

This is an author produced version of:

A Comparative Survey of Open-Source Application-Class RISC-V Processor Implementations

Article:

Alexander Dörflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald Michalik, Raphael

Klink, Christopher Blochwitz, Anouar Nechi, and Mladen Berekovic. 2021. A comparative

survey of open-source application-class RISC-V processor implementations. In Proceedings of

the 18th ACM International Conference on Computing Frontiers (CF '21). Association for

Computing Machinery, New York, NY, USA, 12–20.

DOI: https://doi.org/10.1145/3457388.3458657

Revision notice:

This version does not contain CVA6 SPEC CPU2017 scores. There is an updated version

available with additional CVA6 SPEC CPU2017 scores:

https://doi.org/10.24355/dbbs.084-202105101615-0

https://doi.org/10.1145/3457388.3458657
https://doi.org/10.24355/dbbs.084-202105101615-0

A Comparative Survey of Open-Source Application-Class RISC-V
Processor Implementations

Alexander Dör�inger
Mark Albers

Benedikt Kleinbeck
Yejun Guan

Harald Michalik
doer�inger,albers,kleinbeck,guan,michalik

@ida.ing.tu-bs.de

Institute of Computer and Network Engineering (IDA)

Technische Universität Braunschweig

Braunschweig, Germany

Raphael Klink
Christopher Blochwitz

Anouar Nechi
Mladen Berekovic

klink,blochwitz,nechi,berekovic@iti.uni-luebeck.de

Institute of Computer Engineering (ITI)

Universität zu Lübeck

Lübeck, Germany

ABSTRACT

The numerous emerging implementations of RISC-V processors and

frameworks underline the success of this Instruction Set Architec-

ture (ISA) speci�cation. The free and open source character of many

implementations facilitates their adoption in academic and com-

mercial projects. As yet it is not easy to say which implementation

�ts best for a system with given requirements such as processing

performance or power consumption. With varying backgrounds

and histories, the developed RISC-V processors are very di�erent

from each other. Comparisons are di�cult, because results are re-

ported for arbitrary technologies and con�guration settings. Scaling

factors are used to draw comparisons, but this gives only rough

estimates. In order to give more substantiated results, this paper

compares the most prominent open-source application-class RISC-

V projects by running identical benchmarks on identical platforms

with de�ned con�guration settings. The Rocket, BOOM, CVA6, and

SHAKTI C-Class implementations are evaluated for processing per-

formance, area and resource utilization, power consumption as well

as e�ciency. Results are presented for the Xilinx Virtex UltraScale+

family and GlobalFoundries 22FDX ASIC technology.

CCS CONCEPTS

• Computer systems organization → System on a chip; Serial

architectures.

KEYWORDS

RISC-V, application-class, open-source, FPGA, ASIC, GlobalFoundries

22FDX, Virtex UltraScale+, benchmarks, energy e�ciency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

CF ’21, May 11–13, 2021, Virtual Conference, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8404-9/21/05. . . $15.00
https://doi.org/10.1145/3457388.3458657

ACM Reference Format:

Alexander Dör�inger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald

Michalik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, and Mladen

Berekovic. 2021. A Comparative Survey of Open-Source Application-Class

RISC-V Processor Implementations. In Computing Frontiers Conference (CF

’21), May 11–13, 2021, Virtual Conference, Italy. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3457388.3458657

1 INTRODUCTION

One decade after the RISC-V project initiation by UC Berkeley,

its application area is not limited to academia anymore and the

ISA speci�cation [41] is also being widely adopted by industry

[38]. In the past few years, a large number of both proprietary

and open-source RISC-V implementations emerged. Furthermore,

RISC-V ecosystems have been developed to provide software com-

pilers, System-on-Chip (SoC) peripherals and other components,

simplifying the generation of FPGA- or ASIC-based RISC-V proces-

sor systems. The free and open character of many RISC-V imple-

mentations allows reuse of the collaborative open-source projects.

Project-speci�c requirements can be satis�ed through custommodi-

�cations and extensions. This makes RISC-V particularly interesting

for special purpose and niche applications. For instance, RISC-V

is a promising architecture for the space domain with stringent

reliability requirements [24, 25].

Each ISA implementation has its strengths and weaknesses, mak-

ing it di�cult to select the best-�tting RISC-V solution for a project

with dedicated requirements such as performance, power consump-

tion, or simplicity. Research groups typically report results of their

implementations for a speci�c ASIC technology tapeout or FPGA

implementation. As the selected technology heavily a�ects proces-

sor speed and power consumption, only a rough indirect compari-

son is feasible by assuming scaling factors. Di�erent benchmarks

are utilized for performance estimations, which again complicates

a direct comparison. Furthermore, architectural design parame-

ters (e.g., cache sizes) are de�ned by each group and publication

di�erently, a�ecting reported area, power, and performance results.

The main contributions of this work are an analysis and compar-

ison of the most popular application-class open-source RISC-V im-

plementations by running same benchmarks on identical hardware

platform. Hereby, an FPGA of the Xilinx Virtex UltraScale+ family

https://doi.org/10.1145/3457388.3458657
https://doi.org/10.1145/3457388.3458657

CF ’21, May 11–13, 2021, Virtual Conference, Italy Dörflinger, et al.

is selected as an evaluation platform, featuring a state-of-the-art

FPGA technology. Performance, area, and power measurements are

taken for SoC designs and standalone RISC-V cores separately. Ad-

ditionally, all cores are synthesized for the GlobalFoundries 22FDX

ASIC technology. The comparison is based on equal architectural

design parameters. Strengths and weaknesses of respective proces-

sor cores are discussed, which helps selecting an available RISC-V

implementation for academic and commercial projects with speci�c

requirements.

This work concentrates on application-class RISC-V processors

covering the medium to high performance range and excludes

lightweight RISC-V implementations. Application-class processors

typically provide support for UNIX-based Operating Systems (OSs),

which brings several advantages. Firstly, it simpli�es software de-

velopment, because one can utilize existing libraries, drivers, and

programs. Secondly, memorymanagement and isolation of user pro-

grams allows concurrent execution ofmultiple threads. On the other

hand, the OS considerably increases the hardware complexity of the

processor [35]. The hardware has to provide three privilege levels

(M/S/U-Mode) [40]. Furthermore, the OS demands the A-extension

containing atomic load-reserved/store-conditional (LR/SC) instruc-

tions and Atomic Memory Operations (AMOs) [41]. A virtual ad-

dress space requires hardware support for fast address translation,

which adds a Transaction Lookaside Bu�er (TLB) and Page Table

Walker (PTW) to the system. As the OS itself already requires sev-

eral megabytes of memory, application-class processors typically

connect to o�-chip memory. The e�ciency of memory accesses

then relies on the implemented memory hierarchy with caching

mechanisms.

The rest of this paper is organized as follows. Sect. 2 provides

an overview of previous RISC-V classi�cation and comparison ap-

proaches and Sect. 3 presents existing open-source application-class

RISC-V implementations. The FPGA and ASIC evaluation platforms

are described in Sect. 4. Results of performance, area, power con-

sumption, and energy e�ciency are presented in Sect. 5.

2 RELATED WORK

The RISC-V community maintains and steadily updates a list of

available cores and SoCs [10]. The provided information is an ap-

propriate starting point for further analysis and comparison of

existing implementations. However, it does not guarantee com-

pleteness and in particular some smaller RISC-V projects are not

listed. Furthermore, it collects only a handful of characteristics and

lacks important criteria such as area and performance estimations.

Other works compare RISC-V cores in more detail. [36] describes

a tool for exploring RISC-V projects. A tutorial teaches how to use

their IDE for running tests and benchmarks on RISC-V soft-cores.

However, only the non Linux-capable PicoRV32 [8] core has been

integrated and no comparisons to other cores are presented. [23]

compares the ultra-low-power cores Zero-riscy, Micro-riscy, and

Riscy. It analyzes the core area for the UMC 65 nm technology and

calculates power and energy consumption for di�erent workloads.

The comparison focuses only on lightweight RISC-V cores targeting

low-power applications.

An extensive comparison of 32 bit RISC-V cores is performed in

[28] by utilizing the TaPaSCo framework [30]. Maximum operating

frequency, resource utilization, and various benchmark scores are

measured for eight open-source cores across four FPGA platforms.

However, the TaPaSCo framework exhibits some restrictions on

the comparison such as technology (FPGA only), ISA (32 bit only),

and omission of the L1 cache architectures.

There exist several further survey works comparing multiple

RISC-V implementations [29], [37], [34] or processors of di�erent

ISAs [17], [32]. However, all are limited to 32 bit variants and target

FPGA applications with soft-core processors only. A comparison

of cores of the medium to high end performance range is still

missing. This work tries to �ll this gap and additionally evaluates

the readiness of RISC-V cores for ASIC implementations.

3 ANALYSIS OF RISC-V IMPLEMENTATIONS

The RISC-V project overview [10] currently lists 89 cores and fur-

ther SoC platforms and SoCs. These numbers already present a

large variety of ISA implementations, yet it is not fully complete

and constantly growing. This work evaluates midrange to high

performance cores that satisfy the terms application-class and open-

source, which narrows the selection down. In this context, a RISC-V

implementation satis�es the criterion application-class if it complies

to the RV64I ISA base [41] with a word size of 64 bit and if it is ca-

pable to boot a UNIX-based OS. The implementation is open-source,

if it is published under a license that allows commercial use with-

out imposed fees. There exist open source licenses with signi�cant

di�erences (e.g., copyleft vs. permissive). If not noted otherwise, all

of the RISC-V projects analyzed in this work are published under

permissive licenses with similar terms and conditions.

The above de�nition excludes Linux-capable RV32I cores such

as the portable RVSoC [35], the FPGA friendly VexRiscv [14], and

the Out-of-Order (OoO) RSD [33]. Furthermore, the comparison in

this work omits proprietary implementations, namely the RV64GC

multi-core within the PolarFire SoC (Microsemi, [9]), customized

A25 and AX25 SoCs (Andes Technology, [1]), the SCR5 and SCR7

(Syntacore, [11]), several core complexes from CloudBear [3], and

the Bk7 from Codasip [4]. T-head of the Alibaba Group claims to

outperform any other RISC-V implementation with its XuanTie-910

processor [20]; however, it is also not available as open source.

Fig. 1 illustrates the academic impact, community activity, and

technology support of major open-source application-class RISC-V

implementations. It compares the number of Google Scholar hits1

and the repository activity (number of contributors). Furthermore,

the number of supported FPGA evaluation boards and tapeouts

has been counted. While tapeouts are typically well documented

(see Sect. 3.1 to 3.4), it is more intricate to assess FPGA board sup-

port. It is provided through particular project branches or di�erent

frameworks (e.g., lowRISC, Si-Five Freedom, OpenPiton). Due to

the separation from the main development branch, many FPGA

projects rely on out-dated processor versions.

The area of the covered polygon is an indicator for the degree of

attention of the respective implementation. Rocket [16] dominates 3

out of 4 categories, which emphasizes its success in both commercial

and academic projects. It is followed by CVA6 (formerly named

Ariane) [44], whose design has been veri�ed on various FPGA

1In order to limit the search to RISC-V relevant results, the term "risc-v" "<name

of core>" has been used. Accessed: 2020-12-22.

A Comparative Survey of Open-Source Application-Class RISC-V Processor Implementations CF ’21, May 11–13, 2021, Virtual Conference, Italy

boards and through several tapeouts. The high number of Google

Scholar hits for BOOM [18] denotes its academic importance as an

OoO processor. The SHAKTI C-Class processor [27] is maintained

by a slightly smaller community than BOOM and CVA6 and counts

two tapeouts. The mor1kx [7] of the OpenRISC project published

under a weak copy-left license scores with an outstanding support

for FPGA boards (provided through the "LED to believe" project).

However, its academic impact is small compared to others and there

has been no recent contribution activity. Both RiscyOO (also named

riscy-OOO) [45] and AnyCore [22] succeeding FabScalar [21] are

smaller projects with only 2 or 5 code contributors, have not been

taped out yet2, and are not actively maintained. Fig. 1 is not an

exhaustive list of open-source application-class RISC-V projects.

However, all others (e.g. Lizard [6]) are excelled by the leading

projects presented here.

9 18 27 36

FPGA boards

160

320

480

640
Google Scholar hits

306090120

GIT

contributors 5

10

15

20
Tapeouts

Rocket

BOOM

CVA6/Ariane

SHAKTI

mor1kx

AnyCore

RiscyOO

Figure 1: Academic impact, community activity, and technol-

ogy support of open-source application-class RISC-V proces-

sor cores.

We selected the fourmost prominent implementations for further

single-core evaluation and comparison, whereas all of them also

o�er multicore con�gurations. The following subsections present

the main characteristics of each processor core and its implementa-

tion framework. Performance, area, and power e�ciency results of

previous works are collected.

3.1 Rocket

Rocket is an in-order scalar processor developed at UC Berkeley

that provides a 5-stage pipeline: Instruction Fetch (IF), Instruction

Decode (ID), Execute (EX), Memory Access (MEM), and Writeback

(WB). It o�ers both the RV64G or RV32G variants of the RISC-V

ISA and is written in the Chisel Hardware Description Language

(HDL) based on object-oriented Scala. The high abstraction level of

Chisel allows an easy and mainfold processor customization such

as optional activation of ISA extensions (M, A, F, D).

2The AnyCore project reports a tapeout for PISA ISA, but not RISC-V ISA.

The branch prediction within the frontend is con�gurable and

provided by a Branch Target Bu�er (BTB), Branch History Ta-

ble (BHT), and Return Address Stack (RAS). The load-store archi-

tecture can be con�gured with a blocking or non-blocking L1D

cache. A Memory Management Unit (MMU) supports page-based

virtual memory. The execution pipeline holds �ve functional units,

amongst them an integer Arithmetic Logic Unit (ALU) and an op-

tional IEEE 754-2008-compliant Floating-Point Unit (FPU). A Rocket

Chip Coprocessor (RoCC) interface is provided for attachment of

customized accelerators or coprocessors.

To compose Rocket cores, caches, and interconnects into an in-

tegrated SoC, the open-source SoC design generator Rocket Chip

Generator [16] can be used. It is integrated within the open-source

Chipyard framework, which contains a large set of tools for de-

veloping, simulating, and compiling both hardware and software.

The framework provides several example con�gurations (e.g., tiny

... large, single-/multicore) with prede�ned cache- and predictor

settings. Arbitrary peripherals and accelerators may be added to a

con�guration. A sophisticated simulation platform called FireSim

running on Amazon EC2 F1 instances facilitates new developments

and adaptions of Chipyard’s SoC designs.

There have been numerous tapeouts starting in 2012 with EOS14

(IBM 45 nm SOI, dual-core, 1.5GHz, 0.9 V), over Raven-3 (ST 28 nm

FD-SOI, single-core, 1.3GHz), up to SiFive U54 [39] (TSMC 28 nm

HPC, quad-core, 1.5GHz). The latter one is o�ered by SiFive as one

of several pre-con�gured customizable IP cores.

3.2 BOOM

BOOM is a superscalar OoO processor implementing the RV64GC

variant of the RISC-V ISA that can be instantiated as a replacement

of the Rocket core. Analogously to Rocket, the BOOMcore is written

in the Chisel HDL and integrated into the Chipyard framework.

The current release named "SonicBOOM" is the fastest publicly

available open-source RISC-V core by Instructions per Cycle (IPC)

count [46]. Hereby recent works on the BOOM design illustrate

the great progress that is still ongoing for RISC-V. Compared to

BOOMv2 [19], the BOOMv3 design (SonicBOOM) [46] utilized in

this work more than doubles the benchmark scores.

BOOM implements a complex 10-stage pipeline structure with

a 12 cycle branch-mispredict penalty. The frontend features a cus-

tomizable banked L1I cache, TLB, and a decode stage. It contains

a sophisticated but also highly con�gurable branch prediction

unit with a fast Next-Line Predictor (NLP) (also called micro BTB)

and complex two level predictors based on global history vectors

(GShare or TAGE). The RAS has a repair mechanism on mispre-

dicts resulting in a high prediction accuracy. The issue width of

the execute pipeline is con�gurable. A distributed scheduler as-

signs micro operations to available execution units each containing

some mix of functional units. Hereby one can select from eight

di�erent functional units. Similarly as with the Rocket core, the

RoCC interface allows to add custom ISA extensions as accelerator

implementations. The load-store unit is optimized for the super-

scalar out-of-order architecture. The data cache is organized into

two dual-ported banks, which provides dual issuing and still allows

an e�cient 1R1W SRAM instantiation. FireSim can also be utilized

as for Rocket.

CF ’21, May 11–13, 2021, Virtual Conference, Italy Dörflinger, et al.

There exists one documented tapeout called BROOM, which uses

TSMC’s 28 nm HPM process [18]. It has a built in 1MB L2 cache

and is designed to run at up to 1GHz at 0.9V, while its performance

is speci�ed with 3.77 CoreMark/MHz.

3.3 CVA6

CVA6 (formerly named Ariane) is an in order, single issue, 64-bit

application class processor implementing the RV64GC standard

[44]. The core is written in SystemVerilog and its micro-architecture

is designed to reduce the critical path length while keeping IPC

losses moderate.

CVA6 has a 6-stage pipeline, which can be compared to the 5-

stage Rocket pipeline with an added stage for Program Counter

(PC). The frontend contains a branch prediction with BTB, BHT,

and RAS. Instructions are issued to six functional units within the

execution stage: the ALU, a dedicated multiplier/divider, optional

FPU (aimed to be IEEE 754-2008 compliants), CSR bu�er, branch

unit, and load/store unit (LSU). Timing critical components such as

the register �le and caches are designed with special care and can

be con�gured for area or timing optimization.

The core has been integrated into both Chipyard and the Open-

Piton3 project, which simpli�es the generation of a CVA6 based SoC,

its simulation, and customization. Compared to a CVA6 core gener-

ated with OpenPiton, we observed a signi�cant performance loss

for the Chipyard generated variant. With the core and cache con-

�gurations selected within this work, the benchmark results drop

by 68-83% when utilizing Chipyard. Primary reason for this is the

intermediate TileLink translation required by Chipyard. The CVA6

core AXI interface connects to Chipyard’s system bus (TileLink),

which again connects to an AXI DDR4 interface. Hence, CVA6 has

been evaluated in the following with the OpenPiton framework

providing full performance.

CVA6 has been taped out six times in two di�erent technolo-

gies, which is well documented [2]. The �rst tapeout named Po-

seidon is based on GlobalFoundries 22 nm FD-SOI technology (sin-

gle core, 910MHz, 0.8V). Kosmodrom (1.3GHz/300MHz, 0.8V)

and Baikonur (1.0GHz/250MHz, 0.8V) each evaluate performance-

and power optimized variants of the CVA6 architecture and are

again implemented in GlobalFoundries 22 nm FD-SOI technology.

Scarabaeus (single core, 200MHz, 1.2V) and the most recent tape-

out Urania (single core CVA6 and CV32E40P clusters, 100MHz,

1.2V) are based on the UMC 65 nm process.

3.4 SHAKTI C-Class

The SHAKTI Processor Program [26], initiated by the IIT Madras in

2014, focuses on developing power processors, SoCs, and peripheral

IPs for an open-source ecosystem. So far, SHAKTI has released eight

processors based on the open RISC-V ISA within three categories

(base, multi-core, and experimental). SHAKTI C-Class, a member

of the base family, is a controller grade processor designed for the

IoT-, industrial-, and automotive segment. The core is designed for

a frequency range from 500MHz to 1.5GHz and is capable to boot

Linux and RTOS. In the following, the term SHAKTI refers to the

SHAKTI C-Class processor.

3https://github.com/PrincetonUniversity/openpiton

The processor features an in-order 5-stage pipeline and supports

both the RV32I and RV64I ISA. It is highly con�gurable, e.g., the S

and M extensions can be selectively activated. The frontend con-

tains a GShare two-level branch predictor and the execution stage is

organized in three functional units (M-Box, F-Box, ALU). The core

is also fully compatible with both AXI4 and TileLink interconnects.

The processors are written in Bluespec SystemVerilog (BSV),

which can be transformed into synthesizeable Verilog code with

an open-source compiler. Compared with other HDLs, BSV gives a

higher level of abstraction to express structural and behavioral ar-

chitectures. In contrast to the other three evaluated cores, SHAKTI

is not integrated in the Chipyard framework. However, the SHAKTI

project provides independent frameworks for creating SoC designs

(shakti-soc), software development (shakti-sdk), and veri�cation

(e.g., RISC-V Trace Analyzer (RITA)). The ecosystem helps users to

map the core on FPGA boards as well as to develop applications.

This work utilizes the shakti-soc framework for an SHAKTI C-Class

SoC implementation on an FPGA.

The processor has been fabricated in SCL 180 nm (RIMO, 350MHz)

and Intel 22 nm FinFET (RISECREEK, 70MHz) technologies [12].

The performance of both tapeouts is speci�edwith 1.68DMIPS/MHz.

3.5 Summary of Analysis

Table 1 summarizes the characteristics of the Rocket, BOOM, CVA6,

and SHAKTI processors. For traceability of our results, Table 1

also speci�es the framework and core version (commit) utilized for

further evaluation.

Table 1: Characteristics of di�erent RISC-V implementa-

tions.

Rocket BOOM CVA6 SHAKTI

Bits 32/64 64 64 32/64

Stages 5 10 6 5

Extensions MAFDC MAFDC MAFDC MAFDC

OoO exec no yes no no

Funct. Units 4 8 6 3

Inferfacing TileLink TileLink AXI4 AXI4/TL

HDL Chisel Chisel SV BSV

License BSD BSD SolderPad BSD

Framework Chipyard Chipyard OpenPiton shakti-soc

Commit 1872f5d1 d77c2c32 1793be63 884fc434

1 https://github.com/chipsalliance/rocket-chip/
2 https://github.com/riscv-boom/riscv-boom/
3 https://github.com/openhwgroup/cva6/
4 https://gitlab.com/shaktiproject/cores/c-class/

The di�erent RISC-V implementations specify default architec-

tural design parameters such as cache sizes and branch prediction

bu�er sizes. Performance, area, and power consumption results are

a�ected by those prede�ned con�gurations. The following evalua-

tion utilizes common architectural design settings being listed in

Table 2. The hereby attained equal conditions provide a better com-

parability of the RISC-V cores. Arrays within the branch prediction

unit (BHT, BTB, RAS) are generously dimensioned. The RISC-V

A Comparative Survey of Open-Source Application-Class RISC-V Processor Implementations CF ’21, May 11–13, 2021, Virtual Conference, Italy

cores should operate close to their maximum possible processing

performance when con�gured with the selected parameters. [44]

shows that the IPC count already saturates for any RAS con�gura-

tion larger than 2 and any BTB con�guration larger than 8.

Other con�guration options (e.g., pipeline registers for CVA6)

are set to proposed default values. The OoO characteristic of the

BOOM processor o�ers further con�guration options which are not

available for the other processors. Here we con�gured a medium

to large sized variant with an issue width of 5.

Table 2: Common architectural design parameters utilized

for the detailed comparison.

Parameter Value

Branch History Table (BHT) depth 512

Branch Target Bu�er (BTB) depth 32

Return Address Stack (RAS) depth 8

L1D cache size 16 KB

L1I cache size 16 KB

4 EVALUATION PLATFORMS

The RISC-V processors are compared for both FPGA deployment

and ASIC synthesis, which addresses the di�erences of FPGA and

ASIC implementations.

The FPGA tests have been performed on a VCU118 evaluation

board containing an XCVU9P Xilinx Virtex UltraScale+ FPGA,

which is manufactured in a 16 nm FinFET node. The device on the

selected evaluation board possesses enough resources to implement

all the cores and corresponding SoC designs in this state-of-the-art

technology. Measurements are taken for the full SoC designs and

standalone cores separately. All implementations have been run

with the Xilinx Vivado Design Suite 2019.2.

For Rocket and BOOM there is no support to run a recent ver-

sion (< 1 year old) of the RISC-V cores on the VCU118. Both the

SiFive Freedom and lowRISC frameworks containing FPGA projects

for Rocket and BOOM are not maintained anymore and already

outdated. We developed a wrapper for the instantiation of any pro-

cessor generated within the Chipyard framework on the VCU118.

This allows to test current variants of Rocket, BOOM, and CVA6.

As described in Sect. 3.3, OpenPiton is utilized instead of Chipyard

for the CVA6 evaluation due to performance reasons.

To provide a fair comparison, default but identical settings are

selected for FPGA synthesis and P&R for all processors. All power

/ area optimizations, e.g. within the shakti-soc framework, were

carefully deactivated.

The ASIC comparisons are based on synthesis results of the Glob-

alFoundries 22FDX Fully-Depleted Silicon-On-Insulator (FD-SOI)

technology. The planar process grows a ultra-thin transistor chan-

nel on top of a buried oxide insulator, which delivers FinFET-like

performance and power e�ciency. We used the INVECAS twelve

track (12T) BASE standard cell library with a nominal voltage of

0.8V. Memory macros have been generated with the INVECAS

memory compiler. Single ported memory (S1P) is used preferen-

tially and dual ported (R2PH) where required. Access schemes and

tagging policies are speci�c to each RISC-V implementation and

result in distinct array organizations, which required customized

memory macros for each core despite of identical cache sizes.

Clock gating and medium power optimization e�orts are acti-

vated, because it drastically reduces power consumption of the

designs under evaluation but a�ects timing only marginally. The

technology is not a�ected by temperature inversion for the selected

synthesis parameters. Therefore, the operation condition assumes

the worst corner with 0.72V and 125 °C. The designs are synthe-

sized with Cadence Genus Synthesis Solution Version 19.11-s087_1

using identical settings. The ASIC synthesis provides results for

standalone RISC-V cores only, because no DDR IP has been available

for the evaluation of complete SoC designs.

All RISC-V processors have been implemented in both tech-

nologies with best practice of FPGA / ASIC design development.

However, no thorough optimizations of toolchain settings were

analyzed. The RISC-V source code has been changed only where

necessary (e.g., memory macro instantiation). Generally, no source

code has been modi�ed in order to improve the evaluation results

(e.g., �xing critical paths). An exception is SHAKTI’s cache design,

because its very �ne granular array instantiation heavily degrades

performance, area, and power consumption results. We optimized

the memory organization for the ASIC synthesis to countervail

this to some degree; however, the cache design still represents a

bottleneck within SHAKTI’s architecture.

A team of designers could likely further optimize each RISC-V

implementation by both �ne-tuning the toolchain settings of the

FPGA / ASIC design �ow and more source code adaptions. Hereby,

optimized results can be achieved for performance, area, and power

consumption, but this should hold for all evaluated designs and

therefore does not a�ect the general comparison.

5 DETAILED COMPARISONS

The detailed comparison of the application-class RISC-V cores is

based on several evaluation criteria, whereas the �rst three ex-

tracted from implementation results of the FPGA deployment and

ASIC synthesis. The processing performance is an important measure

for the selection of a core for a project with speci�c computation

requirements. The occupied area in silicon determines cost due

to required FPGA or ASIC size. In particular battery-powered de-

vices are a�icted with tight power constraints, hence the energy

e�ciency is another important criterion for processor selection.

5.1 Processing Performance Metrics

While Dhrystone [42] and CoreMark [5] are not well suited for eval-

uation of application-class and OoO cores, they are very common

benchmarks and allow comparisons with smaller RISC-V variants.

Hence, respective results will be provided. Additionally, with ex-

ception of CVA6 all RISC-V implementations will be stressed with

the industry-standardized SPEC CPU 2017 [13] benchmark, which

aims to compare compute intensive performance and covers a wide

range of workloads.

Table 3 reports Dhrystone4, CoreMark per MHz, and the har-

monic IPC mean of the SPECintrate benchmarks. All values have

4Compiler settings are: -DNO_PROTOTYPES=1 -DPREALLOCATE=1 -mcmodel=medany

-static -std=gnu99 -O2 -ffast-math -fno-common -fno-builtin-printf

-march=rv64imafd -mbranch-cost=2 -frename-registers

CF ’21, May 11–13, 2021, Virtual Conference, Italy Dörflinger, et al.

been computed by execution of the benchmarks on the RISC-V SoC

designs deployed on the FPGA evaluation board. Those benchmark

results are technology agnostic.

Table 3: Benchmark and maximum frequency results of

RISC-V implementations for the XCVU9P FPGA and the

22FDX ASIC technology.

DMIPS CoreMark SPEC17 Fmax [MHz] Fmax [MHz]

Core per MHz per MHz IPC XCVU9P 22FDX

Rocket 1.71 2.94 0.33 198 813

BOOM 3.87 6.25 0.50 88 943

CVA6 1.21 2.08 - 112 738

SHAKTI 1.70 2.84 0.23 136 685

Whereas Dhrystone and CoreMark are executed without re-

strictions on all four cores, several remarks apply for the SPEC17

benchmark. The VCU118 addressable DDR4 memory of 2x 2GB is

not su�cient for running the SPECintspeed suite requiring at least

12GB memory. However, the utilized SPECintrate suite with more

relaxed memory requirements yields similar results [31]. For the

x264 benchmark test input data is provided; all others are executed

with train input data. The SHAKTI design was only able to exe-

cute 5 out of the 10 benchmarks without faults. Due to Linux boot

issues, it was not possible to run the SPEC benchmark for CVA6.

Whereas Dhrystone and CoreMark on Rocket and BOOM do not

bene�t from an additional L2 cache in the selected con�gurations,

it impacts the SPEC scores. Adding a 512 kB L2 cache improves the

SPEC scores by 30.13% (Rocket) / 40.02% (BOOM). Detailed scores

of the SPECintrate benchmark are given in Fig. 2.

The maximum processor core frequency is another performance

factor and has been obtained by incrementally increasing the clock

until timing violations were reported. These results are technology

dependent and are speci�ed for the Virtex UltraScale+ family and

22FDX ASIC synthesis separately. It is expected that the maximum

frequency scales for each processor similarly when being deployed

on another FPGA family or ASIC technology.

As expected for the only OoO-type processor under evaluation,

BOOM leads the performance per MHz criterion and outpaces all

others by more than a factor of 2. Rocket, SHAKTI, and CVA6 follow

in the named order. The DMIPS/MHz measured by us coincides

with the value reported for SHAKTI (1.72 in [15]) and falls short for

CVA6 (1.65 in [44]). Reasons for this might be the use of di�erent

repository versions or di�ering compiler settings.

Regarding the maximum frequency, Rocket achieves the highest

score for the FPGA implementation with 198MHz and is second

for the ASIC variant. BOOM is slowest of all four within the FPGA

and fastest of all four within the ASIC. For this high discrepancy

betweenmaximum frequencies two root causes have been identi�ed.

1) BOOM is the only design that spreads over two Super Logic

Regions (SLRs) within the Virtex device requiring a segmentation

for the FPGA implementation. 2) BOOMvery rigorously instantiates

arrays which can be translated into memory macros and allow an

e�cient ASIC implementation.

Rocket’s and SHAKTI’s maximum ASIC frequency is limited

by the data cache latency. The suboptimal memory organization

within SHAKTI hereby results in a 15% slower design compared

to Rocket. The critical path of the BOOM synthesis contains PTW

logic. CVA6 clocking is restricted by L1D logic.

The product of both criteria, (i) benchmark results per MHz and

(ii) maximum frequency accounts for the overall processor perfor-

mance, which is being depicted in Fig. 3. BOOM by far leads this

performance comparison for the ASIC technology, but is similar

(Dhrystone and CoreMark) or inferior (SPEC) to Rocket for the

FPGA technology due to its frequency limitation. Hence, the OoO

BOOM would be the �rst choice for a high-performance ASIC im-

plementation, but it cannot fully outperform the in-order Rocket

when being deployed on an FPGA. The CVA6 and SHAKTI imple-

mentation only achieve 40 to 84% of the performance of Rocket,

depending on the benchmark and technology.

5.2 Area Metrics

Both the Vivado and Genus toolchains generate detailed resource

utilization reports, which facilitates an area comparison. The results

apply for the Xilinx Virtex UltraScale+ architecture and 22FDX

node respectively, but it is expected that they scale for other FPGA

families and ASIC technologies. The results are reported for designs

that have been generated with a relaxed clock constraint (50MHz

for XCVU9P FPGA and 500MHz for 22FDX ASIC). Only a moderate

resource and area increase has been observed for respective Fmax

clock constraints.

Fig. 4 depicts the SoC resource utilization results of the four

evaluated RISC-V projects implemented on the XCVU9P FPGA.

The SoC contains, in addition to the RISC-V core itself, further

processor components such as a memory interface and peripherals.

For a more detailed discussion of the RISC-V core area, its resources

are marked hatched.

5.2.1 Core Area (FPGA). The comparison of RISC-V core sizes

(not counting further SoC resources) emphasizes di�erences of the

evaluated implementations. The core size re�ects the complexity

of the processor architecture and has to be considered =-times for

a multi-core design with = cores. The core contains resources for

its pipeline, the frontend with L1I cache and branch prediction, the

L1D cache, and PTW. Rocket has the lowest resource utilization

for all resource types, with exception of BRAM. The complexity

of BOOM’s OoO pipeline results in a very high LUT, register, and

DSP utilization. SHAKTI implements the caches based on single

ported sub-arrays with a depth of 64 entries and a width of 64 bit.

This �ligree segmentation results in an ine�cient BRAM resource

utilization on the FPGA; compared to Rocket it requires 3.2 times

as many BRAM resources. Compared to CVA6, SHAKTI has similar

register and DSP utilization, but it requires 38% more LUTs. The

more complex GShare branch predictor of SHAKTI is one reason for

this. Furthermore, we observe that SHAKTI’s L1D cache structure

instantiates disproportionately many LUTs.

5.2.2 SoC Area (FPGA). The area of the remaining SoC structures

adds to the core area and is determined by the utilized framework. It

re�ects the complexity of other processor components and contains

resources for clocking, the memory interface, external core de-

vices (Boot ROM, interrupt controllers, debug unit), and peripherals

(UART, JTAG, SPI). The evaluation board provides DDR4 memory

A Comparative Survey of Open-Source Application-Class RISC-V Processor Implementations CF ’21, May 11–13, 2021, Virtual Conference, Italy

0.33 0.30
0.19 0.19 0.25

0.67

0.38

0.60

0.79

0.41
0.330.40 0.44

0.35 0.28 0.28

1.19

0.63

1.05

1.76

0.78

0.50

0.18
0.00

0.16
0.00 0.00

0.45

0.24

0.00 0.00

0.32
0.23

500.perlbench 502.gcc 505.mcf 520.omnetpp 523.xalancbmk 525.x264 531.deepsjeng 541.leela 548.exchange2 557.xz harmean
0

0.5

1

1.5

S
P

E
C

1
7
 I

P
C

Rocket BOOM SHAKTI

Figure 2: SPECintrate IPC scores.

Dhry-

stones/s

Core-

Mark

SPEC

17

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 F
P

G
A

 p
er

fo
rm

an
ce

Rocket

BOOM

CVA6

SHAKTI

Dhry-

stones/s

Core-

Mark

SPEC

17

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
ed

 A
S

IC
 p

er
fo

rm
an

ce

Rocket

BOOM

CVA6

SHAKTI

Figure 3: RISC-V performance normalized to BOOM. Left:

for XCVU9P FPGA.Right: for 22FDXASIC synthesis. Higher

is better.

k LUTs k Registers BRAM DSP
0

100

200

300

A
m

o
u
n
t

o
f

X
C

V
U

9
P

 R
es

o
u
rc

es

55 46 47

18

261

123

 43 39

95
77 69

31

 74
 55

112

 30

Rocket

BOOM

CVA6

SHAKTI

Figure 4: Resource utilization of RISC-V SoC implementa-

tions on Xilinx Virtex UltraScale+ XCVU9P FPGA. RISC-V

core resources are marked hatched. Lower is better.

and all four evaluated implementations instantiate a therefor re-

quired Xilinx DDR4 controller IP [43], which contributes the largest

resource demand within the remaining SoC structures. The SoC

structures utilize very similar amounts of FPGA resources (non-

hatched area of Fig. 4). This is as expected, because the frameworks

all instantiate the same peripherals, albeit in di�erent variants. Only

OpenPiton stands out with an increased resource utilization, which

is because of provisioned structures for a multi-core design.

5.2.3 Core Area (ASIC). The ASIC synthesis is performed for the

RISC-V cores only (without SoC resources). Fig. 5 plots the RISC-V

core area over delay constraints and shows only a moderate area

increase for tight timing constraints. The very left marker of each

line denotes its area for the respective core’s maximum frequency.

The area converges for relaxed clocking to 0.22mm2 (Rocket),

1 1.2 1.4 1.6 1.8 2

Delay Constraint [ns]

0

0.2

0.4

0.6

0.8

1

P
o
st

 S
y
n
th

es
is

 A
re

a
[m

m
2
]

Rocket

BOOM

CVA6

SHAKTI

Figure 5: Post-synthesis 22FDX area-delay curves for RISC-V

cores.

0.92mm2 (BOOM), 0.52mm2 (CVA6), and 0.84mm2 (SHAKTI). The

Rocket core has the smallest footprint and could �t more than four

times into the complex BOOM. CVA6 has a medium core area, but

SHAKTI’s footprint is relatively large due to ine�cient memory

macro instantiation.

5.3 Power Metrics

5.3.1 Power Consumption. The Power Management Bus (PMBus)

has been used to measure both the static power consumption of

the VCU118 evaluation board and the dynamic power consump-

tion of respective RISC-V implementations. All measurements are

performed for 0.85V VCCINT, a die temperature of 27.0 °C, and a

RISC-V clock frequency of 50MHz; results are averaged from of 128

measuring points. The static power consumption of the VCU118

(FPGA device plus DDR4, RLDRAM, and Flash) has been determined

by loading an empty design into the FPGA device. It is de�ned by

the utilized FPGA evaluation board and independent of the RISC-V

core; hence, identical values are reported in Table 4.

After loading the respective RISC-V design into the FPGA, the

power consumption has been measured again while executing the

Dhrystone benchmark. The increased consumption compared to the

empty FPGA design with no clock input is a measure for dynamic

power consumption; results are provided in Table 4.

The Genus synthesis reports are evaluated for respective ASIC

power consumptions under relaxed clock constraints (500MHz).

Hereby a switching activity based on a Dhrystone simulation has

been provided. Note that in contrast to the FPGA power consump-

tion results, Table 4 speci�es the ASIC power consumption for the

standalone RISC-V core only.

SHAKTI proves to be the most power e�cient core when be-

ing deployed on the FPGA device. The �ne granular distribution

CF ’21, May 11–13, 2021, Virtual Conference, Italy Dörflinger, et al.

Table 4: Power consumption [mW] on XCVU9P FPGA (mea-

sured on line) and for 22FDX ASIC synthesis (estimated by

synthesis tool).

FPGA SoC FPGA SoC ASIC Core ASIC Core FPGA SoC

Core static dynamic static dynamic MOp/J

Rocket 3080 1820 4.14 15.76 17.4

BOOM 3080 3030 26.37 139.03 31.7

CVA6 3080 1995 9.27 26.30 11.9

SHAKTI 3080 1660 24.20 23.81 17.5

0 200 400 600 800 1000

max. Frequency [MHz]

0

10

20

30

40

50

P
o
st

 S
y
n
th

es
is

 G
O

p
/J

Rocket

BOOM

CVA6

SHAKTI

Figure 6: Energy e�ciency of RISC-V cores for the 22FDX

technology.

of memory to BRAM is not detrimental to dynamic FPGA power

consumption. With a similar IPC as Rocket, it is also very energy

e�cient. Rocket shows a 2% and CVA6 a 12% higher dynamic power

consumption compared to SHAKTI. The dynamic power consump-

tion of BOOM is almost twice as large as of the most e�cient

in-order variant.

The FPGA results do not correlate to ASIC power consumption.

As the memory macros contribute a major part of the static power

consumption, SHAKTI’s high score can be explained by its microar-

chitecture allowing memory macros of only shallow depths.

5.3.2 Energy E�iciency. The so far discussed power consumption

metric is reported for a �xed operating frequency only. Furthermore,

it penalizes large but powerful processors. High IPC scores typi-

cally require high complexity resulting in high power consumption.

Comparing the energy e�ciency overcomes this problem, because it

measures the completed workload in relation to consumed energy.

The energy e�ciency is listed in Table 4 for an operation on the

FPGA device with 50MHz as Mega Operations per Joule. The large

static power proportion of the Virtex FPGA makes RISC-V cores

with a low IPC ine�cient; hence, BOOM has the highest energy

e�ciency in this technology. For the 22FDX technology, Fig. 6 gives

more detailed energy e�ciency information and plots the GOp/J

results of all four evaluated RISC-V cores over frequency. At lower

frequencies (left of Fig. 6), the static power consumption dominates,

resulting in a decreased energy e�ciency. When getting close to

the maximum achievable frequency, the synthesis tool optimizes

the design for performance. This is traded for power consumption,

e.g., by instantiating a larger proportion of SLV cells. The result-

ing decrease of energy e�ciency for very high frequencies can be

observed particularly for Rocket and CVA6.

Rocket achieves the highest maximum GOp/J score (40.4), fol-

lowed by SHAKTI (32.5), CVA6 (20.2), and BOOM (12.3). Rocket is

3.6 times more e�cient than BOOM, which illustrates how BOOM

traded high performance for energy e�ciency. SHAKTI’s memory

macros contribute to a relatively high static power consumption

(comp. Table 4), being the reason for an more distinctive energy e�-

ciency degradation at low to medium frequencies. Above 500MHz

SHAKTI and CVA6 reach comparable energy e�ciencies; however,

both are only half as e�cient as Rocket.

5.4 Summary of Comparisons

The Rocket implementation achieves high scores for all evaluation

criteria, except for ASIC processing performance. It features a high

FPGA performance in combination with lowest FPGA resource

utilization, smallest ASIC footprint, and high energy e�ciency.

Many con�guration options simplify its adoption for a wide range

of academic and commercial projects. BOOM, the only OoO core

analyzed within this work, can replace the Rocket core. It is best

in class for ASIC performance, but this is traded for a high FPGA

resource utilization, ASIC area footprint, and low energy e�ciency.

SHAKTI is most power and energy e�cient when deployed on an

FPGA. However, its L1 cache aspect ratio has a negative impact

for the ASIC design in particular. It limits the maximum frequency

and results in a large memory area and power consumption. Once

this issue is �xed, its performance, area utilization, and energy

e�ciency can achieve more optimized results.

6 CONCLUSION

This work compared the four open-source application-class RISC-V

processor implementations Rocket, BOOM, CVA6, and SHAKTI

C-Class. The fair comparison is based upon common con�guration

settings and execution of equal benchmarks on identical platforms.

The results show big di�erences regarding processing perfor-

mance (up to 3.1x), area, resource utilization, power consumption,

and energy e�ciency (up to 3.6x). The Rocket core achieved best

scores for many criteria, but the other implementations also have

their strengths. E.g., BOOM achieves the highest ASIC processing

performance, SHAKTI is best in class for FPGA energy e�ciency.

The large variations of results highlight the importance of proces-

sor selection. The data provided in this work helps to make a good

choice for future projects with varying processing needs. There is

clearly no optimal implementation in general. The ranking order

depends on the selected technology (FPGA / ASIC) and primary

requirements (performance / cost / e�ciency).

This paper only presents a snapshot in time, because all RISC-V

projects are actively enhanced by many contributors and the results

discussed here vary by each version. Furthermore, only a speci�c

con�guration has been analyzed for each RISC-V implementation.

Future work will analyze the e�ect of those two additional dimen-

sions on the evaluation scores.

ACKNOWLEDGMENTS

This work is part of BMBF FKZ 16ES1003 "KI-PRO".

A Comparative Survey of Open-Source Application-Class RISC-V Processor Implementations CF ’21, May 11–13, 2021, Virtual Conference, Italy

REFERENCES
[1] 2020. AndesCore Processors. http://www.andestech.com/en/products-solutions/

andescore-processors/. Accessed: 2020-11-23.
[2] 2020. Chips by IIS. http://asic.ethz.ch/. Accessed: 2020-11-18.
[3] 2020. CloudBEAR processors for the widest range of applications. https://

cloudbear.ru/products.html. Accessed: 2020-11-23.
[4] 2020. Codasip RISC-V Processors. https://codasip.com/risc-v-processors/. Ac-

cessed: 2020-11-23.
[5] 2020. CoreMark - An EEMBC Benchmark. https://www.eembc.org/coremark/.

Accessed: 2020-11-23.
[6] 2020. Lizard Core. https://github.com/cornell-brg/lizard. Accessed: 2020-11-23.
[7] 2020. mor1kx - an OpenRISC processor IP core. https://github.com/openrisc/

mor1kx. Accessed: 2020-11-23.
[8] 2020. PicoRV32 - A Size-Optimized RISC-V CPU. https://github.com/cli�ordwolf/

picorv32. Accessed: 2020-11-23.
[9] 2020. PolarFire SoC. https://www.microsemi.com/product-directory/soc-fpgas/

5498-polar�re-soc-fpga. Accessed: 2020-11-23.
[10] 2020. RISC-V Cores and SoC Overview. https://github.com/riscv/riscv-cores-list.

Accessed: 2020-11-23.
[11] 2020. SCR5 e�cient application core (RV32 or RV64). https://syntacore.com/

page/products/processor-ip/scr5. Accessed: 2020-11-23.
[12] 2020. SHAKTI. https://shakti.org.in/tapeout.html. Accessed: 2020-11-23.
[13] 2020. SPEC CPU 2017. https://www.spec.org/cpu2017/. Accessed: 2020-11-23.
[14] 2020. SpinalHDL, VexRiscv: A FPGA friendly 32 bit RISC-V CPU implementation.

https://github.com/SpinalHDL/VexRiscv Accessed: 2020-11-23.
[15] 2021. SHAKTI C-Class Read the Docs. https://c-class.readthedocs.io/en/latest/

benchmarking.html. Accessed: 2021-02-04.
[16] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[17] Rahul R. Balwaik, Shailja R. Nayak, and Amutha Jeyakumar. 2013. Open-Source
32-Bit RISC Soft-Core Processors. IOSR Journal of VLSI and Signal Processing 2
(2013), 43–46.

[18] C. Celio, P. Chiu, K. Asanović, B. Nikolić, and D. Patterson. 2019. BROOM: An
Open-Source Out-of-Order Processor With Resilient Low-Voltage Operation in
28-nm CMOS. IEEE Micro 39, 2 (March 2019), 52–60. https://doi.org/10.1109/
MM.2019.2897782

[19] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, and Krste
Asanović. 2017. BOOM v2: an open-source out-of-order RISC-V core. Technical Re-
port UCB/EECS-2017-157. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html

[20] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao, J. Luo, Z.
Chen, C. Li, Y. Pu, J. Meng, X. Yan, Y. Xie, and X. Qi. 2020. Xuantie-910: A
Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High Performance
RISC-V Processor with Vector Extension : Industrial Product. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). 52–64.
https://doi.org/10.1109/ISCA45697.2020.00016

[21] Niket K. Choudhary, Salil V. Wadhavkar, Tanmay A. Shah, Hiran Mayukh, Jayneel
Gandhi, Brandon H. Dwiel, Sandeep Navada, Hashem H. Najaf-abadi, and Eric
Rotenberg. 2011. FabScalar: Composing Synthesizable RTL Designs of Arbitrary
Cores within a Canonical Superscalar Template. In Proceedings of the 38th Annual
International Symposium on Computer Architecture (San Jose, California, USA)
(ISCA ’11). Association for Computing Machinery, New York, NY, USA, 11–22.
https://doi.org/10.1145/2000064.2000067

[22] Rangeen Basu Roy Chowdhury, Anil K. Kannepalli, Sungkwan Ku, and Eric Roten-
berg. 2016. AnyCore: A synthesizable RTL model for exploring and fabricating
adaptive superscalar cores. 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS) (2016), 214–224.

[23] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, and L.
Benini. 2017. Slow and steady wins the race? A comparison of ultra-low-power
RISC-V cores for Internet-of-Things applications. In 2017 27th International Sym-
posium on Power and Timing Modeling, Optimization and Simulation (PATMOS).
1–8. https://doi.org/10.1109/PATMOS.2017.8106976

[24] Stefano Di Mascio, Alessandra Menicucci, Eberhard Gill, Gianluca Furano, and
Claudio Monteleone. 2019. Leveraging the Openness and Modularity of RISC-
V in Space. Journal of Aerospace Information Systems 16, 11 (2019), 454–472.
https://doi.org/10.2514/1.I010735

[25] Alexander Dör�inger, Yejun Guan, Sören Michalik, Sönke Michalik, Jamin Nagh-
mouchi, and Harald Michalik. 2020. ECC Memory for Fault Tolerant RISC-V
Processors. In Architecture of Computing Systems – ARCS 2020, André Brinkmann,
Wolfgang Karl, Stefan Lankes, Sven Tomforde, Thilo Pionteck, and Carsten Trini-
tis (Eds.). Springer International Publishing, Cham, 44–55.

[26] Neel Gala, Arjun Menon, Rahul Bodduna, GS Madhusudan, and V Kamakoti.
2016. SHAKTI processors: An open-source hardware initiative. In 2016 29th
International Conference on VLSI Design and 2016 15th International Conference
on Embedded Systems (VLSID). IEEE, 7–8.

[27] N. Gala, A. Menon, R. Bodduna, G. S. Madhusudan, and V. Kamakoti. 2016.
SHAKTI Processors: An Open-Source Hardware Initiative. In 2016 29th Inter-
national Conference on VLSI Design and 2016 15th International Conference on
Embedded Systems (VLSID). 7–8. https://doi.org/10.1109/VLSID.2016.130

[28] C. Heinz, Y. Lavan, J. Hofmann, and A. Koch. 2019. A Catalog and In-Hardware
Evaluation of Open-Source Drop-In Compatible RISC-V Softcore Processors. In
2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig).
1–8. https://doi.org/10.1109/ReConFig48160.2019.8994796

[29] R. Höller, D. Haselberger, D. Ballek, P. Rössler, M. Krapfenbauer, and M. Linauer.
2019. Open-Source RISC-V Processor IP Cores for FPGAs — Overview and Eval-
uation. In 2019 8th Mediterranean Conference on Embedded Computing (MECO).
1–6. https://doi.org/10.1109/MECO.2019.8760205

[30] Jens Korinth, Jaco Hofmann, Carsten Heinz, and Andreas Koch. 2019. The
TaPaSCo Open-Source Tool�ow for the Automated Composition of Task-Based
Parallel Recon�gurable Computing Systems. InApplied Recon�gurable Computing,
Christian Hochberger, Brent Nelson, Andreas Koch, Roger Woods, and Pedro
Diniz (Eds.). Springer International Publishing, Cham, 214–229.

[31] A. Limaye and T. Adegbija. 2018. A Workload Characterization of the SPEC
CPU2017 Benchmark Suite. In 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 149–158. https://doi.org/10.1109/
ISPASS.2018.00028

[32] M. Makni, M. Baklouti, S. Niar, M. W. Jmal, and M. Abid. 2016. A comparison and
performance evaluation of FPGA soft-cores for embedded multi-core systems. In
2016 11th International Design Test Symposium (IDT). 154–159. https://doi.org/10.
1109/IDT.2016.7843032

[33] S. Mashimo, A. Fujita, R. Matsuo, S. Akaki, A. Fukuda, T. Koizumi, J. Kadomoto, H.
Irie, M. Goshima, K. Inoue, and R. Shioya. 2019. An Open Source FPGA-Optimized
Out-of-Order RISC-V Soft Processor. In 2019 International Conference on Field-
Programmable Technology (ICFPT). 63–71. https://doi.org/10.1109/ICFPT47387.
2019.00016

[34] E. Matthews, Z. Aguila, and L. Shannon. 2018. Evaluating the Performance
E�ciency of a Soft-Processor, Variable-Length, Parallel-Execution-Unit Archi-
tecture for FPGAs Using the RISC-V ISA. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 1–8.
https://doi.org/10.1109/FCCM.2018.00010

[35] Junya Miura, Hiromu Miyazaki, and Kenji Kise. 2020. A portable and Linux
capable RISC-V computer system in Verilog HDL. arXiv:2002.03576 [cs.AR]

[36] D. Richmond, M. Barrow, and R. Kastner. 2018. Everyone’s a Critic: A Tool
for Exploring RISC-V Projects. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL). 260–2604. https://doi.org/10.1109/
FPL.2018.00052

[37] Rui Jia, Colin Yu Lin, Zhenhong Guo, Rui Chen, Fei Wang, Tongqiang Gao, and
Haigang Yang. 2014. A survey of open source processors for FPGAs. In 2014 24th
International Conference on Field Programmable Logic and Applications (FPL). 1–6.
https://doi.org/10.1109/FPL.2014.6927482

[38] SEMICO Research Corporation 2019. RISC-V Market Analysis The New Kid on the
Block (cc315-19 ed.). SEMICO Research Corporation.

[39] SiFive, Inc. 2019. SiFive U54 Manual (v19.08p0 ed.). SiFive, Inc.
[40] Andrew Waterman and Krste Asanović. 2017. The RISC-V Instruction Set Man-

ual, Volume II: Privileged Architecture, Version 1.10. Technical Report. EECS
Department, University of California, Berkeley. https://content.riscv.org/wp-
content/uploads/2017/05/riscv-privileged-v1.10.pdf

[41] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2016.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1. Technical
Report UCB/EECS-2016-118. EECS Department, University of California, Berke-
ley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html

[42] Reinhold P. Weicker. 1984. Dhrystone: A Synthetic Systems Programming Bench-
mark. Commun. ACM 27, 10 (Oct. 1984), 1013–1030. https://doi.org/10.1145/
358274.358283

[43] Xilinx Inc. 2019. UltraScale Architecture-Based FPGAs Memory IP, PG150 (v1.4
ed.). Xilinx Inc.

[44] F. Zaruba and L. Benini. 2019. The Cost of Application-Class Processing: Energy
and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in
22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27, 11 (Nov 2019), 2629–2640. https://doi.org/10.1109/TVLSI.2019.
2926114

[45] S. Zhang, A. Wright, T. Bourgeat, and A. Arvind. 2018. Composable Building
Blocks to Open up Processor Design. In 2018 51st Annual IEEE/ACM International
Symposium onMicroarchitecture (MICRO). 68–81. https://doi.org/10.1109/MICRO.
2018.00015

[46] Jerry Zhao, Abraham Gonzalez, Ben Korpan, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. In Fourth Workshop
on Computer Architecture Research with RISC-V (CARRV 2020).

http://www.andestech.com/en/products-solutions/andescore-processors/
http://www.andestech.com/en/products-solutions/andescore-processors/
http://asic.ethz.ch/
https://cloudbear.ru/products.html
https://cloudbear.ru/products.html
https://codasip.com/risc-v-processors/
https://www.eembc.org/coremark/
https://github.com/cornell-brg/lizard
https://github.com/openrisc/mor1kx
https://github.com/openrisc/mor1kx
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://github.com/riscv/riscv-cores-list
https://syntacore.com/page/products/processor-ip/scr5
https://syntacore.com/page/products/processor-ip/scr5
https://shakti.org.in/tapeout.html
https://www.spec.org/cpu2017/
https://github.com/SpinalHDL/VexRiscv
https://c-class.readthedocs.io/en/latest/benchmarking.html
https://c-class.readthedocs.io/en/latest/benchmarking.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1109/MM.2019.2897782
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1145/2000064.2000067
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.2514/1.I010735
https://doi.org/10.1109/VLSID.2016.130
https://doi.org/10.1109/ReConFig48160.2019.8994796
https://doi.org/10.1109/MECO.2019.8760205
https://doi.org/10.1109/ISPASS.2018.00028
https://doi.org/10.1109/ISPASS.2018.00028
https://doi.org/10.1109/IDT.2016.7843032
https://doi.org/10.1109/IDT.2016.7843032
https://doi.org/10.1109/ICFPT47387.2019.00016
https://doi.org/10.1109/ICFPT47387.2019.00016
https://doi.org/10.1109/FCCM.2018.00010
https://arxiv.org/abs/2002.03576
https://doi.org/10.1109/FPL.2018.00052
https://doi.org/10.1109/FPL.2018.00052
https://doi.org/10.1109/FPL.2014.6927482
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
https://doi.org/10.1145/358274.358283
https://doi.org/10.1145/358274.358283
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/MICRO.2018.00015
https://doi.org/10.1109/MICRO.2018.00015

