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Abstract

Robust counterpart optimization techniques for linear optimization and mixed integer linear
optimization problems are studied in this paper. Different uncertainty sets, including those studied
in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and
polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined
interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is
discussed. For uncertainty in the left hand side, right hand side, and objective function of the
optimization problems, robust counterpart optimization formulations induced by those different
uncertainty sets are derived. Numerical studies are performed to compare the solutions of the
robust counterpart optimization models and applications in refinery production planning and batch
process scheduling problem are presented.
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1. Introduction

In many optimization applications, the problem data is assumed to be known with certainty.
However, that is seldom the case in practice. Very often, the realistic data are subject to
uncertainty due to their random nature, measurement errors or other reasons. Since the
solution of an optimization problem often exhibits high sensitivity to the data perturbations
as illustrated by Ben-Tal and Nemirovski1, ignoring the data uncertainty could lead to
solutions which are suboptimal or even infeasible for practical applications.

Robust optimization belongs to an important methodology for dealing with optimization
problems with data uncertainty. In the first stage of this type of method, a deterministic data
set is defined within the uncertain space, and in the second stage the best solution which is
feasible for any realization of the data uncertainty in the given set is obtained. The
corresponding second stage optimization problem is also called robust counterpart

optimization problem. One major motivation for studying robust optimization is that in
many applications the data set is an appropriate notion of parameter uncertainty, e.g., for
applications in which infeasibility cannot be accepted at all (e.g., design of engineering
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structures like bridges considered in Ben-Tal and Nemirovski2–3), and for those cases that
the parameter uncertainty is not stochastic, or if no distributional information is available.

One of the earliest papers on robust counterpart optimization is related to the work of
Soyster4, who considered simple perturbations in the data and aimed at finding a
reformulation of the original linear programming problem such that the resulting solution
would be feasible under all possible perturbations. This approach, however, is the most
conservative one since it ensures feasibility against all potential realizations. Thus, it is
highly desirable to provide a mechanism to allow tradeoff between robustness and
performance. To address the issue of over-conservatism in worst-case models, Ben-Tal,
Nemirovski and co-workers1, 5–7 and El-Ghaoui and co-workers8–9 independently proposed
the ellipsoidal set based robust counterpart formulation for dealing with parameter
uncertainty within linear and quadratic programming problems. El-Ghaoui and Lebret8

studied the robust solutions to the uncertain least-squares problems, and El-Ghaoui et al.,9

studied uncertain semidefinite problems. Ben-Tal and Nemirovski6–7 showed that when the
uncertainty sets for a linear constraint are ellipsoids, the robust formulation turns out to be a
conic quadratic problem. Ben-Tal et al.,5 considered LP problems where some of the
decision variables must be determined before the realization of uncertain data, while the
other decision variables can be set after the realization.

The robust optimization formulation introduced for linear programming problems with
uncertain linear coefficients was extended by Lin et al.,10 and Janak et al.,11 to mixed
integer linear optimization (MILP) problems under uncertainty. They developed the theory
of the robust optimization framework for general mixed-integer linear programming
problems and considered both bounded and several known probability distributions. The
robust optimization framework is later extended by Verderame and Floudas12 who studied
both continuous (general, bounded, uniform, normal) and discrete (general, binomial,
Poisson) uncertainty distributions and applied the framework to operational planning
problems. The work was further compared with the conditional-value risk based method in
Verderame and Floudas13. For a recent review on planning and scheduling under
uncertainty, the reader is directed to Verderame et al.,14, and for process scheduling under
uncertainty to Li and Ierapetritou15.

Bertsimas and Sim16 considered robust linear programming with coefficient uncertainty
using an uncertainty set with budgets. In this robust counterpart optimization formulation, a
budget parameter is introduced to control the degree of conservatism of the solution. As it
will be shown in this paper, this type of robust formulation is based on a combined interval
and polyhedral uncertainty set. Bertsimas and coworkers17 extended and applied a robust
optimization framework in the fields of linear and discrete programming. Bertsimas et al.,18

characterized the robust counterpart of a linear programming problem with uncertainty set
described by an arbitrary norm. The ideas of the robust optimization approach in Bertsimas
and Sim16 have also been extended to conic optimization problems in Bertsimas and Sim19,
and also used by Bertsimas and Thiele20 to address inventory control problems to minimize
total costs.

Kouvelis and Yu21 proposed a framework for robust discrete optimization, which seeks to
find a solution that minimizes the worst case performance under a set of scenarios for the
data. Chen and Lin22 proposed an approximate algorithm to solve the robust design problem
in a stochastic-flow network. Atamtürk and Zhang23 described a two-stage robust
optimization approach for solving network flow and design problems with uncertain
demand. They generalized the approach to multi-commodity network flow and design, and
studied applications to lot-sizing and location-transportation problems. Atamtürk24

introduced alternative formulations to robust mixed 0–1 programming with interval
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uncertainty objective coefficients. Averbakh25 proposed a general approach for finding
minmax regret solutions for a class of combinatorial problems with interval uncertain
objective function coefficients, based on reducing the problem with uncertainty to a set of
deterministic problems. Kasperski and Zielinski26 considered a similar class of problems
and presented a polynomial time approximation algorithm. Bertsimas and Sim17 proposed
an approach to address data uncertainty for discrete optimization and network flow
problems. They presented an algorithm for the special case of the robust network flow where
only the objective uncertainty exists and the problem is a mixed 0–1 problem, and solved the
problem by considering a polynomial number of nominal minimum cost flow problems in a
modified network.

Chen et al.,27 proposed an asymmetrical uncertainty set that generalizes the symmetric ones.
Chen et al.,28 studied the relationship between different Conditional Value-at-Risk (CVaR)
bound based approximations to individual chance constraints and different set based robust
optimization formulations and showed the equivalence between them. Fischetti and
Monaci29 developed a robustness framework denoted as “light robustness” approach to cope
with the issue of overly conservative solutions in robust optimization. They placed a hard
upper bound on the objective value and then minimize the degree of infeasibility with a
fixed uncertainty set.

As pointed out by Goh and Sim30, if the exact distribution of uncertainties is precisely
known, optimal solutions to the robust problem would be overly and unnecessarily
conservative. Conversely, if the assumed distribution of uncertainties is in fact different
from the actual distribution, the optimal solution using a stochastic programming approach
may perform poorly. So several recent works aim at bridging the gap between the
conservatism of robust optimization and the specificity of stochastic programming, where
optimal decisions are sought for the worst-case probability distributions within a family of
possible distributions, defined by certain properties such as their support and moments.
Specifically, El Ghaoui et al.,31 developed worst-case Value-at-Risk (VaR) bounds for a
robust portfolio selection problem when only the bounds on the means and covariance
matrix of the assets are known. Chen et al.,27 introduced directional deviations as an
additional means to characterize a family of distributions that were applied by Chen and
Sim32 to a goal-driven optimization problem. Delage and Ye33 studied distributionally
robust stochastic programs where the mean and covariance of the primitive uncertainties are
themselves subject to uncertainty. Ben-Tal et al.,34 proposed a framework for robust
optimization that relaxes the standard notion of robustness by allowing the decision maker to
vary the protection level in a smooth way across the uncertainty set.

In this paper, we present a systematic study of the set induced robust counterpart
optimization techniques for both linear optimization (LP) and mixed integer linear
optimization (MILP) problems. The new contributions of the paper are as follows: we have
proposed several novel uncertainty sets (i.e., adjustable box; pure ellipsoidal; pure
polyhedral; combined interval, ellipsoidal, and polyhedral set) and derived their robust
counterparts for both LP and MILP problems; for the first time in the literature, we have
discussed the connection among six different uncertainty sets (including those studied in the
literature, i.e., i.e., interval set introduced by Soyster4, combined interval and ellipsoidal set
introduced by Ben-Tal and Nemirovski1, combined interval and polyhedral set introduced
by Bertsimas and Sim16) and the differences among their corresponding robust counterparts,
from both the geometrical point of view and the computational studies.

The paper is organized as follows. In section 2, we introduce the set induced robust
counterpart optimization for general linear and mixed integer linear optimization problems.
In section 3, we introduce six different uncertainty sets and discuss their relationship from a
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geometric point of view. In section 4, we present the detailed robust counterpart
formulations under different uncertainty sets for linear constraints and the derivation
procedures. In section 5, a numerical example and a refinery production planning example
are studied and the different robust counterpart optimization models are compared. In
section 6, robust counterparts for mixed integer linear optimization problems are derived. In
section 7, a numerical example and an application in process scheduling problem are
presented. Finally, conclusions are presented in section 8.

2. Uncertainty Set Induced Robust Optimization

In set induced robust optimization, the uncertain data is assumed to be varying in a given
uncertainty set, and the aim is to choose the best solution among those “immunized” against
data uncertainty, that is, candidate solutions that remain feasible for all realizations of the
data from the uncertainty set.

2.1 Robust linear optimization

Motivating Example 1 Consider the following linear optimization problem:

Assume that the left hand side (LHS) constraint coefficients , , ,  are subject to
uncertainty and they are defined as follows:

where ξ11,ξ12,ξ21,ξ22 are independent random variables. The random variables are
distributed in the range [−1,1] (i.e., the constraint coefficients , , ,  have
maximum 10% perturbation around their nominal values 10, 20, 6, 8, respectively). Under
the set induced robust optimization framework, finding a robust solution for the above
example means to find the best possible candidate solution such that the feasibility of the
constraints is maintained no matter what value the random variables realize within a certain
set that belongs to the uncertain space defined by ξijξ[−1,1].

In general, consider the following linear optimization problem

(2.1)

where  and  represent the true value of the parameters which are subject to uncertainty.
Assume that the uncertainty affecting each constraint is independent of each other and
consider the i-th constraint of the above linear optimization problem where both the LHS
constraint coefficients and RHS parameters are subject to uncertainty. Define the uncertainty
as follows

(2.2a)
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(2.2b)

where aij and bi represent the nominal value of the parameters;  and  represent constant
perturbation (which are positive); Ji represents the index subset that contains the variable
indices whose corresponding coefficients are subject to uncertainty; and ξi0 and ξij ∀i, ∀j ∈
are random variables which are subject to uncertainty. With the above definition, the
original i-th constraint can be rewritten as:

(2.3)

which can be further reformulated as follows:

(2.4)

In the set induced robust optimization method, with a predefined uncertainty set U, the aim
is to find solutions that remain feasible for any ξ in the given uncertainty set U so as to
immunize against infeasibility, that is,

(2.5)

Finally, replacing the original constraint in LP problem (2.1) with the corresponding robust
counterpart constraints, the robust counterpart of the original LP problem is obtained:

(2.6)

Motivating Example 1 (Continued). Applying the robust counterpart formulation (2.6) to
the two constraints of the motivating example 1, their corresponding robust counterpart
constraints become

where U1 and U2 are predefined uncertainty sets for (ξ11, ξ12) and (ξ21, ξ22), respectively.

2.2 Robust mixed integer linear optimization

Motivating Example 2. Consider the following mixed integer linear optimization problem:
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Assume that the left hand side (LHS) constraint coefficients of the third and the fourth
constraints are subject to uncertainty and they are defined as follows:

where ξ31,ξ33,ξ42,ξ44 are independent uncertain parameters distributed in the range [−1,1].
The robust solution for the problem is among the candidate solutions that remain feasible for
all realizations of the data from the uncertainty set. For example, if the uncertainty set is
defined as the bounded box with range [−1,1] on each dimension, then the corresponding
robust counterpart optimization solution should ensure the feasibility of all the constraints
for any possible values of the uncertain parameters and maximize the objective at the same
time.

Generally, consider the following mixed integer linear optimization (MILP) problem

(2.7)

where x and y represent the continuous and integer variables, respectively, and , , 
represent the true value of the parameters which are possibly subject to uncertainty.
Considering the i-th constraint of the above problem, we assume that the uncertain
parameters in the i-th constraint are defined as follows:

(2.8a)

(2.8b)

(2.8c)

where Mi and Ki represent the subsets that contain the continuous and discrete variable
indices whose corresponding coefficients are subject to uncertainty, respectively; aim, bik, pi

represent the nominal value of the parameters; , ,  represent positive constant
perturbation; and ξim, ξik, ξi are random variables which are subject to uncertainty. With the
above definitions, the original i-th constraint can be rewritten as follows:
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(2.9)

which after grouping the uncertain part can be further rewritten as:

(2.10)

With a predefined uncertainty set U for the random variables ξ = {ξi0, ξim, ξik}, the objective
is to find solutions that remain feasible for any ξ in the set so as to immunize against
infeasibility, that is:

(2.11)

Correspondingly, the robust counterpart of the original MILP problem is obtained by
replacing the original i-th constraint with its robust counterpart constraint (2.11):

(2.12)

Motivating Example 2 (Continued). Applying the robust counterpart formulation (2.12) to
the two constraints of motivating example 2 and realizing that there is no RHS uncertainty

(i.e., ), their corresponding robust counterpart constraints become:

where U1 and U2 are predefined uncertainty sets for (ξ31, ξ33) and (ξ42,ξ44), respectively.

The set induced robust counterpart formulations (2.6) and (2.12) depend on the selection of
the uncertainty set U. In the subsequent sections, several different uncertainty sets are
studied first and the corresponding robust counterpart optimization formulations are then
derived.

3. Uncertainty Sets

As stated in the previous section, the formulation of robust counterpart optimization models
is connected with the selection of the uncertainty set. In the sequel, several different
uncertainty sets are introduced. For the sake of simplicity, we eliminate the constraint index
i in the random vector ξ.
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Definition 3.1 (Box Uncertainty Set) The box uncertainty set is described using the ∞ -
norm of the uncertain data vector as follows

(3.1)

where Ψ is the adjustable parameter controlling the size of the uncertainty set.

Figure 3.1 illustrates the box uncertainty set for parameter , j=1,2 defined by

, where  denotes the true value of the parameter, aj denotes the nominal

value of the parameter, ξj denotes the uncertainty and  represents a constant perturbation.

If the uncertain parameters are known to be bounded in given intervals

, then the uncertainty can be represented by  and
this results in the interval uncertainty set, which is a special case of box uncertainty set
when Ψ = 1 (i.e., U∞ = {ξ ||ξj ≤ 1, ∀j ε Ji}). Note that in this paper, we specifically use the

“interval uncertainty set” to denote the box set with Ψ = 1, and use the “box uncertainty set”
to represent a general adjustable bounded set.

Definition 3.2 (Ellipsoidal Uncertainty Set) The ellipsoidal uncertainty set is described
using the 2-norm of the uncertain data vector as shown in Figure 3.2,

(3.2)

where Ω is the adjustable parameter controlling the size of the uncertainty set.

Note that it is known from geometry that for bounded uncertainty ξj ε [−1, 1], when

 (where |Ji| is the cardinality of the set Ji), the entire uncertain space is covered by
the ellipsoid uncertainty set.

Definition 3.3 (Polyhedral Uncertainty Set) The polyhedral uncertainty set is described
using the 1-norm of the uncertain data vector as shown in Figure 3.3,

(3.3)

where Γ is the adjustable parameter controlling the size of the uncertainty set.

Note that for bounded uncertainty ξj ε [−1, 1], when Γ ≤ |Ji|, the overall uncertain space is
covered by the polyhedral uncertainty set.

The above three uncertainty sets can be further combined to generate new uncertainty sets.
Bounded uncertainty is a type of important uncertainty characteristic which is widely
studied in practice. We will further introduce several uncertainty sets which are generated by
combining the ellipsoid, or polyhedron, or both ellipsoid and polyhedral uncertainty set with
the interval uncertainty set.

Definition 3.4 (“Box+Ellipsoidal” Uncertainty Set)
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This type of uncertainty set is the intersection between an ellipsoid and a box defined as
follows,

(3.4)

It is known from geometry that for an adjustable box defined by (3.1) and an adjustable
ellipsoid defined by (3.2), in order to ensure that the intersection between them does not
reduce to any one of them, the parameters should satisfy the following relationship

(3.5)

Remark 3.1 As ε = 1, the above set (3.4) defines the intersection between interval and
ellipsoid, which is referred as “interval+ellipsoidal” uncertainty set in this paper. This type
of uncertainty set is important for bounded uncertainty since it makes no sense to construct
an uncertainty set exceeding the bounded uncertain space. For this kind of uncertainty set,

when Ω = 1, the ellipsoid is exactly inscribed by the box; when , the ellipsoid is
circumscribed by the box (i.e., the intersection between the box and ellipsoid is exactly the
box). Figure 3.4 illustrates the geometry of this uncertainty set for the case that the
dimension of the uncertain parameter space is 2 (i.e., |Ji|=2).

Definition 3.5 (“Box+Polyhedral” Uncertainty Set) This type of uncertainty set is the
intersection between the polyhedral and the interval set defined with both 1-norm and
infinite norm as follows,

(3.6)

It is also known from geometry that for an adjustable box defined by (3.1) and an adjustable
polyhedron defined by (3.3), the intersection between them does not reduce to any one of
them if the parameters satisfy the following relationship

(3.7)

Remark 3.2 As Ψ = 1, the above set defines the intersection between the interval and
polyhedral set, which is referred as “interval+polyhedral” uncertainty set. For this
uncertainty set, when Γ = 1, the polyhedron is exactly inscribed by the box and the
intersection between the polyhedron and the box is exactly the polyhedron; when Γ = |Ji, the
intersection between the polyhedron and the box is exactly the box, as shown in Figure 3.5.

Definition 3.6 (“Box+Ellipsoidal+Polyhedral” Uncertainty Set) This type of uncertainty set
is the intersection between the ellipsoidal, polyhedral and box set defined as follows,

(3.8)
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For this type of uncertainty set, the intersection between polyhedron and ellipsoid is not
reduced to any one of them if the adjustable parameters satisfy the following set of
conditions:

(3.9a)

(3.9b)

where the first equation is used to ensure that there is intersection between the ellipsoid and
the box, the second equation is used to ensure that there is intersection between the ellipsoid
and the polyhedron as shown in Figure 3.6.

Illustration 3.1 Assume , , ξ1, ξ2 ∈ [−1,1], then the corresponding
ellipsoidal and polyhedral uncertainty sets for  under different values of Ω and Γ can be
illustrated as Figure 3.7 and Figure 3.8:

From the above illustration in Figure 3.7, it can be observed that when Γ = Ω, the
polyhedron is inscribed by the ellipsoid. On the other hand, it can be observed from Figure

3.8 that when , the ellipsoid is inscribed by the polyhedron, which verifies the
analysis in the previous definitions.

The different uncertainty sets are summarized in Table 3.1. Considering different types of
uncertainty characteristics (bounded or unbounded), we also list the suggested range for the
adjustable parameter of different uncertainty sets. Based on these definitions of the
uncertainty sets, the corresponding robust counterpart optimization formulations for linear
optimization problems are derived in the next section.

Remark 3.3

1) All the parameter values should be non-negative.

2) The “interval+ellipsoidal”, “interval+polyhedral”, and “interval+ellipsoidal
+polyhedral” uncertainty sets are not suggested for the unbounded uncertainty
distribution since we don't want to restrict the set within a given interval.

3) The suggested parameter range for bounded uncertainty is based on the
following: when the adjustable parameter's value is equal to the upper bound
given in the table, the bounded uncertain space is entirely covered by the
corresponding uncertainty set. Thus, further increase of the value of the
parameter could lead to more conservative solution and will not improve the
solution robustness.

4) The suggested range for unbounded uncertainty is based on that we want to
avoid that the intersection between different uncertainty sets is reduced to any
one of them.

4. Robust Counterpart Formulations for Linear Optimization Problems

To attain robust solutions, we look for solutions which are feasible for any realization of the
uncertain data in a predefined uncertainty set. In the following subsections, we present the
derivation procedure of the equivalent robust counterpart optimization models based on
formulation (2.6). In order to eliminate the inner maximization problem in the i-th constraint
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of (2.6), we first transform the inner maximization problem into its conic dual, and then
incorporate the dual problem into the original constraint.

We will first derive the robust counterpart formulation for LHS only uncertainty of a linear
optimization problem, then we will extend it to the RHS only uncertainty, and finally to the
case of LHS and RHS uncertainty appearing simultaneously.

4.1 Left Hand Side (LHS) Uncertainty

When only LHS uncertainty is considered in the i-th constraint of (2.1), the corresponding
robust counterpart constraint (2.5) for the i-th constraint is reduced to

(4.1)

The robust counterpart is derived for different uncertainty sets introduced in section 3 as
follows.

Property 4.1 If the set U is the box uncertainty set (3.1), then the corresponding robust
counterpart constraint (4.1) is equivalent to the following constraint:

(4.2)

Proof. For the box uncertainty set U∞ = {ξ | |ξj| ≥ Ψ, ∀j ∈ Ji}, we define P∞ = [IL×L;01×L],

p∞ = [0L×1;Ψ] and , where L is the cardinality of the
uncertainty set (i.e., L = |Ji). Then the inner maximization problem in (4.1) can be rewritten
as

Defining dual variable y = [wi; τi] ∈ RL+1 and using the dual cone of

, the conic dual of the inner maximization problem can be
formulated as

Since the above problem is a minimization problem, it can be further rewritten as the

following equivalent formulation by replacing τi with ,
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Realizing that , we can reformulate the conic dual of the inner maximization problem
as follows

Replacing the original inner maximization problem with the above conic dual, then the
following constraint is obtained:

Remark 4.1 Constraint (4.2) contains absolute value terms |xj|. If the variable is positive, the
absolute value operator can be directly removed. Otherwise, it can be further equivalently
transformed to the following constraints because their corresponding feasible sets are
identical:

Thus, the absolute value term in (4.2) can be eliminated and the final equivalent robust
formulation is obtained:

(4.3)

Remark 4.2 When Ψ = 1 (i.e., the interval uncertainty set), the robust counterpart

formulation is reduced to , which is exactly the robust counterpart
formulation proposed by Soyster4, the so called “worst case scenario” robust model for
bounded uncertainty.

Motivating Example 1 (Continued). Considering the first constraint of motivating example
1,

and assuming that the uncertainty set related to ξ11, ξ12 is defined by (3.1), the
corresponding robust counterpart for this constraint is:

The first robust counterpart constraint with different value of Ψ is illustrated in Figure
4.1(a). It can be observed that as the parameter value Ψ increases (i.e., the size the
uncertainty set increases), the feasible set of the resulting robust counterpart optimization
problem contracts.

Li et al. Page 12

Ind Eng Chem Res. Author manuscript; available in PMC 2012 September 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Similarly, for the second constraint of the example, the box uncertainty set induced robust
counterpart is

Notice that the robust counterpart formulation is constructed constraint by constraint and
different parameter values can be applied for different constraints. The complete box
uncertainty set induced robust counterpart formulation of this motivating example with
different parameters Ψ1 and Ψ2 for the two constraints is

which is equivalent to the following problem since the variables are positive:

Property 4.2 If the set U is the ellipsoidal uncertainty set (3.2), then the corresponding
robust counterpart constraint (4.1) is equivalent to the following constraint

(4.4)

Proof. Consider the ellipsoidal uncertainty set , we define P2 =

[IL×L; 01×L], I diag{1,…1}, p2 = [0L×1;Ω] and , then the inner
maximization problem in (4.1) can be denoted as

Defining the dual variable y = [zi; τi] ∈ RL+1 and using the dual cone , the conic dual
of the inner maximization problem is

Since it is a minimization problem, we can make equivalent transformation of above

problem by replacing τi with  and get
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After incorporating the above conic dual into the robust counterpart constraint, the following
robust counterpart is obtained

Motivating Example 1 (Continued). The corresponding robust constraint for the first
constraint of the motivating example 1 is:

and its robust counterpart constraint with different value of Ω is illustrated in Figure 4.1(b).
It can be observed that as the parameter value Ω increases (i.e., the size the uncertainty set
increases), the feasible set of the resulting robust counterpart optimization problem
contracts.

Property 4.3 If the set U is the polyhedral uncertainty set (3.3), then the corresponding
robust counterpart constraint (4.1) is equivalent to the following constraints

(4.5)

Proof. Consider the polyhedral uncertainty set , define P1 = [IL×L;

01×L], p1 = [0L×1;Γ], , then the set U1 can be denoted as

 and the inner maximization problem in (4.1) can be denoted as

Defining the dual variable y = [zi; τi] Ψ RL+1 and based on the fact that the dual cone of K1 is

The conic dual of the inner optimization problem can be formulated as:
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which can be further rewritten as the following equivalent formulation by replacing τi with

,

Since the above problem is a minimization problem, we can introduce an auxiliary variable

pi to replace  and obtain the following equivalent description:

Incorporating the above conic dual into the robust counterpart constraint, the following
robust counterpart is obtained

Remark 4.3 As shown in Remark 4.1, an equivalent robust formulation for (4.5) can be
obtained by replacing the absolute value term |xj| with auxiliary variable uj and constraint
−uj ≤ xj ≤ uj as follows:

(4.6)

Motivating Example 1 (Continued). The corresponding robust counterpart constraint for
the first constraint of the motivating example 1 is

The above robust counterpart for the first constraint with different value of G is illustrated in
Figure 4.1(c). It can be observed that as the parameter value G increases (i.e., the size the
uncertainty set increases), the feasible set of the resulting robust counterpart optimization
problem contracts.

Property 4.4 If the set U is the “box+ellipsoidal” uncertainty set (3.4), then the
corresponding robust counterpart constraint (4.1) is equivalent to the following constraint
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(4.7)

Proof. The “box+ellipsoidal” uncertainty set  can
be denoted using conic representation as follows,

where K2 and K∞ have the same definition as in the previous proof. Thus the inner
maximization problem of (4.1) becomes

Defining the dual variable ,  and using the dual cone

,  the conic dual of the inner maximization problem can be formulated as
follows:

After an equivalent transformation through replacing T1 and T2 with  and

, respectively, we get

which is further equivalent to

Since zij are decision variables, we can replace zij with  and get an equivalent problem:

Incorporating the above conic dual into the robust counterpart constraint and remove the
minimization operator (it is a equivalent operation since the inner minimization is on the left
hand side of a “less or equal to” constraint), the following robust counterpart is obtained
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Remark 4.4 As shown in Remark 4.1, an equivalent robust formulation for (4.7) can be

obtained by replacing the absolute value term  with auxiliary variable uij and

constraint  as follows:

(4.8)

Remark 4.5 When ψ= 1 (i.e., the set U is defined as “interval+ellipsoidal” uncertainty set),
the corresponding “interval+ellipsoidal” based robust counterpart optimization formulation
takes the following form:

(9)

which is exactly the robust counterpart formulation proposed by Ben-Tal and Nemirovski1

(i.e., a special case of the combined adjustable box and adjustable ellipsoidal based robust
counterpart).

Motivating Example 1 (Continued). The “interval+ellipsoidal” based robust constraint for
the first constraint of the motivating example 1 is:

The above constraint can be projected to the space spanned by the x1,x2 dimensions by
fixing x1 at different points and maximizing the corresponding x2. The constraint can be
illustrated as shown in Figure 4.1(d). Comparing the robust counterpart constraint
illustration Figure 4.1(b) and Figure 4.1(d), it can be observed that for Ω =1, the two robust
counterparts are the same, whereas for Ω =2, the “interval+ellipsoidal” based robust
counterpart is less conservative because the resulting optimization feasible set is larger. This
is consistent with the fact that as Ω ≤ 1, the intersection between interval and ellipsoid is
exactly the ellipsoid, but as Ω > 1, the intersection between interval and ellipsoid is smaller
than the ellipsoid itself.

Property 4.5 If the set U is the “box+polyhedral” uncertainty set (3.6), then the
corresponding robust counterpart constraint (4.1) is equivalent to the following constraints

(4.10)
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Proof. The “box+polyhedral” uncertainty set  can
be denoted as follows using conic representation:

Defining the dual variable ,  and using the dual cone

, , the inner maximization problem is rewritten as

The conic dual of the above problem can be formulated as follows

We can further get the following equivalent transformation through replacing T1 and T2 with

, respectively,

Since the above problem is a minimization problem, it can be equivalently transformed to
the following problem

The above problem is further equivalent to the following problem since it is a minimization

problem and optimal solution must be obtained with 

which is further equivalent to the following problem by replacing  with wij and wij ≥ 0

After incorporating the above conic dual into the robust counterpart constraint, the following
robust counterpart is obtained
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Remark 4.6 As pointed out in Remark 4.1, an equivalent robust formulation for (4.10) can

be obtained by replacing the term  with auxiliary variable uj and constraint 
follows:

(4.11)

Remark 4.7 When ψ = 1 (i.e., the set U is defined as the “interval+polyhedral” uncertainty
set), the corresponding robust counterpart optimization formulation becomes:

(4.12)

which is exactly the robust counterpart proposed by Bertsimas and Sim16.

Motivating Example 1 (Continued). The corresponding “interval+polyhedral” based
robust counterpart for the first constraint of the motivating example 1 is:

Figure 4.1(e) illustrates the projection of the above constraints to the x1,x2 dimensions.
dimensions. Comparing the robust counterpart constraint illustration Figure 4.1(c) and
Figure 4.1(e), it can be observed that for Γ =1, the robust counterpart constraint is the same,
whereas for Γ =3, the “interval+polyhedral” based robust counterpart is less conservative.
This is consistent with the fact that as Γ ≤ 1, the intersection between interval and
polyhedron is exactly the polyhedron, but as Γ > 1, the intersection between interval and
polyhedron is smaller than the polyhedron itself.

Property 4.6 If the set U is the “interval+ellipsoidal+polyhedral” uncertainty set (3.8), then
the corresponding robust counterpart constraint (4.1) is equivalent to the following
constraints

(4.13)

Proof. Consider the “interval+ellipsoidal+polyhedral” uncertainty set

Li et al. Page 19

Ind Eng Chem Res. Author manuscript; available in PMC 2012 September 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



It can be denoted using conic representation as follows,

Defining the dual variable y1 = [pi, τ1], y2 = [wi, τ2], y3 = [vi, τ3] and using the dual cone

, , , the inner maximization problem can be written as

The conic dual of the above problem can be formulated as follows

.

After equivalent transformation through replacing τ1, τ2, τ3 with ∥pi∥1, ∥wi∥2, ∥vi∥∞
respectively, we get

Replacing  with auxiliary variable zi, get

Incorporate the above conic dual and removing the minimization operator, then the
following robust counterpart is obtained

Remark 4.8 An equivalent robust formulation for (4.13) can be obtained by replacing the

term |pij| with auxiliary variable vij and constraint −vij ≤ pij ≤ vij, replacing 

with auxiliary variable uij and constraint  as follows:
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(4.14)

Motivating Example 1 (Continued). The corresponding “interval+ellipsoidal+polyhedral”
uncertainty set induced robust constraint for the first constraint of the motivating example 1
is:

The above constraints are also plotted on the x1, x2 dimensions as shown in Figure 4.1(f).
Comparing the robust counterpart constraint illustration Figure 4.1(d) and Figure 4.1(f), it
can be seen that for both Ω =1 and Ω =2, the “interval+ellipsoidal” set induced robust
counterpart is more conservative than the combined interval, ellipsoidal and polyhedral set
induced model because the resulting optimization feasible set is in general larger. This is
consistent with the fact that when we further incorporate the polyhedral set to construct the
uncertainty set, the size of the resulting uncertainty set is actually decreased.

Finally, as a summary to the above derivation, we list the robust counterpart formulations
for linear optimization problems with LHS uncertainty as shown in Table 4.1. Note that in
Table 4.1, we list the “interval+ellipsoidal” based robust counterpart formulation but not
“box+ellipsoidal” based model by realizing that the “interval+ellipsoidal” set is important
for the bounded uncertainty distribution. Similarly, the “interval+polyhedral” and “interval
+ellipsoidal+polyhedral” set induced robust counterpart optimization formulations are listed
in the table.

Remark 4.9 For the sake of simplicity, only robust formulations with absolute value terms
are listed in Table 4.1, and equivalent robust formulations after eliminating the absolute
value terms can be found via equations 4.3, 4.5, 4.6, 4.8 and 4.11. In the rest part of the
paper, the absolute value term in the other robust counterpart formulations can be eliminated
in a similar way.

4.2 Right Hand Side (RHS) uncertainty

Consider the case that only RHS uncertainty exists in the i-th constraint of (2.1) as follows

(4.15)

where  and ξi is the random variable. Then the robust counterpart for the i-th
constraint (2.5) is reduced to

(4.16)

Property 4.7 For RHS only uncertainty of the i-th constraint (4.15), the uncertainty set
induced robust counterpart constraint (4.16) is equivalent to the following constraint
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(4.17)

where Δ is defined as Ψ, Ω, Γ, min(Ω, 1), min(Ω, 1), min(Ω, Γ, 1) for the box, ellipsoidal,
polyhedral, “interval+ellipsoidal”, “interval+polyhedral”, and “interval+polyhedral
+ellipsoidal” uncertainty sets, respectively.

Proof. Since the dimension of the uncertain space for RHS only uncertainty is one (i.e., |Ji =
1), all the previously discussed different uncertainty sets are reduced to 1-dimenstional
interval sets which can be described as

(4.18)

where Δ is defined as Ψ,Ω, Γ, min(Ω, 1), min(Γ, 1), min(Ω, Γ, 1) for the box, ellipsoidal,
polyhedral, “interval+ellipsoidal”, “interval+polyhedral”, and “interval+polyhedral
+ellipsoidal” uncertainty sets, respectively.

Incorporating auxiliary variables x0 and a constraint x0 = −1, the constraint (4.16) can be
rewritten as

With the above reformulation and following the derivation process for box uncertainty set of
LHS uncertainty, the corresponding robust counterpart formulation is obtained

Notice that x0 = −1, so the above constraint is reduced to:

which is the robust counterpart for RHS only uncertainty for linear optimization problem.

Finally, the robust counterpart formulations for different uncertainty sets are summarized in
Table 4.2.

From the above analysis, it is observed that for RHS only uncertainty of a linear constraint,
there is no difference in defining different uncertainty sets since all of them reduce to a
simple interval.

4.3 Simultaneous LHS and RHS uncertainty

Let us consider the more general case where uncertainty appears on both the LHS and the
RHS of the i-th constraint:
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(4.19)

Similarly, through incorporating auxiliary variable x0 and a constraint x0 = −1, moving the
RHS to the LHS, the above constraint can be rewritten as

(4.20)

Thus, the robust counterpart formulations for simultaneous LHS and RHS uncertainty can be
derived using the same procedure as shown in section 4.1 and they are summarized in Table
4.3. For a detailed derivation procedure, the reader is directed to Appendix A.

Remark 4.10 The objective max cx can be equivalently transformed as follows:

(4.21)

Thus, the uncertainty in the objective coefficient  can be treated as uncertainty in the
following type of constraints

(4.22)

Hence, the complete robust counterpart formulations for uncertainty in LHS, RHS and
objective function are obtained.

5. Computational Studies for Robust Linear Optimization

Example 5.1 Consider the following linear optimization problem

where [c1 c2] = [8 12] , . The uncertain version of
the above LP problem can be described as the following problem:

where the possible uncertainty is related to the left hand side (LHS) constraint coefficients

, , , , the right hand side (RHS) parameter ,  and the objective (OBJ)
coefficients , . Here we define the uncertainty as follows:
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where , ,  represent constant perturbation around their nominal
values ξ10,ξ20,ξ11,ξ12,ξ21,ξ22,ξ1ξ2 are independent random variables.

When we only consider the LHS uncertainty, the different uncertainty set induced robust
counterparts can be formulated as shown in section 4.1. For example, the ellipsoidal
uncertainty set based robust counterpart is:

Note that the same uncertainty set parameter value Ω is applied for both constraints here. In
the sequel, this will be similarly applied for the rest cases without further explanation. The
solution of the different uncertainty set induced robust counterparts is shown in Figure
5.1(a). Figure 5.1(b) illustrates the relationship between the “interval+ellipsoidal”, “interval
+polyhedral”, “interval+ellipsoidal+polyhedral” models (based on LHS+RHS uncertainty
for both constraints).

Considering only the RHS uncertainty, the different uncertainty set induced robust
counterparts can be formulated as shown in section 4.2. For example, the ellipsoidal
uncertainty set based robust counterpart is as follows and the solution of the different robust
counterparts are shown in Figure 5.2.

Considering LHS and RHS uncertainty simultaneously, the ellipsoidal uncertainty set based
robust counterpart is as follows and the solution is shown in Figure 5.3.

Considering LHS, RHS and OBJ uncertainty simultaneously, we first equivalently transform
the objective uncertainty into constraint uncertainty as (4.22) and then the different
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uncertainty set induced robust counterparts can be derived based on the simultaneous LHS
and RHS uncertainty. For example, the ellipsoidal uncertainty set based robust counterpart is
as follows and the solution for simultaneous LHS, RHS and OBJ uncertainty is shown in
Figure 5.4.

Based on the solution of the different cases of uncertainties, the following remarks can be
made:

(1) It can be observed from Figures 5.1(a), 5.3(a) and 5.4(a) that for the ellipsoidal
set based robust counterpart, when Ω ≤ 1, the ellipsoidal and “interval
+ellipsoidal” has the same solution because the corresponding uncertainty sets

are the same; when , the “interval+ellipsoidal” solution reaches the
worst case and does not decrease anymore because the “interval+ellipsoidal”
uncertainty set is exactly the interval and does not change. For the polyhedral set
induced robust counterpart, when Γ ≤ 1, the polyhedral and “interval
+polyhedral” set induced models have the same solution; when Γ ≥ |Ji|, the
“interval+polyhedral” solution reaches the worst case and does not decrease
anymore. It can be concluded from those results that for bounded uncertainty,
the uncertainty set should be combined with interval to avoid conservative
solutions.

(2) Comparing the “interval+ellipsoidal” and the “interval+polyhedral” set based

model from Figures 5.1(a), 5.3(a) and 5.4(a), when , the “interval
+polyhedral” set based solution is always worse than the “interval+ellipsoidal”
based solution, which is verified by the fact that the “interval+polyhedral”
uncertainty set is larger and completely covers the “interval+ellipsoidal” set;
when Γ = Ω, the “interval+polyhedral” set based solution is always better than
the “interval+ellipsoidal” based solution because the “interval+polyhedral”
uncertainty set is smaller and completely covered by the “interval+ellipsoidal”
set.

(3) Comparing the “interval+ellipsoidal+polyhedral” set based model with others
from Figures 5.1(b), 5.3(b) and 5.4(b), for every Ω value, we adjust the value of

Γ between Ω and  and test three different values of Γ (as explained in

section 3, only when , the intersection between the ellipsoidal
and polyhedral set does not reduce to any one of them). It can be observed that

as the value of Γ increases from Ω to , the “interval+ellipsoidal
+polyhedral” set based solution switches from the “interval+polyhedral” set
based solution with Γ = Ω to the “interval+ellipsoidal” based solution with

, because the intersection between the ellipsoid and polyhedron is
exactly changing from the polyhedron with Γ = Ω to the ellipsoid with

parameter .

(4) For RHS only uncertainty, which is a special case where the number of
uncertain parameters for every constraint is 1, the solution is identical for
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ellipsoidal and polyhedral set induced models, and also for the “interval
+ellipsoidal” and “interval+polyhedral” uncertainty sets as shown in Figure 5.2.
Furthermore, as Ω ≤ 1 and Γ ≤ 1, all the solutions are identical. This is
consistent with the definition of the corresponding uncertainty set: as Ω = Γ ≤ 1,
the four types of uncertainty sets are actually the same interval set.

Example 5.2 Refinery production planning problem

Petroleum refinery production planning involves several types of uncertainty, such as prices
and product demands. The refinery topology shown in Figure 5.5 and the operational
planning model originally proposed by Alen35 are used. Leiras et al.,36 illustrated the
application of robust optimization framework which is based on the “interval+polyhedral”
uncertainty set induced robust optimization methodology proposed by Bertsimas and Sim16.

In this example, the refinery includes three units: primary distillation unit (PDU), cracking
and blending. It processes crude oil (x1) to produce gasoline (x2), naphtha (x3), jet fuel (x4),
heating oil (x5), and fuel oil (x6), where x7 ~ x20 are intermediary streams. The objective
function maximizes the profit, which considers the crude oil cost and operating cost of the
distillation and cracker units. Constraints include the production yield, fixed proportion
blending, production balances and production requirements. The deterministic model and
the definitions of variables and parameters are shown below.

(5.1a)

(5.1b)

(5.1c)

(5.1d)

(5.1e)

(5.1f)

(5.1g)

where (5.1a) represents the profit objective, (5.1b) is plant capacity constraint, (5.1c) is
production yield constraint, (5.1d) is fixed proportion blending constraints, (5.1e) is
production balance constraint, and (5.1f) is the production demand constraint.

The uncertain parameters we focus on are the cost cjt, the prices of products pjt, the yields ηij

and the demands prodjt. We assume that those parameters are subject to bounded uncertainty
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and that there exists a maximum of 10% deviation of cost and price coefficients, 5% of
demand coefficient and 1% of yield coefficient from their nominal values. It is also assumed
that only the yields of products from the distillation unit are controlled. The cost cjt and the
prices of products pjt appear in the same constraint and they are considered simultaneously.
We applied the six different robust counterpart formulations for the three kinds of
uncertainty separately, and all of them together subsequently. The solution of the nominal
deterministic model is US$23,387.50/day. Considering the different types of uncertainty
separately, the worst cases scenario results computed from box set induced robust
counterpart optimization model with Ψ = 1 are listed in Table 5.1.

From the above results, it can be observed that the cost and price uncertainty has the most
significant effect on the overall profit since the objective value is much less than the
objective value of pure yield uncertainty or pure demand uncertainty. In the sequel, we first
analyze the different types of uncertainty separately, and then consider them simultaneously.

(1) Yield uncertainty. The set of yield constraints (5.1c) contain the uncertain
parameters. In each constraint, the number of the uncertain parameters (i.e., |Ji|)
is 1. It belongs to the LHS case uncertainty. Applying the six different kinds of
robust optimization formulations, the results are shown in Figure 5.6. It can be
observed that the results of different formulations are the same as the adjustable
parameter is less than 1 because there is only 1 uncertain parameter in each
individual constraint. When Ψ, Ω, Γ = 0, the solutions are the same as in the

deterministic model. When Ψ = 1,  and Γ = |Ji|, the results reach the

worst case. When  and Γ > |Ji|, the results of “interval+ellipsoidal”,
“interval+polyhedral” and “interval+ellipsoidal+polyhedral” set induced models
do not decrease anymore.

(2) Cost and price uncertainty Since the uncertain parameters appear in the
objective, we convert it into a constraint. The resulting problem has only LHS
uncertainty and the number of the uncertain parameters (i.e., Ji) is 7. The results
are shown in Figure 5.7. When Ψ,Ω,Γ = 0, the solutions are the same as in the
deterministic model. When Ψ,Ω,Γ increase, the results of the box, ellipsoidal
and polyhedral uncertainty set induced models will decrease or even become
infeasible. If the uncertainty set is combined with an “interval” set, the solution
will finally reach the worst case value and will not decrease anymore. In this
study, the following parameters are applied, for “interval+ellipsoidal” model,

; for “interval+polyhedral” set induced model, Γ = |Ji| = 7; for

“interval+ellipsoidal+polyhedral” set induced model, we take .

(3) Demand uncertainty This belongs to the RHS uncertainty case and there is
only one uncertain parameter in each constraint. The results are shown on Figure
5.8. From this figure, we can see that the results of different formulations are the
same because there is only 1 uncertain parameter in each individual constraint.
When Ψ,Ω,Ψ = 0, the solutions are the same as in the deterministic model.

When Ψ,Ω,Γ = 1, the results reach the worst case solution. When ,
and Γ > |Ji| = 1, the results of the “interval+ellipsoidal”, “interval+polyhedral”
and interval+ellipsoidal+polyhedral” induced models do not decrease anymore.

(4) Simultaneous yield, price, cost, and demand uncertainty Here we consider all

uncertainties together. The x axis is Γprice and we set  to
plot the result using the same axis. The parameters are as follows:
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The results are shown as Figure 5.9. From this figure we can observe that when
all the Ψ,Ω,Γ for yield, price, cost and demand are 0, the results are equal to
those of the deterministic model. When Γprice = 7, Γyield = Γdemand = 1, and

, the results of the “interval+ellipsoidal”, “interval+polyhedral”, and
“interval+ellipsoidal+polyhedral” set induced models reach the worst case and
do not decrease anymore. At the same point, the “box” reaches the worst case
also.

Finally, from the above analysis, it can be concluded that for bounded uncertainty in the
yield, demand and price/cost data, the uncertainty set should be combined with the interval
set so as to avoid too conservative or even infeasible solutions. On the other hand, all the
different models have the flexibility to adjust the solution between the worst-case scenario
and the deterministic solution, depending on the selection of the adjustable parameters for
their corresponding uncertainty set. To perform a more rigorous comparison of the different
models' conservatism, the evaluation of the probabilistic guarantees of constraint violation is
necessary, and this will be the subject of a forthcoming publication.

6. Robust Counterpart Formulations for Mixed Integer Linear Optimization

Problems

In this section, different uncertainty set induced robust counterpart formulations are derived
for a general mixed integer linear constraint. We first present the results for simultaneous
constraint LHS and RHS uncertainty, and then extend the results to the case of objective
function coefficients' uncertainty.

6.1 Uncertainty in LHS and RHS

For problem (2.7), introducing auxiliary variable x0 and an additional constraint x0 = −1, the
original i-th constraint's robust counterpart (2.11) can be rewritten as

(6.1)

With the following definition

(6.2a)

(6.2b)
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(6.2c)

(6.2d)

(6.2e)

the robust counterpart (6.1) can be rewritten as:

(6.3)

In order to eliminate the inner maximization problem in (6.3), we first transform the inner
maximization problem into its conic dual, and then incorporate the dual problem into the
original constraint. In the sequel, the robust counterpart formulations for the i-th mixed
integer linear constraint in (2.7) with simultaneous LHS and RHS uncertainty will be
directly given. Detailed proofs of all properties can be found in the Appendix B.

Property 6.1 If the set U is the box uncertainty set (3.1), then the corresponding robust
counterpart constraint (6.3) becomes:

(6.4)

Proof. (see Appendix B).

Remark 6.1 Notice that the absolute value operators in constraint (6.4) can be directly
removed while the corresponding variable is positive. The robust formulation can be further
equivalently transformed to the following constraints:

(6.5)

The above constraint set can be further rewritten as the following form:

(6.6)

Motivating Example 2 (Continued). The robust counterpart for the original third constraint
is as follows:
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The final complete robust counterpart optimization model is:

In the above formulation, different parameters Ψ1, Ψ2 are assigned to the two constraints.
Note that the absolute value operator has been eliminated since the variables are all positive.

Property 6.2 If the set U is the ellipsoidal uncertainty set (3.2), then the corresponding
robust counterpart constraint (6.3) is becomes:

(6.7)

Proof. (see Appendix B).

Motivating Example 2 (Continued). The robust counterpart constraint for the third
constraint of motivating example 2 is

Property 6.3 If the set U is defined as the polyhedral uncertainty set (3.3), then the
corresponding robust counterpart constraint (6.3) becomes:

(6.8)

Proof. (see Appendix B).

Remark 6.2 Similarly, as in Remark 6.1, the above robust formulation can be further
transformed into the following equivalent constraint set after eliminating the absolute value
operators:
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(6.9)

Motivating Example 2 (Continued). The corresponding robust formulation for the third
constraint of the motivating example is:

Property 6.4 If the set U is the “interval+ellipsoidal” uncertainty set (3.4) with Ψ = 1, then
the corresponding robust counterpart constraint (6.3) becomes:

(6.10)

Proof. (see Appendix B).

Remark 6.3 Constraint (6.10) can be rewritten as

which can be further equivalently transformed to the following constraint sets as shown in
Remark 6.1:

(6.11)

Motivating Example 2 (Continued). The robust counterpart formulation for the third
constraint is
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Property 6.5 If the set U is defined as the “interval+polyhedral” uncertainty set (3.6) with Ψ
= 1, then the corresponding robust counterpart constraint (6.3) is equivalent to the following
constraint sets:

(6.12)

Proof. (see Appendix B).

Remark 6.4 While the variables are positive, the absolute value operator can be directly
removed. Otherwise, the robust formulation (6.12) can be rewritten as follows as shown in
Remark 6.1:

(6.13)

Motivating Example 2 (Continued). Since all variables are positive, the robust counterpart
for the third constraint becomes:

Property 6.6 If the set U is the “interval+ellipsoidal+polyhedral” uncertainty set (3.8) with
Ψ = 1, then the corresponding robust counterpart constraint (6.3) becomes:

(6.14)

Proof. (see Appendix B).
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Remark 6.5 As in Remark 6.1, the robust counterpart can be equivalently rewritten as
follows by introducing auxiliary variables and eliminating the absolute value operators:

(6.15)

Motivating Example 2 (Continued). The robust counterpart formulation for the third
constraint is

The different uncertainty set induced robust counterpart formulations are summarized in
Table 3.1. Finally, we point out that for the case of LHS only or RHS only uncertainty, the
corresponding robust counterpart optimization formulations can be derived based on the
above results of simultaneous LHS and RHS uncertainty.

For example, for LHS only uncertainty, we have , then the box set induced robust
counterpart (6.4) is reduced to

(6.16)

Similarly, for RHS only uncertainty, , , then the box set induced robust
counterpart (6.4) is reduced to

(6.17)

6.2 Objective Function Coefficients' Uncertainty

Considering the objective coefficients uncertainty in the mixed integer linear optimization
problem (2.7):

(6.18)
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To derive the corresponding robust counterpart formulation, the objective uncertainty is
equivalently transformed into constraint LHS uncertainty as follows

(6.19)

Then the robust counterpart formulation can be applied on the resulting constraints which
contain LHS only uncertainty.

Motivating Example 2 (continued). To derive the robust counterpart for the objective
function coefficients' uncertainty in motivating example 2, the original objective function is
transformed into the following constraint first:

Then, the set induced robust counterpart constraint for the resulting new constraint can be
formulated. For example, the box set induced robust formulation is:

The ellipsoidal set induced robust counterpart constraint is:

The polyhedral set induced robust counterpart constraint is:

The “interval+ellipsoidal” set induced robust counterpart constraint is:

7. Computational Studies for Robust Mixed Integer Linear Optimization

Example 7.1 Consider the following mixed 0–1 programming problem
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Let us assume that all the objective function coefficients, the LHS and RHS of the
constraints parameter are possibly subject to uncertainty. To find robust solutions of this
problem, we first convert the objective uncertainty into LHS uncertainty as shown in Section
6.2:

The corresponding uncertain version of the above problem can be represented using the
general form as follows

where , , , ξim, ξik, ξi0 are independent uncertain
parameters, aim, bik and pi are nominal data defined as follows

Assuming 10% uncertainty level for the possible uncertainty (i.e., , ,

), the robust counterpart model under different uncertainty sets can be formulated
as shown in section 6. Note that for the constraints containing only continuous variables,
their corresponding robust counterpart constraints can be formulated using the method
presented in section 4.

In this example, several different uncertainty cases are studied, which include LHS only
uncertainty, RHS only uncertainty, OBJ only uncertainty, simultaneous LHS, RHS and OBJ
uncertainty. Without giving a complete description of all the robust counterpart optimization
models, we list several robust counterpart models using the box set induced robust
counterpart formulation as follows:

(1) Considering LHS only uncertainty for all the constraints, the box set induced
robust counterpart model is
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Note that the same uncertainty set parameter Ψ is applied for all the constraints
here. A similar setting will be applied for the rest of the models.

(2) Considering simultaneous LHS and RHS uncertainty, the box set induced robust
counterpart model is

(3) Considering simultaneous LHS, RHS and OBJ uncertainty, the robust
counterpart model is:

Based on the solution of the robust formulations under different cases of uncertainties, the
following remarks can be made:

(1) For RHS only uncertainty, which is a special case where the number of
uncertain parameters for every constraint is 1, the solution is identical for
ellipsoidal and polyhedral set induced models, and also for the “interval
+ellipsoidal”, “interval+polyhedral” and “interval+ellipsoidal+polyhedral”
uncertainty set induced models as shown in Figure 7.3. Furthermore, as Ω ≤ 1
and Γ ≤ 1, all the solutions are identical because as Ω = Γ ≤ 1, the different
uncertainty sets are actually the same interval set.

(2) It can be observed from Figures 7.1(a), 7.2(a), 7.3(a), 7.4(a) and 7.5(a) that the
ellipsoidal set based robust counterpart solution is equal or worse (even becomes
infeasible with large Ω value) than the “interval+ellipsoidal” set based solution.
Similarly, the polyhedral set based solution is equal or worse than the “interval
+polyhedral” set based solution. This is because for the ellipsoidal set or
polyhedral set, its combination with the interval set makes the resulting
uncertainty set smaller, and thus less conservative. This suggests that for
bounded uncertainty, the uncertainty set should be combined with interval to
avoid conservative solutions.
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(3) Comparing the “interval+ellipsoidal” and the “interval+polyhedral” induced

model from Figures 7.1(b), 7.2(b), 7.4(b) and 7.5(b), when , the
“interval+polyhedral” based solution is always worse than the “interval
+ellipsoidal” based solution, which is because the “interval+polyhedral”
uncertainty set is larger and completely covers the “interval+ellipsoidal” set;
when Γ = Ω, the “interval+polyhedral” based solution is always better than the
“interval+ellipsoidal” based solution because the “interval+polyhedral”
uncertainty set is smaller and completely covered by the “interval+ellipsoidal”
set.

(4) Comparing the “interval+ellipsoidal+polyhedral” set based model with others
from Figures 7.1(b), 7.2(b), 7.4(b) and 7.5(b), it can be observed that as the Γ
value increases from Ω to , the “interval+ellipsoidal+polyhedral” based
solution switches from the “interval+polyhedral” based solution with Γ = Ω to

the “interval+ellipsoidal” based solution with , because the intersection
between ellipsoid and polyhedron is exactly changing from the polyhedral with

Γ = Ω to the ellipsoid with parameter .

Finally, from the above analysis, it can be concluded all the different models have the
flexibility to adjust the solution between the worst-case scenario and the deterministic
solution, depending on the selection of the adjustable parameters for their corresponding
uncertainty set. On the other hand, the degree of conservatism of the models differs, and
some models even become infeasible with relatively large uncertainty set parameter values.

Example 7.2 Process scheduling problem

This example involves the scheduling of a batch chemical process related to the production
of two chemical products using three raw materials. The state-task-network (STN)
representation of this example is shown in Figure 7.6. The deterministic MILP formulation
(7.1) for the scheduling of this batch process is based on37 and detailed problem data can be
found in37.

Through this example, we study the different robust counterpart optimization formulations
introduced in section 6 considering different types of uncertainty cases. The scheduling
problem's MILP formulation is as follows:

(7.1a)

(7.1b)

(7.1c)

(7.1d)
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(7.1e)

(7.1f)

(7.1g)

(7.1h)

(7.1i)

(7.1j)

(7.1k)

(7.1l)

(7.1m)

(7.1n)

Nomenclature for the process scheduling model (7.1)

i ∈ I tasks

Is tasks which produce or consume state (s)

Ij tasks which can be performed in unit (j)

j ∈ J units

Ji units which are suitable for performing task (i)

n ∈ N event points representing the beginning of a task

s ∈ S states

Sp states belong to products

Sr states belong to raw materials

prices price of state (s)
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STIs initial amount of state (s)

STFs final amount of state (s)

ds,n amount of state (s) delivered to the market at event point (n)

wvi,j,n binary, whether or not task (i) in unit (j) start at event point (n)

sts,n continuous, amount of state (s) at event point (n)

ρs,i
P

, ρs,i
C proportion of state (s) produced, consumed by task(i), respectively

bi,j,n amount of material undertaking task (i) in unit (j) at event point (n)

stmax
s available maximum storage capacity for state (s)

νi, j
min

, νi, j
max minimum amount, maximum capacity of unit (j) when processing task (i)

rs market demand for state (s) at the end of the time horizon

Tfi,j,n time at which task (i) finishes in unit (j) while it starts at event point (n)

Tsi,j,n time at which task (i) starts in unit (j) at event point (n)

αi,j, βi,j variable term of processing time of task (i) in unit (j)

H time horizon

In the above formulation, the objective function (7.1a) maximizes the profit; allocation
constraints (7.1b) state that only one of the tasks can be performed in each unit at an event
point (n); constraints (7.1c) represent the material balances for each state (s) expressing that
at each event point (n) the amount is equal to that at event point (n-1), adjusted by any
amounts produced and consumed between event points (n-1) and (n), and delivered to the
market at event point (n); the storage and capacity limitations of production units are
expressed by constraints (7.1d) and (7.1e); constraints (7.1f) are written to satisfy the
demands of final products; and constraints (7.1g) to (7.1n) represent time limitations due to
task duration and sequence requirements in the same or different production units.

In this example, uncertainties in material and product prices, processing times of tasks in
different units, and product demands are studied. We assume bounded uncertainty and
assign a maximum of 5% deviation of price data, 5% of processing times and 20% of
demand data from their nominal values.

(1) Price uncertainty Considering only price uncertainty, then only constraint (7.1a) is

affected, where  are the uncertain parameters. For the process network in this example,
there are three raw materials and two products, so the total number of uncertain parameters
in the constraint is 5 (i.e., |Ji| = 5 ). We first study the ellipsoidal and polyhedral sets related
robust formulations presented in section 6 and apply them on this constraint. The results are
shown in Figure 7.7. From the results shown in Figure 7.7, it is seen that when Ω≤ 1 and Γ≤
1, (a) the ellipsoidal and the “interval+ellipsoidal” set based solutions are identical, and (b)
the polyhedral and the “interval+polyhedral” set based solutions are identical. This is
because the corresponding uncertainty sets are also identical. As Ω > 1 and Γ > 1, the
combined uncertainty sets based solutions are better because their uncertainty sets are
smaller with the restriction of the bounded box comparing to the pure ellipsoidal and pure
polyhedral set, whose corresponding solutions quickly deteriorate. The above analysis
further verifies the earlier observation that for bounded uncertainty, a combination set is
preferred to obtain less conservative solution. Finally, considering the “interval+ellispsoidal
+polyhedral” set will only lead to solutions between the “interval+ellispoidal” and the
“interval+polyhderal” cases and require a more complex model. Hence it is not suggested
for the solution of robust scheduling problems.
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(2) Processing time uncertainty Here we consider only processing time uncertainty in

constraints (7.1g), where  and  are uncertain parameters. Thus, every such constraint
has two uncertain parameters (i.e., |Ji| = 2 ). We study the ellipsoidal and polyhedral sets
related robust formulations presented in section 6 and apply them on this constraint. The
results are shown in Figure 7.8. From the solution, same conclusions can be made as in the
analysis for price uncertainty.

(3) Demand uncertainty Considering only demand uncertainty, then constraints (7.1f) are
affected. For each one of these constraints, there is only uncertain parameter on the RHS of
the constraint, and the uncertain parameter is the demand data . Considering that the
uncertainty is bounded, we only need to study the box set and those combined sets. Since the
number of uncertain parameters is 1, for each constraint, the different uncertainty sets are
reduced to 1-dimenstion interval set which can be described as

(7.2)

where Δ is defined as Ψ, min(Ω,1) , min(Γ,1) , min(Ω, Γ, 1) for the box, “interval
+ellipsoidal”, “interval+polyhedral”, “interval+polyhedral+ellipsoidal” uncertainty set,
respectively. Thus, the different uncertainty set induced robust counterpart formulations will
be identical with same uncertainty set parameter value Δ. Here, we plot the result of their
robust counterpart solution as shown in Figure 7.9.

Finally, we studied the worst-case scenario solution for the different uncertainty cases. The
worst-case scenario solution means that the uncertainty set covers the whole uncertainty
space. Among the different uncertainty sets to cover the whole bounded uncertain space, box
uncertainty set takes the smallest size, and here the box set with Ψ = 1 (i.e., interval set) is
applied for the three types on uncertainty individually and the results are shown in Table 7.1.
Comparing the result, we can conclude that with the given uncertainty characteristics, the
price uncertainty has the largest effect on the final profit, whereas the demand uncertainty
has the least effect on the final profit.

8. Conclusions

Set induced robust counterpart optimization techniques are systematically studied in this
paper. Several important uncertainty sets are studied, including those studied in the literature
and also several new ones proposed in this work. New uncertainty sets such as the adjustable
box, ellipsoidal, polyhedral and “interval+ellipsoidal+polyhedral” set are introduced and
their relationship with some well known uncertainty sets presented in the literature is
discussed. The relationships between those different uncertainty sets are extensively
discussed, and useful insights are gained for their corresponding robust counterpart models.
For uncertainty in the left hand side, right hand side and objective function, the robust
counterpart formulations induced by those different uncertainty sets for linear optimization
problems and mixed integer linear optimization problems are derived. The different
uncertainty set based robust counterpart formulations are also compared through numerical
studies, a production planning and a process scheduling problem.
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Appendix A

Derivation of the robust counterpart for a linear constraint under simultaneous LHS and
RHS uncertainty

Consider the i-th linear constraint of problem (2.1) with simultaneous LHS and the RHS
uncertainty:

(A.1)

where , . Incorporating auxiliary variable x0 and an additional
constraint x0 = −1, the constraint can be rewritten as

(A.2)

With a given uncertainty set U for ξi0 and ξij, the corresponding set induced robust
counterpart is

(A.3)

With the following definition

(A.4a)

(A.4b)

(A.4c)

(A.4d)

(A.4e)

constraint (A.3) can be rewritten as

(A.5)
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Property A.1 The box uncertainty set (3.1) induced robust counterpart formulation (A.5) is
equivalent to

(A.6)

Proof. Applying Property 3.1 on (A.5), we obtain the following equivalent problem

Expanding the above constraints using the previously defined variables, the resulting robust
counterpart formulation is

Notice that x0 = −1, so the absolute value operation on them is automatically eliminated.
The final robust counterpart formulation is

Property A.2 The ellipsoidal uncertainty set induced robust counterpart formulation (A.5) is
equivalent to

(A.7)

Proof. Applying Property 3.2 on (A.5), the ellipsoidal based uncertainty set induced robust
counterpart is

Expanding the above constraints, the resulting robust counterpart formulation is

Notice that x0 = −1, so the final robust counterpart formulation is
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Property A.3 The polyhedral uncertainty set induced robust counterpart formulation (A.5)
is equivalent to

(A.8)

Proof. Applying Property 3.3 on (A.5), the ellipsoidal based uncertainty set induced robust
counterpart is

Expanding the above constraints, the resulting robust counterpart formulation is

Notice that x0 = −1, so the final robust counterpart formulation is

Property A.4 The “Interval+ellipsoidal” uncertainty set induced robust counterpart
formulation (A.5) is equivalent to

(A.9)

Proof. Applying Property 3.4 on (A.5), the “interval+ellipsoidal” based uncertainty set
induced robust counterpart is

Expanding the above constraints, the resulting robust counterpart formulation is
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Notice that x0 = −1, the final robust counterpart formulation is

Property A.5 The “Interval+polyhedral” uncertainty set induced robust counterpart
formulation (A.5) is equivalent to

(A.10)

Proof. Applying Property 3.5 on (A.5), the robust counterpart is

Expanding the above constraints, the resulting robust counterpart formulation is

Notice that x0 = −1, so the final robust counterpart formulation is

Property A.6 The “Interval+polyhedral+ellipsoidal” uncertainty set induced robust
counterpart formulation (A.5) is equivalent to

(A.11)

Proof. Applying Property 3.6 on (A.5), the robust counterpart is
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Expanding the above constraints, the resulting robust counterpart formulation is

Notice that x0 = −1, so the final robust counterpart formulation is

Appendix B

Derivation of the robust counterpart for a mixed integer linear constraint under simultaneous
LHS and RHS uncertainty

As presented in section 6.1, the robust counterpart formulation for the i-th mixed integer
linear constraint in problem (2.7) with simultaneous LHS and RHS uncertainty can be
rewritten as (6.3), i.e.,

where Ai, ,X,ξi,Ji are defined in (6.2). In the follows, proofs for Properties 6.1–6.6 are
presented.

B.1 Proof of property 6.1: Notice that the derivation procedure in Section 4 for the robust
linear counterpart constraint also applies for the mixed integer linear constraint since it
applies for both continuous and integer variable. So, applying Property 4.1 on constraint
(6.3), we can obtain the following equivalent problem

Expand the above constraints using the definition in equation (6.2), the resulting robust
counterpart formulation is:
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Notice that x0 = −1, so the final robust counterpart formulation (6.4) is obtained:

B.2 Proof of property 6.2: Applying Property 4.2 on (6.3), we obtain the following
equivalent problem

Expanding the above constraints using the definition in equation (6.2), then the resulting
robust counterpart formulation is

Notice that x0 = −1, so the final robust counterpart formulation (6.7) is obtained:

B.3 Proof of property 6.3: Applying Property 4.3 on (6.3), we obtain the following
equivalent problem

Expanding the above constraints using the definition in equation (6.2), the resulting robust
counterpart formulation is

Notice that x0 = −1, so the final robust counterpart formulation (6.8) is obtained:
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B.4 Proof of property 6.4: Applying Property 4.4 on (6.3), we obtain the following
equivalent problem

Expanding the above constraints using the definition in equation (6.2), the resulting robust
counterpart formulation is obtained:

Notice that x0 = −1, so the final robust counterpart formulation (6.10) is obtained:

B.5 Proof of property 6.5: Applying Property 4.5 on (6.3), we obtain the following
equivalent problem

Expanding the above constraints using the definition in equation (6.2), the resulting robust
counterpart formulation is

Notice that x0 = −1, so the final robust counterpart formulation (6.12) is obtained:

B.6 Proof of property 6.6: Applying Property 4.6 on (6.3), we obtain the following
equivalent problem
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Expanding the above constraints using the definition in equation (6.2), the resulting robust
counterpart formulation is

Notice that x0 = −1, so the final robust counterpart formulation (6.14) is obtained:
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Figure 3.1.

Illustration of box uncertainty set
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Figure 3.2.

Illustration of ellipsoidal uncertainty set
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Figure 3.3.

Illustration of polyhedral uncertainty set
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Figure 3.4.

Illustration of the “interval+ellipsoidal” uncertainty set
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Figure 3.5.

Illustration of combined interval and polyhedral uncertainty set
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Figure 3.6.

Illustration of combined interval, ellipsoidal and polyhedral uncertainty set
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Figure 3.7.

Illustration of the relationship between ellipsoidal and polyhedral uncertainty set (Γ = Ω)
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Figure 3.8.

Illustration of the relationship between ellipsoidal and polyhedral uncertainty set ( )
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Figure 4.1.

Illustration of the robust counterpart constraint (a) Box uncertainty set; (b) Ellipsoidal
uncertainty set; (c) Polyhedral uncertainty set; (d) “Interval+Ellipsoidal” uncertainty set; (e)
“Interval+Polyhedral” uncertainty set; (f) “Interval+Ellipsoidal+Polyhedral” uncertainty set
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Figure 5.1.

Only LHS uncertainty for both constraints (|Ji| = 2)
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Figure 5.2.

Only RHS uncertainty for both constraints (|Ji| = 1)
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Figure 5.3.

Simultaneous LHS and RHS uncertainty for both constraints (|Ji| = 3)
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Figure 5.4.

Simultaneous LHS, RHS and OBJ uncertainty (|Ji| = 3)
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Figure 5.5.

Refinery flowchart

Li et al. Page 63

Ind Eng Chem Res. Author manuscript; available in PMC 2012 September 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 5.6.

Solution for yield uncertainty
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Figure 5.7.

Solution for price and cost uncertainty
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Figure 5.8.

Solution for demand uncertainty
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Figure 5.9.

Solution for simultaneous yield, price, cost and demand uncertainty
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Figure 7.1.

Only LHS uncertainty for all constraints (|Ji| = 2) Note: for polyhedral model, as ,
model infeasible
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Figure 7.2.

LHS+LHS uncertainty for all constraints (|Ji| = 3) Note: for polyhedral model and “box”
model, infeasible for large Γ, Ψ,
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Figure 7.3.

Only RHS uncertainty for all constraints (|Ji| = 1)
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Figure 7.4.

Only OBJ uncertainty (|Ji| = 4) Note: for polyhedral model, infeasible for large Γ
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Figure 7.5.

Objective uncertainty (|Ji| = 4) and LHS uncertainty for the third and fourth constraints (|Ji|
= 2)
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Figure 7.6.

State Task Network (STN) representation of the batch chemical process
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Figure 7.7.

Price uncertainty (|Ji| = 5)
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Figure 7.8.

Processing time uncertainty (|Ji| = 2)
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Figure 7.9.

Demand uncertainty (|Ji| = 1)
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Table 3.1

Summary on the uncertainty set

Illustration Type Adjustable parameter Suggested range for bounded uncertainty Suggested range for unbounded uncertainty

Box Ψ Ψ ≤ 1 Ψ < ∞

Ellipsoidal Ω Ω ≤ ∣ Ji ∣ Ω < ∞

Polyhedral Γ Γ ≤ ∣ Ji ∣ Γ < ∞

Interval+Ellipsoidal Ω Ω ≤ ∣ Ji ∣

Box+Ellipsoidal Ψ,Ω Ψ ≤ 1, Ψ ≤ Ω ≤ Ψ ∣ Ji ∣ Ψ ≤ Ω ≤ Ψ ∣ Ji ∣

Interval+Polyhedral Γ Γ ≤ ∣ Ji ∣

Box+Polyhedral Ψ,Γ Ψ ≤ 1, Ψ ≤ Γ ≤ Ψ ∣ Ji ∣ Ψ ≤ Γ ≤ Ψ ∣ Ji ∣

Interval+Ellipsoidal+Polyhedral Ω,Γ Ω ≤ ∣ Ji ∣ , Ω ≤ Γ ≤ Ω ∣ Ji ∣

Box+Ellipsoidal+Polyhedral Ψ Ω Γ Ψ ≤ 1, Ψ ≤ Ω ≤ Ψ ∣ Ji ∣ Ω ≤ Γ ≤ Ω ∣ Ji ∣ Ψ ≤ Ω ≤ Ψ ∣ Ji ∣ Ω ≤ Γ ≤ Ω ∣ Ji ∣
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Table 4.1

Robust counterpart formulation for the i-th linear constraint with LHS uncertainty

Uncertainty set Robust counterpart formulation

Box ∑ j aijxj +Ψ ∑ j∈Ji
âij ∣ xj ∣ ≤ bi

Ellipsoidal ∑ j aijxj + Ω ∑ j∈Ji
âij
2 xj

2 ≤ bi

Polyhedral { ∑ j aijxj + ziΓ ≤ bi
zi ≥ âij ∣ xj ∣ ∀ j ∈ Ji

Interval+ Ellipsoidal ∑ j aijxj + ∑ j∈Ji
âij ∣ xj − zij ∣ + Ω ∑ j∈Ji

âij
2 zij

2 ≤ bi

Interval+ Polyhedral {∑ j aijxj + ziΓ + ∑ j∈Ji
pij ≤ bi

zi + pij ≥ âij ∣ xj ∣ ∀ j ∈ Ji
zi ≥ 0, pij ≥ 0

Interval+Ellipsoidal+Polyhedral {∑ j aijxj + ziΓ + ∑ j∈Ji
∣ pij ∣ + Ω ∑ j∈Ji

wij
2 ≤ bi

zi ≥ ∣ âijxj − pij − wij ∣ ∀ j ∈ Ji
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Table 4.2

Robust counterpart for the i-th linear constraint with RHS uncertainty

Uncertainty set Robust counterpart formulation

Box ∑ j aijxj +Ψb̂i ≤ bi

Ellipsoidal ∑ j aijxj + Ωb̂i ≤ bi

Polyhedral ∑ j aijxj + Γb̂i ≤ bi

Interval+Ellipsoidal ∑ j aijxj +min(Ω, 1)b̂i ≤ bi

Interval+Polyhedral ∑ j aijxj +min(Γ, 1)b̂i ≤ bi

Interval+Ellipsoidal+Polyhedral ∑ j aijxj +min(Ω, Γ, 1)b̂i ≤ bi
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Table 4.3

Robust counterpart formulation for the i-th linear constraint with LHS and RHS uncertainty

Uncertainty set Robust counterpart formulation

Box ∑ j aijxj +Ψ ∑ j∈Ji
âij ∣ xj ∣ + b̂i ≤ bi

Ellipsoidal ∑ j aijxj + Ω ∑ j∈Ji
âij
2 xj

2 + b̂ j
2 ≤ bi

Polyhedral {∑ j aijxj + ziΓ ≤ bi
zi ≥ âij ∣ xj ∣ ∀ j ∈ Ji, zi ≥ b̂i

Interval+ Ellipsoidal ∑ j aijxj + ∑ j∈Ji
âij ∣ xj − zij ∣ + b̂i ∣ 1 + zi0 ∣ + Ω ∑ j∈Ji

âij
2 zij

2 + b̂i
2zi0

2 ≤ bi

Interval+Polyhedral {∑ j aijxj + ziΓ + ∑ j∈Ji
pij + pi0 ≤ bi

zi + pij ≥ âij ∣ xj ∣ ∀ j ∈ Ji, zi + pi0 ≥ b̂i
zi ≥ 0, pij ≥ 0, pi0 ≥ 0

Interval+Ellipsoidal+Polyhedral {∑ j aijxj + ziΓ + ∑ j∈Ji
∣ pij ∣ + ∣ pi0 ∣ + Ω ∑ j∈Ji

wij
2 +wi0

2 ≤ bi

zi ≥ ∣ âijxj − pij − wij ∣ ∀ j ∈ Ji, zi ≥ ∣ b̂i + pi0 +wi0 ∣
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Table 5.1

Objective function values for the worst-case scenario case

Uncertain parameter Yield Demand Cost and price Cost, price, yield and demand

Objective value 22665.00 23134.97 7113.92 6569.14
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Table 6.1

Summary on robust counterpart formulation for the i-th mixed integer linear constraint

Uncertainty Set Robust Counterpart Formulation

Box ∑m aimxm + ∑k bikyk +Ψ ∑m∈Mi
âim ∣ xm ∣ + ∑k∈Ki

b̂ik ∣ yk ∣ + p̂i ≤ pi

Ellipsoidal ∑m aimxm + ∑k bikyk + Ω ∑m∈Mi
âim
2 xm

2 + ∑k∈Ki
b̂ik
2 yk

2 + p̂i
2 ≤ pi

Polyhedral {∑m aimxm + ∑k bikyk + ziΓ ≤ pi
zi ≥ âim ∣ xm ∣ ∀m ∈ Mi
zi ≥ b̂ik ∣ yk ∣ ∀ k ∈ Ki
zi ≥ p̂i

Interval+ Ellipsoidal ∑m aimxm + ∑k bikyk + ∑m∈Mi
âim ∣ xm − zim ∣ + ∑m∈Ki

b̂ik ∣ yk − zik ∣ + p̂i ∣ 1 + zi0 ∣ + Ω ∑m∈Mi
âim
2 zim

2 + ∑k∈Ki
b̂ik
2 zik

2 + p̂i
2zi0

2 ≤ pi

Interval+ Polyhedral {∑m aimxm + ∑k bikyk + ziΓi + ∑m∈Mi
wim + ∑k∈Ki

wik +wi0 ≤ pi

zi +wim ≥ âim ∣ xm ∣ ∀m ∈ Mi
zi +wik ≥ b̂ik ∣ yk ∣ ∀ k ∈ Ki
zi +wi0 ≥ p̂i

Interval+ Ellipsoidal+ Polyhedral {∑m aimxm + ∑k bikyk + ziΓ + ∑m∈Mi
∣ qim ∣ + ∑k∈Ki

∣ qik ∣ + ∣ qi0 ∣ + Ω ∑m∈Mi
wim

2 + ∑k∈Ki
wik

2 +wi0
2 ≤ pi

zi ≥ ∣ âimxm − qim − wim ∣ ∀m ∈ Mi
zi ≥ ∣ b̂ikyk − qik − wik ∣ ∀ k ∈ Ki
zi ≥ ∣ p̂i + qi0 + qi0 ∣
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Table 7.1

Worst-case scenario solution

Deterministic Price uncertainty Processing Time uncertainty Demand uncertainty

Objective value 1088.75 959.56 974.95 1032.71
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