors for automated vehicles. Another car following model is the kinematics-based
approach, which relies on kinematics processes such as the GM, intelligent driver,
and safe distance approaches. These approaches adopt an explicit mathematical form,
where most of the model parameters have physical meanings and the model outputs
can be controlled through refined adjustments of the model parameters [71].

• Lane Changing Models: Lane-changing algorithms are used to simulate the impact of
vehicles on adjacent lanes as they change lanes. These algorithms take into account
the speed and position of the preceding vehicle as well as the time when this action
takes place [72]. The concept of the lane-changing algorithm can be simply described
as follows. When the vehicle intends to change lanes, the model assesses the existing
headway space to determine whether changing lanes is achievable. If it is, then the
process happens. If not, then the vehicle remains in the current lane [73]. A simple
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illustration of the lane-changing decision of a vehicle is depicted in Figure 6. The
model must meet certain criteria such that for a given adjacent lane, both the space
headway for the following and preceding cars must be more than the unsafe distance,
which can be computed as follows:

d(sa f e) =
s2

n2 − s2
n+1 + 3sn+1bλ

2b
(7)

d = xn − Ln − xn+1 (8)

Acceptable Headway Gap if : d ≥ Cd(sa f e) (9)

Let sn2 and sn+1 denote the following and preceding vehicle speeds, respectively, and b
be the vehicle’s maximum deceleration. We refer to the actual vehicle following distance
if the vehicle moved into the adjacent lane by d. Equation (9) is derived from Equations
(7) and (8), which compute the smallest acceptable headway gap between each vehicle
C and the minimum safe distance d(sa f e) between the subject vehicle and the following
vehicle [66,74].

Figure 6. Basic lane-change model.

• Gap acceptance models: Gap-acceptance models are mainly used to determine the
traffic conditions in adjacent lanes prior to a vehicle accessing the available space.
They are used to estimate the amount of space and time required to cross a junction,
enter a roundabout, or change lanes [75]. These two factors are dependent on the
traffic conditions, such as the road characteristics, the speed, and the lengths of the
following and preceding vehicles as well as the passive vehicle. The minimum safe
distance d(sa f e) between the subject vehicle and the following vehicle, which is also
known as the critical gap, is a significant parameter affecting gap acceptance behavior.
An important assumption that has to be addressed in the gap acceptance models is
the headway distribution in the circulating flow to measure the road capacity [66,76]:

Yn(t) =

{
1, if dn(t) ≥ dn(sa f e)(t),
0, if dn(t) < dn(sa f e)(t),

(10)

where Y denotes the vehicle’s decision of whether or not to overtake the adjacent lane
at a given time (t), dn(t) is the available headway gap, and dn(sa f e)(t) is the critical gap.
The vehicle forces entry when the gap size is equally likely to be accepted (Y, (t) = 1);
otherwise, the vehicle rejects (Y, (t) = 0) the observed gap and stays in the same lane [75].

5.2. Traffic Simulation Tools

In this section, we limit the focus to the most used simulation tools in the traffic
modeling literature, where we explore the state of the art of these simulation tools and
discuss their functionalities and characteristics. A number of criteria, such as the nature of
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the tool (e.g., free, open source, or commercial) and functional capabilities of the simulator,
are addressed in this section [7].

• The Verkehr In Städten - SIMulationsmodell (VISSIM) is a commercial microscopic
traffic simulation tool developed by Planning Transport Verkehr in Karlsruhe, Ger-
many [77]. VISSIM is one of the common simulation tools used to simulate and
evaluate traffic status and transportation control systems. It can simulate different
elements such as buses, trucks, pedestrians, and bicycles. VISSIM uses the com-
ponent object model (COM) interface, which enables users to create and deploy a
custom tool in VISSIM using C++, Visual Basic, or Python [54]. The latest versions of
VISSIM incorporate additional autonomous vehicle-related features (communication
and cooperation among vehicles) and detailed behavior specifications. The afore-
mentioned features will utilize cooperation in lane changing and advanced merging
algorithms for enhanced traffic network scaling. In this simulator, smaller headways
have been chosen to model the cooperation among vehicles. Other add-on features
are the new means of mobility that have also been introduced within the VISSIM
simulator, which include cooperative autonomous vehicles (CAVs) and mobility as
a service (MAAS) [78]. VISSIM is a microscopic traffic simulator for behavior-based
multi-purpose traffic flow simulation [79].

• Advanced Interactive Microscopic Simulator for Urban and Non-Urban Networks
(AIMSUN) is a new simulation tool that was developed by J. Barcelo and J.L. Ferrer in
2005 [80]. It is a commercial simulation tool that is capable of simulating real-world
traffic situations in an urban network in order to build and validate traffic structures,
public transportation networks, and new transportation infrastructure [54]. AIMSUN
is integrated with GETRAM, a simulation environment that includes different com-
ponents: a traffic network editor (TEDI), a network database, a simulation module,
and an application programming interface [81]. AIMSUN has developed AIMSUN
LIVE, which integrates predictive-based systems that can provide real-time traffic
prediction and management. In this aspect, AIMSUN LIVE can provide accurate real-
time predictions of future traffic flow patterns that can be the outcome of a specific
traffic management strategy. This is because AIMSUN LIVE leverages the combination
of historical and real-time streaming data along with traffic congestion mitigation
policies to provide accurate traffic forecasting. Subsequently, this can assist traffic
control centers in utilizing the aforementioned traffic data to make real-time decisions
about road network management [55].

• Multi-Agent Transport Simulation (MATSim) is another open-source simulation tool
developed by the Polytechnic of Zurich that offers a range of tools for implementing
very large simulation-based agents. In MATSIM, agents hold a list that simulates
the daily routine of traffic in a large area. MATSIM adopts activity-based methods
that are used to model travel demand. Since MATSIM is an agent-based simulator,
these agents hold a list of actionable plans and choices which includes traditional
traffic properties (e.g., travel routes and modes) and time schedules. In the MATSIM
simulator, agents make their decisions according to the utilization of the integrated
discrete choice models [82]. MATSIM mainly focuses on modeling individual vehicle
behavior, which can be considered a drawback if we are interested in traffic behavior
in general [54,83].

• Simulation of Urban MObility (SUMO) is an open-source simulation tool that was
developed in 2001 by the Institute of Transportation Systems at the German Aerospace
Centre. It is capable of simulating traffic at the microscopic level and simulates moving
vehicles and accidents [84]. In this simulator, the vehicle width is fixed, and it does not
take into account the different types of vehicles such as buses, light rail, heavy rail, and
trucks [54,77]. SUMO is designed as an intermodal traffic-based simulator that includes
public transportation, traffic road networks, and users such as pedestrians. SUMO
simulators encompass a number of built-in features which include C2X communication
among vehicles that are achieved through the integration of SUMO simulators with
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network simulators (such as OMNeT++ or ns-3), multi-modal traffic, and automated
driving. Traffic management is also an additional add-on feature that can model
vehicle detection loops and video detectors to manage and control traffic through
traffic lights, monitoring vehicles’ behaviors and adjusting traffic parameters such as
vehicles’ speed limits [58,85].

• CORridor SIMulation (CORSIM) [86] is known as one of the most widely used micro-
scopic traffic simulator software programs worldwide. CORSIM is used in thousands
of applications as a standard traffic simulation tool. CORSIM is equipped with reliable
validation, continuous logic enhancement, solid verification, and calibration efforts. It
can produce real-world traffic flow realistically and with high accuracy. All types of
geometric conditions including complicated traffic scenarios can be handled virtually
by CORSIM. Some of these conditions include the surfaces of streets that have different
combinations of turning pockets and lanes, different types of on and off-ramps, and
multi-lane freeway segments.

• Paramics addresses road networks with drivers and simulates the decisions, intentions,
and subsequent actions of drivers when they move toward their destinations [87]. De-
pending on the characteristics of the basic network and the probability of encountering
traffic congestion, drivers are considered to choose the possible route in the simulator.
A set of decisions is prioritized by each driver throughout the network. These decisions
include traffic speed and specific moments to change, cross, or merge into different
traffic lanes. In the Paramics simulator, the network topology and travel demand drive
the calibration. Flows of saturation and the proportion of lane usage are generated as
outputs from the simulator to examine the road network’s performance. However,
these parameters cannot be provided as input for calibration assistance. Although
Paramics does not prescribe the effect of a traffic model, it can simulate and model
the cause of action. This way, the simulator preserves the predictive power of the
simulation process in subsequent changes in the model and tests the change in the
traffic road network.

• The TRansportation ANalysis and SIMulation System (TRANSIMS) creates an inte-
grated regional transportation system environment by employing advanced computa-
tional and analytical techniques [88]. The simulation environment includes a regional
population of individual travelers. TRANSIMS simulates the activities and individ-
ual interactions of travelers and their plans for the transportation system. It also
simulates and determines the environmental impact of these activities. TRANSIMS
contains an interim operational capability (IOC) with numerous features, applicability,
and readiness for each major module to complete different types of specific traffic
case studies.

5.3. Summary of the Traffic Simulation Tools

Several articles have focused on the comparison of urban road traffic simulators and
provided comprehensive assessments of the existing simulation tools. Table 2 provides
a comparison between these traffic simulators based on seven features along with their
strengths and weaknesses points. We also list several key challenges in these traffic simula-
tors that conflict with our research goal.

• A major drawback of the exciting simulation tools is the inability to implement or
integrate advanced Bayesian-based models or algorithms. They use the objective opti-
mization algorithm to simulate traffic behavior based on different traffic parameters
such as route choice and vehicle movement.

• Another issue that has gained the attention of the traffic simulation community is the
CPU and memory performance. Adding a number of parameters to represent different
aspects of the traffic simulation model such as traffic speed, the number of lanes, route
length, and the width of the lane requires high usage of memory and the CPU, thus
increasing the computation time.
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• These traffic simulators embed sample events that we examine for their impact on the
traffic status. These events are implemented as modules to represent limited events.
These traffic simulators share similar events such as traffic acceleration events, traffic
deceleration events, and traffic red signal events.

Table 2. Different traffic simulation tools and their main features and capabilities.

Feature Simulator MATSim AIMSUN VISSIM SUMO CORSIM Paramics TRANSIMS

Open Source Yes No No Yes No No Yes

Visualization 2D 2D, 3D 2D, 3D 2D, 3D 2D, 3D 2D, 3D 2D, 3D

Output Text Graphs XML XML Text Graphs XML

Import Map Yes Yes Yes Yes Yes Yes Yes

Programming Language C++, Java Python, C++ C++, VB, Mat-
lab, Python

C++, VB, Mat-
lab, Python Python, C++ C++, VB, Mat-

lab, Python
C++, VB, Mat-
lab, Python

Flexibility in infrastructure De-
velopment Limited Flexible Flexible Flexible Flexible Flexible Flexible

Coding Easy Difficult Easy Difficult Difficult Easy Difficult

Objectives
Simulate traf-
fic congestion
level

Simulate ve-
hicle counts,
road occu-
pancy, and
traffic speed

Simulate and
analyze traffic
flow

Evaluate the
traffic light
system

Simulate traf-
fic flow and
traffic light
system

Simulate traf-
fic congestion
level

Simulate
and analyze
traffic flow

6. Conclusions

Our study revealed that no particular non-parametric model outperforms all other
methodologies in general. Rather, all these models have some pros and cons over each
other. Above all, they are designed to work for specific problems in the traffic domain, such
as the prediction of speed, congestion flow, accidents, freeway traffic volume, and multi-
scale high-speed traffic. Moreover, the design process of these models largely depends on
the data structure and other associated factors such as data dimension reduction, feature
extraction, and handling the missing values. All these models can be used for both short-
term and long-term prediction by considering the spatiotemporal correlations based on
the time interval of each observation in the dataset. We found that in some scenarios,
hybrid models that combine different models together provide better prediction accuracy.
That combination could be in between parametric and non-parametric models such as
ST-Kriging and ANNs, in between different versions of ANNs, or even in between the
MCMC and Bayesian approaches. These findings emphasize the need for more hybrid
non-parametric spatiotemporal models to predict traffic-related outcomes.

In the second part of this survey, numerous state-of-the-art simulation models for
traffic have been conducted to outline the differences between different traffic simulation
tools. In the literature, most microscopic traffic simulation tools use three main simulation
algorithms: car following, gap acceptance, and lane changing. These algorithms were
developed to mimic human driving capabilities and were discussed to show how they
use real-world driving strategies. Finally, a comparison between different traffic simulator
tools was conducted in Table 2 to study SUMO, MATSim, AIMSUN, CORSIM, Paramics,
VISSIM, and TRANSIMS. We evaluated these different simulation tools based on their
capabilities, availability, features, and implementation flexibility. The user can specify the
suitable tool for practice based on the intended outcome, whether simulating traffic flow,
analyzing traffic light systems, or simulating vehicle counts, road occupancy, or traffic
speed. Defining the purpose of the simulator’s usage is an important step in selecting the
appropriate simulator.
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