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A comparative survey of numerical methods for the linear generalized Abel 

integral equation*) 

by 

H.J.J. te Riele & Ph. Schroevers 

ABSTRACT 

A numerical comparison is made between a number of important represen

tatives of the following classes of methods: (i) collocation-, (ii) product 

integration- and (iii) global methods. Special attention is paid to the 

performance of these methods for problems with a non-smooth solution. 

It turned out that, when only relatively low accuracy is required, a 

good choice would be a second or third order collocation method of Branca. 

A new collocation method which accounts for possible non-smoothness of 

the solution near the origin, turned out to be advantageous when high accu

racy is required, both for problems with a non-smooth solution, and for 

problems with a smooth solution. 

KEY WORDS & PHRASES: AbeZ integral equation, coZZocation method, product 

integration method., Chebyshev approximation 

*)This report will be submitted for publication elsewhere. 



I. INTRODUCTION 

The linear generalized Abel integral equation we consider has the form: 

X 

r K(x,t)f(t) dt = 

J (x-t) ~ 
0 

( I. 1) g(x), 0 ::; x ::; X < co, 

where g(x) and K(x,t) are known functions. 

As the performance of the methods to be presented is influenced by the 

smoothness of the solution f(x) of (1.1), it may be convenient to have a 

priori knowledge of the behaviour of f(x). The following special version 

of an existence and smoothness theorem by Atkinson r1J can then be used. 

THEOREM 1. 1, Let g(x) have the foPm 

( 1. 2) g(x) = x8g(x), 0 < x $ X, 
n+l 

g e: C [O,X], 

for some integer n ~ 0 and B > - ! . Assume K (x, t) is n + 2 times continuously 

differentiable for O ~ t::; x::; X and 

(1. 3) K(x,x) ~ o, 0::; x::; X. 

Then there is a unique solution f(x) of (1.1) of the form: 

(1.4) 
(3-1 

f(x) = x 2 [a+xL(x)], x > 0 

with L(x) e: Cn[O,X]. The constant a= 0 if and only if g(O) = 0. • 

The most important numerical methods to solve (1.1) can be divided 

into three groups: (i) collocation methods, (ii) product integration methods 

and (iii) global methods. Characteristic for both collocation- and 

product integration algorithms is that we introduce a grid {x. = i.h, 
. . 1 

i=O, ... ,N, N :=X/h}, with grid spacing (orstep)h.Wethencalculate 

approximations to f(x) on each interval [x., x. 1],i=O, ••• ,N-IJsuccessivel,y. 
1 1+ 

Their difference lies in the fact that, in the case of product integration, 

an approximation to K(x,t)•f(t) is made on each interval: the resulting 

integrals can be computed analytically. In the case of collocation, however, 
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an approximation to f(x) itself is made on each interval and, in general, 

the resulting integrals have to be calculated numerically. A global method 

approximates f(x) on the whole interval [0,X] by a certain linear combina

tion of basis fun~tions. The coefficients of this approximation are calcu

lated simultaneously. 

In this paper we make a numerical comparison between 

(i) collocation methods developed by Branca [2] and a new method by the 

authors, 

(ii) product integration methods by Anderssen, de Hoog and Weiss [3], 

(iii) a global method of Chawla and Kumar [4]. 

The test problems will be divided into three groups: 

(i) smooth problems (i.e. problems for which the solution is sufficiently 

often differentiable), 
! 

(ii) non-smooth problems (i.e., solutions of the form f(x) = w(x)+x 2 x(x), 

x(x) and w(x) sufficiently smooth), 

(iii) problems with strongly oscillating or rapidly decreasing solutions. 

In the next paragraphs we will discuss each method in more detail. We will 

frequently make use of the following manipulations on (I.I); 

(i) introduce the grid 

( I . 5) {x. :=ih, i=O, ... ,N, h=X/N} 
i 

for some N E JN; 

(ii) write (1 .I) in the form 

(I .6) 

k-1 Tl K(x,t) f(t) 
I 

j=O 
x. 

(x-t) 2 

J 

X 

dt + f 
~ 

K(x,t) f(t) 

(x-t) 2 

x E (xk,~+IJ for some k with O ~ k ~ N - 1. 

2. BRANCA' S METHODS 

dt = g(x), 

Branca [2] developed a second and third order method to which we will 

refer as BR2 and BR3, respectively. For both methods we introduce the grid 

(1.5). 



a. BR2 

f(x) is approximated by a continuous function which is a first-degree po

lynomial on each interval [x.,x. 1] =: a., i.e.: 
]. i+ ]. 

(2. I) f(x) j R:l P. (x) := ;-ch1 (x. 1-x)f. + (x-x1..)f1..+l], 
XECf, 1. 1.+ 1. 

1. 
1. = l, ... ,N; 

f. denotes an approximation to f(x.). 
]. ]. 

We write (I .J) in the form (1.6), substitute (2.1) and restrict the conti

nuous variable x to the discrete set {ih, i = 1, ... ,N}. After an obvious 

change of variable we get the scheme: 

(2. 2) 
1 k-1 

= h 2 I 
j=O 

k = l, .•• ,N. 

II K(x. ,(j+,)h)[(l-,)f.+tf. 1] 
k J J+ 

The integrals in (2.2) are calculated using 1 - point weighted Gauss qua
-1 

drature with weight functions (l-,) 2 : 

I 

I G(t) 
-...:........:..-.--1 dt = w.tG(a.e,) + Rt[G(,)J, 

0 (.t-,) 2 

(2.3) l = 1, ..• ,N. 

The weights w.e, and abscissae al are determined by requiring: 

(2.4) for G(t) = 
l. 

T , i = O, 1. 

By using (2.3) and solving (2.2) for fk, we get the scheme (writing gk 

forg(~)): 

(2.5) 
-1 

fk = [w 1a 1K(xk,(k-l+a 1)h)] • 

k-2 

·[h-½gk - L wk_J.K(~,(j+~_J.)h)[(l-ak-j)fj + ~-jfj+l] 
j=O 

- w1(1-a 1)fk-lK(xk,(k-l+a1)h) ], 

k = I, ••• ,N. 

3 
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The required starting value £0 can be calculated from 

(2.6) 

b. BR3 

fo = lim g(x) 

x-+0 2x 2K (0, 0) 

(see e.g. [2], p.310). 

A third order method might be derived by approximating f(x) by a second

degree polynomial on the intervals [xi,xi+2 J, i = 0,2,4, ••• ,N/2, taking N 

even. This would require the solution of a (2x2)-system in each step. To 

avoid this, Branca calculates such an approximation to f(x) only on the 

interval [x0 ,x2 J, thus finding f 1 and f 2 (f0 is given, e.g. by (2.6)) and 

then calculates f 3 by approximating f(x) on [x2,x3 J by a second-degree 

polynomial through the points (x 1,f 1), (x2,f2), (x3,f3). In general, he 

calculates fn by putting a second degree polynomial through (x0 _ 2 ,fn_2), 

(x 1 , f 1) , (x , f ) . 
n- n- n n 

Thus: 

(2. 7) f(x) I RJ P. (x) := _!_2 [ (x-x. 1) (x-x.)f. 2 
XE:cr j - I J 2h J - J J -

- 2(x-x. 2)(x~x.)f. 1 + 
J- J J-

+ (x-x. 2)(x-x. 1)f.], J- J- J 

j = 2, ••• ,N, 

and 

f (x) I ~ P 2 (x) • 
XE:crQ 

Substitution in (1.6) and restricting x to {ih, i = l, ... ,N} gives (after 

a change of variable): 

( 2. 8) 
! 

= h2 

pf ((j+,:)h) 

k-1 

I 
j=O 

I = l. 

fl K(~,(j+,)h)Pf((j+,)h) 

(k-j-,:) 
0 

di:, 

pj+I ((j+,:)h)' J = 1,2, ... ,N-1, 

p2 ((j+,:)h)' j = o. 

k = I , ••• ,N , 
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The integrals are now calculated using 2-point weighted Gauss quadrature; 

1 

(2.9) J .t = I , ••• ,N. 

0 
(I) (2) (1) (2) 

w,e, ,w,e, ,a,e, ,a,e are determined by requiring: 

(2.10) 
(2) 

al = I and R,e_[G(t)] = 0 for G('r) 
i 

= t ' 1.=0,1,2. 

This gives a scheme, similar to, but a bit more complicated than (2.5). 

3. CO AND COS 

These collocation methods have not been published in the literature 

before, but are analogues of methods for second kind equations, developed 

by te Riele [5]. 

COS is a special version of CO, designed to deal with non-smooth solutions 

of the form: 

(3. I) f(x) = w(x) + x½x(x), tj, and x smooth. 

We describe COS; CO follows iunnediately from it. Let m be some fixed posi

tive integer. We again introduce the grid (1.5) and put: 

(3. 2) 

where 

m 

f(x) ~ u(x), u(x) I = I ak 0 ¢,_/)(x), 
XEC1k l=O .t, K,l.. 

erk:= (xk,~+l], k = I, ••• ,N-1, 

.e. 
:= [ (x-~) /h] , 

¢oe<x) := (x/h)l/2_ 

k = 1, ••• ,N-1, 

k = 0, ..• ,N -1, 

Now the coefficients~ have to be determined. Therefore we introduce the 

so-called collocation parameters: 
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(3.3) 0 <no< ••• < nm= 1. 

We then substitute u(x) for f(x) in (1.6) and restrict x to the set of col

location points 

j = 0, ... ,m; k = 0, ••• , N-1} • 

After a change of variable we get from (1.6): 

n. 

~r 
0 

(3 .4) 

m 

I 
l=O 

j = 0, •.. ,m, k = 1, ..• ,N-1. 

(3.5) j=O, ••• ,m. 

In matrix notation: 

(3.6) k = l,.~-,N-1, 

After substituting s := ,/n. in the integrals in~ we calculate these 
J -1 

integrals by using m+l-point Gauss quadrature with weight function (1-s) 2 , 

where the last abscissa is presaribed to be equal to one. We thus get 

1 

r G(s) ds 

l o -s) 2 

(3.7) 
m 

= I w.G(o.) + R. [G(s)J, 
i=O l. 1 -k 

and require: 



~[G(s)J = 0 

i 
s , k = I, ••. ,N- I, 

for G(s) = { i = O, ••• ,2m. 
i/2 

s , k = 0, 

We then choose our collocation parameters n. in (3.3) to be equal to the 
i 

resulting Gauss abscissae o. (with o = I). Note that the collocation 
i m 

parameters are the same on each interval, with the exception of the first 

interval. 
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The integrals in the matrices Nk . are calculated in a similar manner 
-i ½ 

using r-point weighted quadrature with weight functions (k-i+n,-T)
J 

k-i = I, ••• ,N-1, j = O, .•. ,m. Here, we do not prescribe any abscissae and 

. . f G( ) i/2 f again require exactness or s = s on a0 resp. or G(s) = s1 on a>O' 

for i = 0, ... ,2r-I. To obtain sufficient precision, r must satisfy: 

2r ~ m+I (see [6]). 

The method CO is similar to COS with the exception that the integral 

on the fi~st interval cr0 is treated in the same way as the integrals on 

other intervals. 

REMARKS. 

(i) no starting value is required; 

(ii) existence of a solution of (3.6) is easy to prove, under the assump

tion K(x,t) 1 0 fort E [x-h,x], see the appendix; 

(iii) in order to calculate the weights, we need values of the integrals: 

(iv) 

I i 

J T d-r 
.(l--r) J 

0 

and 

I i/2 
( T d-r 

j (l--r) ½ 
0 

for which we refer to the appendix; 

in order to calculate the integrals in the Nk. in (3.6), we must cal
-i 

culate (and store) rx(m+I)x(N-1) weights and abscissae; 

(v) CO and COS require the same number of arithmetic operations. 

4. PRODUCT INTEGRATION METHODS 

These methods were studied by ANDERSSEN et al. [3]. See also [7]. 

Choose two sets of parameters: 
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(4. 1) 

(4. 2) 

and define 

(4.3) 

(4 .4) 

collocation parameters Q := {O s n0 s ... s 

evaluation parameters X := {O s µo s ... s 

¾_j := ¾. + n/ 

* ¾_j := ~ + µjh 

(collocation points) 

(evaluation points). 

nm s l} 

µm s 1} 

We now approximate the function K(~ .,t)•f(t) on each interval 
kJ . 

a. = (x.,x. 1] by 
l. l 1+ 

(4. 5) 

with 

m t-x. 

K(xkj't)f(t) lcri F:;;t l~O K(~j,x:e)fuL.e<T) 

m z-µ 
L.e,(z) := TT _."_£_ 

p=O µl-µp 

p::/:t 
and fU is a numerical approximation * to f (xil). 

Substitution in (1.6) and some manipulations then yields the scheme: 

(4. 6) I K(xk. ,~) fkl nj t _L_.e,_<s_)..,.. ds = 

l=O J (n .-s) ~ 
0 J 

1 
! k-1 m f L,e(s) 

= h- g(~ .)- I I K(~ .,x~)fu ----,-1 ds, 
J i=O l=O J (k-i+n-s) 

0 

l, ..• ,m, if n0 = 0, 

j = { k=O, ... ,N-1. 

o •• ~-,m, if no > 0, 

REMARKS. 

(i) The choice µ0 = n0 = 0 and µm =nm= I decreases the dimension of the 

system (4.6) by one. 

(ii) In [3], the authors only consider the case Q = X. Brunner [7] proves 

that, for a certain choice of X, superconverge is obtained in the 
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collocation points ~j. 

(iii) Note that in the left-hand part of (4.6)· the kernel is evaluated out

side its region of definition if x~ > ~j· 

5. THE GLOBAL METHOD OF CHAWLA AND KUMAR 

For ease of notation we alter the integration bounds in(! .I): 

X 

(5. 1) f 
-l 

K(x,t)f(t) dt = 

(x-t) 2 
g(x), XE [-1,+l]. 

We now assume that f(x) can be approximated by a series of Chebyshev poly-

nomials: 

(5. 2) 

(5. 3) 

f(x) ~ 

K(x, t) 

N 

l' a.T.(x) and, moreover, 
j=O J J 

M 

~ .1.'' b.(x)T.(t) 
1 =o i i 

(' resp. 11 means that the first, respectively the first and the last term 

are to be halved). 

Using the 11 classical 11 abscissae: 

(5. 4) xk = cos((2k+l)n/(2N+2)), k=O, ... ,N 

and 

(5. 5) ** x = cos (rn /M), 
r 

r = O, ••• ,M 

we can discretize (5.1) as follows: 

N M 
(5 .6) l' a. l" b. (xk) p .. (x. ) = g (x. ) , 

J 1 l.J k k 
j=O i=O 

k=O, .•. ,N, 

with 

(5.6.1) p .. (xk) := J T. ( t) T. ( t) / (~ -t) ½, i = 0, •.• ,M, k, j = 0, ... ,N, 
1.J l. J 

-1 

M 

(5 • 6 • 2) I" ** ** 0, •.• ,M. bi(~) = 2/M K(~,x )T.(x ), l. = 
r=O 

r i r 
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For the details of the calculation of (5.6) and the derivation of (5.6.2) 

we ·refer to [4]. 

The coefficients a. are calculated from the linear system (5.6). 
J 

REMARK. In order to use this method, it is necessary to define the kernel 

K(x,t) on the entire square -I~ x,t ~ I. 

6. NUMERICAL EXPERIMENTS 

6.l. Test problems 

We will present ni.nnerical results obtained with the previously dis

cussed methods on the following test problems. These are illustrative ex

amples from our original (much larger) test set. The conclusions in Section 

6.3 are based on the results of the original test set. In the following, 
a 

M (z) := M(v,a,z), the Kummer function (cf.[13],p.504). 
V 

I. smooth problems 

IA 

IB 

f(x) = sin ½x, XE [0,2], 

K(x,t) = 1, 
l 

( ) ('rrx) 2 r ( l ) [ ½ ( . ) ½ ( • ) J 
g x = ir(3/2) Ml ix -Ml -ix , 

ref . : [ 1 I J • 

f(x) = ~-1- [ (-1 l)exp(- -1 (l+x) 2)+(.l +!)exp(- -1 (l-x) 2-2)] 
zhTix' x 2x x 2x , 

J XE [0,2], 
K(x,t) = - exp(-½(x-t)), 

& 
g (x) = ):_, exp ( - 2~ (1 +x/) , 

v:LTIX 

ref.: [2]. 

II. non-smooth problems 

IIA f (x) = 
! 

x2 
' 

XE [0,2], 

K(x,t) = 1 + sin 2x cos 2t, 
l 

TIX (TIX) 2f(]) 2 2 
g(x) = 2 + sin(2x). r( 3/Z) [M312 (ix)+M312 (-ix)J. 



IIB f (x) = X 
3/2 

K(x,t) = I, 

g(x) = 3rrx2/8. 

XE [0,2], 

III rapidly oscillating problems 

IIIA f(x) = sin J6x, XE[O,I], 

K(x,t) = l, 
1 

( ) ~ 2 rJ.!) 16 . 1 6 • 
g X = 2ir(3/2) [Ml (1x)-MI (-ix)]. 

6.2. Some preliminary remarks 

(i) We use the following "coding": 

CO-i, COS-i = CO, COS with m+l = i, i = 2,3,4; 

HW-i = product-integration with m = 0, 

and 1-1 0 > O· , 

HW-iQJ = as HW-i but µo = no = 0. , 

CK = the method of Chawla and Kumar. 

(ii) Convergence. 

I 1 

1 = 2,3,4 

--- h 
With pt -order convergence of an approximation f(x) (found by using acer-

tain method) to f(x), we mean: 

(6.2.l) sup jf(x)-f(x) I < ChP, h small enough, 
[0,X] 

th 
for some constant C. When speaking about a p -order method, we mean that 

00 

for f(x) EC [0,X] (6.2.1) holds. For non-smooth f(x), the actual order of 

th 
convergence of a p -order method may be less than p. With the exception of 

BR2 and BR3 [2], for none of the discussed methods a general convergence 

proof is known. Eggermont [9] and Weiss [10] gave proofs of second order 

convergence for HW--2~ and in [ 7] · Brunner claims to have proven convergence 

of order p for HW-p in the special case: 

(6.2.2) = l{ [(2(p-j)+l)rr]} 
nj 2 I + cos 2p+3 , J=O, ••• ,p, 

but the paper he refers to has not yet appeared. 
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Experimentally, we found for CO-i, COS-i, HW-i and HW-i~ convergence 

of order i (for f(x) smooth enough). For f(x) of the form (3.1), CO-i, HW-i 

reduce to second order methods, while COS-i appears to be of order 

min{i,i/2+3/2} (cf. Section 6.3.2). In [7] Brunner proves for HW-i, that for 

the choice of Q (cf. Section 4) according to (6.2.2) and 

(6.2.3) * X := {zeros of P.(x)}, 
l 

p~ the i-th Legendre polynomial, 
1 

we get a local order of i + ! in the points (4.4) while the global order 

remains i. 

For non-singular first kind Volterra equations a sufficient and neces

sary condition for order m+l convergence is: 

(6.2.4) 
m ni 
TT -- < 1 

• O l-17. 
1= 1 

(cf. [8]). 

For the Abel equation no equivalent for (6.2.4) is known yet. 

(iii) On the next pages we give the results of our tests on the previously 

mentioned test examples. 

In each entry of Tables 2.1-2.5 the upper figure denotes the number 

of correct digits in the endpoint, defined by: 

(6. 2.5) cd := -log 10 (absolute error in endp6int). 

The lower figure denotes the run time in seconds of our ALGOL 68 program 

on a CDC CYBER 750 computer. This figure is, of course, machine and pro

gra1IDI1ing language dependent, so it has no absolute significance but it in

dicates the performance of the methods in comparison to one another and 

the growth in computing time with increasing number of steps. 

In Figures 1.1 and 1.2 we give a graphical representation of the re

sults obtained for problems IA and IIA, viz., the number of correct digits 

(cd) versus the run time in seconds (rt). 

(iv) For HW-i and HW-iQ we chose the sets X and Q to be equal. Other choices 

did not result in a significant increase of the global precision. The 

choice indicated in the above remark (ii), however, gave, due to the super

converge, a local increase in precision in the evaluation points, but no 
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global increase. 

The collocation parameters we have chosen are ·listed below: 

m+l no nl n2 n3 

2 0 1 - -
½ 1 - -

3 0 I 1 -~ 

1 2 
1 -3 3 

4 0 
I 2 

I 3 3 
I I 3 

1 4 2 4 

Table I 

(v) It turned out that for smooth problems, CO and COS gave nearly the 

same results. Therefore we have not given the results for CO for each 

problem. 

(vi) If K _ I BR2 and HW-2@ are identical methods. 

13 
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Problem nr: IA 

cd in x = 2 

h 2nd order methods 

1/ 10 

I/ '2D 

1/40 

1/80 

h 

1 / 10 

1/20 

1/40 

1 /80 

C0-2 

4.00 

.14 

4.60 

44 
5.20 

1.46 
5.80 

5.40 

C0-4 

9 .02 

.65 

10.22 

2.01 

11 • 39 
7.08 

13.00 
25.80 

COS-2 HW-2 HW-2(1. 

4.01 4 .17 3.78 

. 14 . 19 .02 

4.61 4. 77 4.37 

_44 Fi 1 .05 
5. 20 5.38 4.97 

1.47 2.36 . 19 
5.80 5.98 5.57 

c; Li. 1 19 f,Li, f.R 

4th order methods 

COS-4 HW-14 HW-4(1. 

9.00 8.87 8.47 

.64 .62 .43 

10. 20 10 .07 9.67 

2.01 1.97 I. 37 

11.38 11. 27 10.86 
6.91 6.99 4. 72 

12.44 12.31 I 1. 93 
25.72 26.54 19.37 

Table 2.1 

f(x) = sin ½x 

K(x,t) = I 

3rd order methods 

BR2 C0-3 COS-3 HW-3 1HW-3(J 

3.78 6.67 6.67 6 .54 5.86 

.03 .41 • 41 .38 .24 

4.37 7 .5 7 7 .57 7.45 6. 77 

.08 1.32 1.33 1. 21 .77 
4 .97 8.48 8.48 8. 36 7 .6 7 

.29 4.69 4.63 4.33 2.92 
5.57 9 .39 9 .39 9. 26 8.76 

1 OQ I, 17 i7 17 _ ':l.Q 1 7 _ c;Li, 11 _ Q~ 

6. 17 
4. 17 

CK 

~ 
0 

2 3.00 

.01 

3 5. I 7 

.01 
·---

4 5.99 
.02 . 

6 8.84 
.03 

8 12. 74 
.04 

BR3 

5 .53 

.04 

6.44 

• 13 
7.35 

.47 
8.26 

1.81 __ 

9. 16 

I 6.97 
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Table 2.2 

Problem nr: IB f(x) = -- [c.!.- I)exp(- -1 (t+x) 2)+(.!..+.t)exp(- _I (I-x) 2-2)]. 
2/2nx x 2x x 2x 

cd in x = 2 

h 

I /10 

I /20 

I /40 

I /80 

I 
160 

h 

1/10 

1/20 

1/40 

1/80 

C0-2 

4.86 
. I 7 

5.49 
.50 

6.09 
I. 72 

6.70 
6.40 

C0-4 

7.56 
• 73 

9.43 
2.29 

11. 17 
7.89 

Ll.4:l 

~9 .61 

K(x, t) 
I 

= --= exp(-Hx-t)) 
✓ 2'71" 

2nd order methods 

COS-2 HW-2 HW-2(.1 BR2 

4.82 5.42 4 .26 4.64 
• I 7 .21 .0 I .03 

5.49 6. I 2 4. 81 5.22 
.49 . 7 I .02 • I I 

6.09 6.72 5.40 5.82 
I. 75 2.66 .08 .38 

6.69 7.33 6.00 6.42 
6.49 I I. I 1 .29 1.48 

7.02 
5.72 

4th order methods 

COS-4 HW-4 HW-4(.1 

6.82 7. 1 I 7.71 
.73 .69 .54 

9.08 8.72 9. I 6 
2.30 2.35 I. 77 

11 • 16 IO .54 10.69 
8.04 8.44 6.44 

12.43 11 .68 11 • 79 
28 .17 32. 16 26.01 

3rd order methods 

C0-3 COS-3 HW-3 HW-3(.1 BR3 

6.41 6.42 6.59 7. 18 4.34 
.45 .46 • 4 I .28 .05 

8.05 8.26 7.83 7.55 6.57 
1.45 I.SO 1.36 .95 . I 8 

8.74 8.74 9.07 8.58 7 .63 
5.40 5.36 5. 15 3.53 .6 7 

9.65 9.65 9.97 9 .49 8.56 
20 .24 20 .12 20.96 14.36 2.57 

9.46 
IO. 13 

CK 

rn~ 2 4 8 

2 1.29 
.O I 

4 1.42 1.42 
.02 .04 

8 I. 75 I. 75 
.07 .16 

16 2.49 
.43 
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Problem nr. IIA 

cd in x = 2 

h 2nd order methods 

I /I 0 

1/20 

1/40 

1/80 

I 
160 

h 

1/10 

1/20 

1/40 

1/80 

C0-2 

3.50 
.19 

3.95 
.56 

4.48 
1.9 I 
5.04 
6 .96 

C0-4 

7.07 
• 77 

7.41 
2.46 

7.94 
8._50 

8 .52 
32.02 

COS-2 HW-2 HW-2(p 

3.47 3.38 2.60 
.19 .23 .03 

3.94 3.97 3. 19 
.56 . 76 .09 

4.47 4.58 3.78 
1.90 2.87 .35 
5.03 5. 18 4.38 
6.98 I I . 82 1.26 

4th order methods 

COS-4 HW-4 HW-4(p 

5.92 5.62 4.94 
• 77 . 77 .58 

6.97 6. 19 5.59 
2.44 2.53 1.89 

8.03 6.79 6.20 
R c;-:i, 9. 12 6.87 
9 . 11 7.50 6.72 

32 .02 35.93 27.23 

Table 2 .3 
I 

f(:x) = x 2 

K(x,t) = 1 + sin 2x cos 2t 

3rd order methods 
·-----·--•·• ····-··-· --···-·-·-····· -

BR2 C0-3 COS-3 HW-3 HW..-3(;J BR3 

2.81 5.68 6. 15 4.85 4.44 3.59 
.04 . 51 . 51 .45 .31 .06 

3.42 6.38 7.60 5.61 5. 16 4.75 
• I I 1.66 1.66 1.51 1.02 . 2 l 

4.03 7.03 8.24 6.28 5.89 5 .96 
.43 5.82 5.80 5.50 3.87 . 75 

4.63 7.66 8.64 6.92 6.57 6.56 
I • 66 21. 92 21. 89 22.20 15.20 2.92 

5.24 
6.36 

CK 

n~ 
2 4 8 

2 0 
.02 

4 0 1.8 
.03 .05 

-··--·~· 

8 2. 1 2.5 
07 • 1 7 



Problem nr: IIB 

cd in x = 2 

h 

l / 1 

1/4 

I/ 
160 

h 

I/ I 

1/20 

Ii /40 

I 
p180 

C0-2 

3.59 
. 16 

4. I 9 
.46 

4.80 
1.52 

5.40 
5.63 

C0-4 

8.30 
.66 

9.28 
2.07 

--·- ---·-
10. 25 
7.26 

11 • l 7 
26 .85 

2nd order methods 

cos-2 HW-2 HW-2(1 

3.59 3. 77 3 .35 
.16 • 17 .O l 

4. 19 4.38 3.96 
.47 .59 .04 

4.80 4.98 4.56 
1.58 2.28 • 1 7 

5.40 5.59 5. 16 
5.83 9.31 .62 

-----~--
5. 76 
2.44 

4th order methods 

-
COS-4 HW-4 HW-4~ 

8.69 7. 76 7 .43 
.68 .60 .45 

9.89 8.63 8.38 
2. 14 1.89 1.47 

··----··--~-------
11 • 0 I 9.46 9.33 
7.37 6. 75 5. 19 

12. 18 10.51 9.43 
27.74 28. 13 20.45 

Table 2 .4 

BR2 

3.35 
.02 

3.96 
.08 

4.56 
.28 

5. 16 
1.03 

5. 76 
4. l 2 

3/2 
f(x) = X 

K(x, t) = l 

3rd order methods 

C0-3 COS-3 HW-3 HW-3(.a 

6.44 6.28 6 .15 5.76 
.42 .44 .35 • 25 

7.36 7. 18 7.05 6.68 
1.35 1.43 I. 13 .80 

8.26 8.09 7.95 7.59 
4. 70 4.96 4. 13 2.96 

9. 16 9.00 8,86 8.49 
18. I 2 18.83 16 .86 11 . 84 

CK 

~ 0 ~ 0 

2 1.4 16 5.31 
.0 I . 16 

3 2.22 24 6.40 
.o 1 .37 

4 2.62 32 6.34 
.0 I • 71 

6 3.20 48 6.85 
.03 1.81 

8 3. 72 
.04 

17 

BR3 

5.03 
.04 

6. 16 

.13 

7.07 
.46 

7.97 
I. 75 
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Problem nr: IIIA 

cd in x = I 

h 2nd order methods 

1/20 

1/40 

1/8 

1/ 
160 

1 / I 

1 /2JJ 

I /40 

/8 

C0-2 

J.55 
.06 

2.90 
• I 6 

2.97 
.49 

3.41 
1.6 I 

C0-4 

3.45 
.24 

4.84 
.70 

5.34 
2. 10 

6.57 
7.33 

COS-2 HW-2 irw-2~ 

1.87 1.46 
.06 .o 1 

2.78 2.44 
• I 7 .02 

3.00 2.70 
.56 .06 

3.50 3. 19 
1.97 .20 

3.73 
.70 

4th order methods 

COS-4 HW-4 HW-4~ 

3.33 2.87 
.22 • I 8 

4.80 4.70 
.58 .46 

4. 79 4.75 
I. 77 1.45 

4.97 4.81 
6.20 5.22 

Table 2.5 

BR2 

1.46 
.03 

2.44 
• I 1 

2.70 
. 31 

3.20 
1.13 

3.76 
4 .29 

f(x)· = sin 16x 

K (x, t) = l 

3rd order methods 

C0-3 COS-3 HW-3 HW-3~ 

1.90 1.85 1.54 
• I 7 . 13 .09 

2.78 2. 72 2.27 
.45 .34 .25 

3. 72 3.64 3.13 
1.44 1.07 .81 

5.01 4.80 4.09 
5.06 3.80 2.95 

CK 

~ 0 
m 

0 TI 

2 0 24 7.61 
.37 

4 Cl 32 8.04 
.66 

6 1.00 48 8.87 
.03 I. 77 

8 1.00 
.04 

16 2 .9 3 
. 16 

BR3 I 
0 I 

1 

1.72 I 
• I 4 I 

2.61 
I 

I . 5 I 
' 

3 .5 2 
I A~ 

4 .6 I 
7.22 



19 

cd 

CO(S)-4,HW-4 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

rt 

2 4 6 8 10 14 

Figure 1 . I Problem IA 
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cd 

12 

11 

10 

9 

- -- - COS-4 

COS-3 

C0-4 

7 

C0-3 

6 
HW-30 

HW-3 

5 

4 

3 

2 

2 4 6 8 10 
rt 

12 14 16 

Figure I. 2 Problem IIA 
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6.3. CONCLUSIONS 

6.3.1. Smooth solutions 

Striking (cf~ problem IA) is the very good behavior of Chawla/Kumar for 

most of these problems. The attainable results are, however, strongly in

fluenced by the suitability of the kernel and/or solution of being approxi

mated by a polynomial. Compare, e.g., the problems IA and IB. Chawla/Kumar 

behaves dramatically worse for the latter. 

A second remarkable fact is the equal behavior of CO and COS for this 

class of problems. 

The accuracy of CO on the first interval is in general higher than that of 

COS, but this difference disappears. This is quite contrary to the behavior 

of the analoguous second-kind equation solvers of te Riele [2]: the counter

part of COS behaves worse for smooth solutions. 

Concerning computing time, it is clear that the fact that BR2 and BR3 

(and HW20) don't have to solve a system in each step, is a great advantage, 

but the decrease in accuracy is considerable. Still, BR3 seems to be the 

most efficient one among the third order methods. It is interesting to note 

that HW3 and HW4 are not significantly less efficient than HW30 and HW4~ for 

trivial kernels. The advantage that the dimension of the system to be solved 

is one smaller, is in general annihilated by the decrease in precision. For 

more expensive kernels, however, the fact that also the number of kernel 

evaluations for HW-i~ is much smaller, plays a dominant role (cf. Table 3 in 

Section 7). This is also the reason why HW is less efficient than CO or COS 

for non-trivial kernels. The difference in kernel evaluations between CO(S) 

and HW-i~ is only small, and from our test results it is clear that, at 

least for orders 3 and 4, HW-i0 is only slightly more efficient than CO(S). 

Finally,it is clear that no lower order method is more efficient than any 

higher order one. 

6.3.2. Non-smooth solutions 

Firstly, we note that the good behavior of Chawla/Kumar does not ex

tend to this class of solutions. This is not surprising, of course, as a 

non-smooth function is badly approximated by a Chebyshev polynomial. 
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An important question is how the specially developed method COS behaves. 

It is remarkable that in the case of m = r = 1· COS-2 does not behave signi

ficantly better than C0-2, although the approximation on the first interval 

is much better, in the case of problem IIA even exact. Note that COS-2 and 

C0-2 both have order 2 for these problems. For higher order methods the ad

vantage of COS becomes clear. We see that for solutions of the form (3.1) 

with x(O) 'f O, all collocation and product integration methods but COS re

duce to order 2 methods, while the order of COS-i seems to be 

· {' i+l 3} · . 1 1 . f h' b f 11 . min i+l, --2 + 2 . An heuristica exp anation or t is may e the o owing: 
! 

On the first interval, a function like x2 cannot be approximated by a poly-
! 

nomial with more than h 2 accuracy. In the expression for the error equation, 

which has a form similar to 3.6 (without g(x)), we multiply this approxima

tion with a term that behaves like h 312 , h • 0 (N-+' 00 ). On the other inter-
! 

vals where x2 is smooth, the approximation is of the order i. So the global 

order of convergence will be min{l/2+3/2,i} which is always 2. For COS-i, 

. . 1 . hi/2 ( . however, the accuracy on the first interva is which follows from a 
l 

Taylor expansion of ~(x) + x2 x(x) near O). So the global order of conver-

gence will be min{i/2+3/2,i}, which isl. for i = 2,3 and 3½ for i = 4. This 

order of 3½ is detected in problem IIA. 

If x (0) = 0 but /P) (O) 'f O, for some p > 0, a similar reasoning could 

be held, but all this is not mathematically founded, as no convergence proofs 

are known to us, not even for smooth problems. 

Nevertheless, it will be clear that the idea of fitting the method to 

the solution pays. 

6.3.3. Rapidly decreasing or oscillating solutions 

We can be quite short on these problems. Of course the accuracy of all 

methods is decreased but the results remain acceptable. For oscillating 

problems, Chawla/Kumar also behaves rather good (provided the degree is 

high enough) under the same restrictions as for ordinary smooth problems. 

There is no change in the relative order of the methods. 

6.3.4. Concluding remarks 

To solve equation (I.I), product integration - and collocation methods 
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are reliable. If enough about the solution is known, one might consider 

using Chawla/Kumar (if the solution is smooth)·. The facts that (~) COS is 

not inferior to CO for smooth problems, (E,.) HW-i~ behaves only slightly 

better than CO (and COS) for smooth problems, (~) COS-3,4 are superior to 

all other methods for non-smooth problems, may lead to the conclusion that, 

when high accuracy is requested, COS-4 is the most reliable choice. It can 

handle both smooth and non-smooth solutions. If only a relatively low ac

curacy is required, a good choice would be BR2 or BR3, and these methods 

have the additional advantage that the implementation is easier because no 

systems have to be solved. 

7. COMPUTING TIME AS A FUNCTION OF THE NUMBER OF CORRECT DIGITS 

For the product-integration and collocation methods, it is possible 

to compare the results in a rather unified manner. Therefore we define: 

(6.3.1) W (N) := time required by method q to take N steps without ac
q 

counting for kernel evaluations. 

Then W (N) is (almost) problem independent and it is obvious that W (N) 
q q 

will be quadratic in N. So: 

(6.3.2) 

with c(q) c(q) and c(q) method-dependent coefficients. Furthermore we define: 
0 ' I 2 

(6.3.3) P(N) := the number of correct digits in X calculated in N steps 

(or: with stepsize h = X/N) 

then P(N) =a+ m log 10 (N), 

where a is some problem and method dependent constant, and m the order of 

the method (which depends on the smoothness of the solution). The total 

time needed is: 

(6.3.4) * vJ . 
q 

(N) = W (N) + d ( q) (N) • T • 
q 
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Tis the time required for one kernel evaluation and d(q)(N) is the total 

number of kernel evaluations which is quadrati,c in N and problem-independent. 

We list d(q)(N) for the various methods below. 

Table 3 

order 2 order 3 

BR ½N 2 +½N N2+N 

CO(S) N2+2N 3N2+6N 

HW 2N2+2N %N2 %N 
2 + 2 

HW-i~ ½N 2+½N 2N2+2N 

For (6.3.3) we can write: 

(6.3.5) N = lO(P-a)/m. 

Inserting (6.3.5) in (6.3.4) yields: 

(6.3.6) w*(P) 
q 

order 4 

-

4N2+12N 

8N2+8N 

%N2+ ~ 
2 2 

(6.3.6) gives an expression for the computing time as a function of the re

quired number of correct digits P. 

The c~q), cfq) and c;q) can be estimated from our test results if we 

take some problem with K = 1 (which means T = 0). The parameter a, which is 

problem dependent, can also be found from the test results. 

We give two examples: 

Table 4 

method co cl c2 problem a m 

HW4 4. 10 - 2 8.SxI0-3 9.5xJO 
-4 

IA 3.65 4 

IIA 2.31 2 

HW4G 8. JO -2 4x I0-3 7 .5x 10 
-4 

IA 3.24 4 

IIA 2.40 2 

The problem is that it is often difficult to determine the value of m. 
(cf. problem IB) 
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APPENDIX 

(Al) 

A frequent use has been made of values of the integrals 

I 

I (x::)" do 
for 

These can be calculated from the recurrence relations: 

(A2) 
1 1-0I. 1-0I. 

JO,OI. (x) := l-0!.[x -(x-1) J 

(A3) 
(x- 1) I-a. 

J (x) = ~ J (x) - I -a. 
r,a 1-a v-1,a-l 

From this it is easy to derive that: 

nf j t v d t = --,--2_v_+_1 _. v...,...,..~ ---,-- n ~ + ½ 

I 1•3• ••• •(2v+I) J 
o (nj--r) 

(A4) 

Using relation (A4), the fact that K(x,t) # 0, t E [x-h,x], and the mean-

value theorem for integration, it is easy to prove the independence of the 

columns of ~\ in (3 .6), hence (3. 6) has a unique solution. 
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