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Abstract

Face perception serves as the basis for much of human social exchange. Diverse information can

be extracted about an individual from a single glance at their face, including their identity,

emotional state, and direction of attention. Neuropsychological and fMRI experiments reveal a

complex network of specialized areas in the human brain supporting these face-reading skills.

Here we consider the evolutionary roots of human face perception by exploring the manner in

which different animal species view and respond to faces. We focus on behavioral experiments

collected from both primates and non-primates, assessing the types of information that animals are

able to extract from the faces of their conspecifics, human experimenters, and natural predators.

These experiments reveal that faces are an important category of visual stimuli for animals in all

major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in

vertebrate evolution. At the same time, some aspects of facial perception are only evident in

primates and a few other social mammals, and may therefore have evolved to suit the needs of

complex social communication. Since the human brain likely utilizes both primitive and recently

evolved neural specializations for the processing of faces, comparative studies may hold the key to

understanding how these parallel circuits emerged during human evolution.

For humans, faces are among the most important visual stimuli, a fact that becomes apparent

in social settings – as a species we are constantly, almost obsessively, monitoring each

other's faces, paying close attention to subtle details that can give some insight into the

emotional state, level of engagement, or object of attention of our associates. Fluency with

faces offers great social advantages, allowing one to glean aspects of another's internal

thought processes and to predict their behavior. But how did humans come to place so much

emphasis upon this particular aspect of personal appearance? Is the capacity to read faces a

product of our society, finely tuned to meet the needs of human culture? Already in the

nineteenth century, Darwin suggested that this is not the case, and that human facial

expressions share much in common with those of many animals (Darwin, 1872). For Darwin

the study of faces fell naturally into a comparative and evolutionary context, a perspective

adopted by only a small group of contemporary researchers (e.g. Parr, Waller, & Fugate,

2005; Pascalis & Kelly, 2009).

Here we take a first step in exploring the evolution of face perception by reviewing a wide

range of behavioral studies that provide insight into the following questions: (1) To what

extent do faces constitute a “special” category of visual stimuli for nonhuman primates as

well as other mammalian and vertebrate species? That is, to what extent are they important
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stimuli, eliciting specific behavioral and neural responses? (2) What types of information are

various animals able to extract from a face? (3) How and when might have different aspects

of face perception emerged during evolution? Our review covers behavioral experiments

conducted in animals from many taxa related to visual individual recognition, predator

detection, gaze following, and reaction to emotional expressions. While avoiding detailed

descriptions of brain anatomy and physiology, we do refer to relevant neurophysiological

data where available. In the first section, we set the stage by breaking down face perception,

based on data from human studies, into several dissociable components that provide a

conceptual framework to guide our review of animal face perception and social vision more

generally.

Components of face perception

What kinds of information can be extracted from a face? Numerous studies have

demonstrated that face perception is multi-faceted: not only do we recognize individuals, but

also monitor their faces to obtain a continuous stream of social information, ranging from

communicative gestures to emotional and attentive states (for reviews see Bruce & Young,

1998; Kanwisher & Yovel, 2006; Peterson & Rhodes, 2003; Tsao & Livingstone, 2008). In

our comparative review, we separately analyze different aspects of face perception,

described briefly here for humans:

1) Identity

The recognition of individual faces is in some ways the pinnacle of human visual

performance. Since all faces have the same basic configural appearance (e.g. two eyes above

a nose and mouth, some times called the first-order configuration), individuals must be

identified by subtle deviations from this prototypic pattern, sometimes referred to as second-

order relational information or configuration (Diamond & Carey, 1986). Human face

recognition is highly efficient, involving a parallel integration of information over the entire

face (for reviews, see Farah, Wilson, Drain, & Tanaka, 1998; McKone, Kanwisher, &

Duchaine, 2007). This form of recognition appears to rely on specialized areas in the brain

that are selectively engaged by faces that are upright and of normal contrast polarity

(Kanwisher, 2000; Rossion & Gauthier, 2002; Thompson, 1980; Tsao & Livingstone, 2008;

Yin, 1969).

2) Emotional Expression

Humans communicate their emotional states to others through the stereotypic posturing of

facial elements. Elaborated facial musculature contributes to a large repertoire of

expressions involving the display of the teeth, the furrowing of the brow, and the closure of

the eyes, some of which are uniquely human and some not (Darwin, 1872). The appearance

of an emotional expression can directly influence the observer's own emotional state. The

appearance of the eyes serves as a particularly salient emotional cue (Adolphs et al., 2005;

Whalen et al., 2004). Some basic facial expressions seem to be consistent across human

populations (Ekman, Sorenson, & Friesen, 1969), possibly owing to their adaptive value in

evolution (Schmidt & Cohn, 2001).

3) Gaze

In addition to its role in signaling emotional state, the appearance of the eyes also provides

insight into an individual's attentive state, including their level of engagement, intentions, or

focus of interest. This aspect of face perception may be particularly well developed in

humans, since the sclera of the human eye is more visible than in other primates (Kobayashi

& Kohshima, 1997). Indeed, human infants primarily use the orientation of the eyes, rather

than the head, to determine another's direction of gaze (Tomasello, Hare, Lehmann, & Call,
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2007). Gaze interplay is a salient feature of social interaction and is abnormal in a number of

psychiatric conditions, in which patients typically avoid looking into the eyes of others

(Coss, 1978b; Johnson et al., 2005).

4) Attraction

Faces play an important role in human sexual attraction, which has been linked to face

averageness, symmetry, and sexual dimorphism (masculinity in male faces, femininity in

female faces) (Rhodes & Simmons, 2007). These attributes may in turn be related to mate

quality, so that our preferences for them could have been sexually selected (Rhodes, 2006).

Similarly, subtle coloration of the face affects perceived health, which is important in

attractiveness (Stephen, Coetzee, Law, & Perrett, 2009).

5) Development

The developmental trajectory of face perception is complex and only partly understood.

Newborn infants detect and visually orient to face-like patterns in preference to other

complex patterns (Goren, Sarty, & Wu, 1975; Johnson, Dziurawiec, Ellis, & Morton, 1991;

for a review see Johnson, 2005), and form a preference for their mother's face within days of

birth (Bushnell, Sai, & Mullin, 1989; Pascalis, de Schonen, Morton, Deruelle, & Fabre-

Grenet, 1995). They are also able to discriminate and imitate a few basic facial expressions

in the hours after birth (Meltzoff & Moore, 1983). During the first year of life, face

processing mechanisms are “tuned” by exposure to faces (Kelly et al., 2007; Pascalis, de

Haan, & Nelson, 2002; Pascalis et al., 2005), and recognition performance continues to

improve through childhood and adolescence (Carey, 1992; Carey, Diamond, & Woods,

1980; Mondloch, Geldart, Maurer, & Le Grand, 2003; Mondloch, Le Grand, & Maurer,

2002). The basis of this improvement remains controversial, with some arguing that

sensitivity to second-order configuration improves throughout childhood (Mondloch et al.,

2003) and others attributing it to the development of domain-general skills in attention and

executive functions (Crookes & McKone, 2009).

6) Neural Specialization

Different circuits in the brain support the perception of different kinds of information, a

principle that is evident in both brain damaged patients and functional imaging studies

(Adolphs, Tranel, & Damasio, 1998; Calder & Young, 2005; Hoffman & Haxby, 2000;

Humphreys, Donnelly, & Riddoch, 1993). The most prominent face-specialized area in the

human brain is on the fusiform gyrus, where responses are stronger to faces than to any

other category of stimuli (Haxby, Hoffman, & Gobbini, 2000; Kanwisher, McDermott, &

Chun, 1997; Kanwisher & Yovel, 2006). This region may receive basic perceptual

representations of faces from a more posterior occipital face-selective area (Fairhall & Ishai,

2007), and damage in the vicinity of these areas can lead to the inability to recognize

individual faces (Bouvier & Engel, 2006; Damasio, Damasio, & Van Hoesen, 1982). Some

neurons in the medial temporal lobe are thought to represent people at a very general,

abstract level, and respond robustly and selectively to faces (Quiroga, Reddy, Kreiman,

Koch, & Fried, 2005). By contrast, the superior temporal sulcus (STS) appears sensitive to

changeable aspects of the face, as it responds selectively to emotional expression and eye

gaze (Allison, Puce, & McCarthy, 2000; Engell & Haxby, 2007; Hoffman & Haxby, 2000).

Eye gaze perception additionally activates the intraparietal sulcus, and its coding can be

dissociated from that of identity and expression (Pelphrey & Vander Wyk, 2010). Other

neural structures respond to specific emotional expressions. For example, the amygdala

responds selectively to fearful or unhappy facial expressions (Morris et al., 1996), whereas

the orbitofrontal cortex responds to angry facial expressions (Blair, Morris, Frith, Perrett, &

Dolan, 1999).
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Thus research in humans has shown that face perception entails a diverse set of skills that

are supported by multiple specialized neural circuits and that require years to fully develop.

Based on this framework we now turn to face perception by nonhuman species, reviewing

the extent to which different animals look at faces to extract different types of information,

and referring to the developmental course and neural basis of face processing where

information is available. We ask to what extent faces are a special category of visual stimuli

for nonhuman primates, other mammals, and other vertebrates. We survey a wide range of

experiments investigating the specific types of visual information various animals are and

are not able to extract from faces. Then, based on the shared capacities of different animals,

we speculate on the evolutionary history of different aspects of face perception, and how this

history might be informative about our own face perception.

Nonhuman primates

Like humans, other primates are highly developed in their use of faces for social purposes,

such as recognition, communication, and mate selection. Primates have been tested

extensively on how they perceive faces, primarily because of their evolutionary proximity to

humans and human-like capacity to read faces, but also because they can be easily trained to

respond to images and videos in a laboratory setting (see Figure 1A)

Identity

All primate species tested experimentally are able to recognize familiar individuals by the

appearance of their faces. Nonetheless, careful testing has revealed some differences

between species. Chimp face perception seems to be most similar to humans. They are able

to readily discriminate photos of unfamiliar conspecifics, and when doing so rely primarily

on the eyes (Parr, Heintz, & Akamagwuna, 2006; Parr, Winslow, Hopkins, & de Waal,

2000; Tomonaga, Itakura, & Matsuzawa, 1993). Chimps are also sensitive to familial

similarity in unfamiliar faces (Parr & de Waal, 1999) (Figure 2A). In fact, a number of

experiments indicate that chimps use configural processing in a manner similar to humans,

since their recognition is sensitive to the same manipulations that disrupt face recognition in

humans, such as rotational inversion (Parr, Dove, & Hopkins, 1998; Tomonaga, 2007), and

second-order spatial distortions (Parr et al., 2006).

Rhesus macaques also recognize each other by their faces, with individual recognition being

an important feature of their dominance hierarchy (Bovet & Washburn, 2003; Deaner,

Khera, & Platt, 2005; Parr et al., 2000). They also appear sensitive to familial resemblance,

as they spend more time looking at their kin than at other conspecifics, even when lacking

previous visual experience with them due to early postnatal separation (Wu, Holmes,

Medina, & Sackett, 1980) (testing apparatus shown in Figure 1B). Compared to chimps,

macaques pay more attention to the component parts of a face and their first-order, rather

than second-order, spatial relations (Parr, Heintz, & Pradhan, 2008; Parron & Fagot, 2007).

Also, the effect of rotational inversion on face recognition in monkeys has been mixed

(Gothard, Brooks, & Peterson, 2009; Parr et al., 2008; Parr, Winslow, & Hopkins, 1999;

Phelps & Roberts, 1994; Tomonaga, 1994; Weiss, Kralik, & Hauser, 2001; Wright &

Roberts, 1996), suggesting that if they do use configural processing, it is to a lesser degree

than humans and chimps.

The primates that have been tested also appear to exhibit a conspecific advantage; that is,

they recognize and discriminate members of their own species more readily than other

species. This advantage has been likened to the human other-race effect, where faces from

one's own race are more easily recognized than faces from another race (Malpass & Kravitz,

1969; Meissner & Brigham, 2001). One comparative behavioral study used viewing

preferences as a measure of face recognition in humans, Tonkean macaques (Old World
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monkeys), and capuchins (New World monkeys). Each species was shown photographs of a

large number of faces, from their own species and from 2-3 other primate species. New

faces from the same-species engendered reliably longer looking times than new faces from

other species, suggesting better individual recognition of conspecific than heterospecific

faces (Dufour, Pascalis, & Petit, 2006) (Figure 2B). A similar advantage for conspecifics

was also demonstrated in rhesus macaques (Fujita, 1987, 1993; Pascalis & Bachevalier,

1998). Interestingly, the reduced recognition of heterospecifics may involve a change in the

way faces are analyzed. For example, rhesus macaques, while showing some signs of

configural analysis for conspecific faces, appear to switch to a feature-based mode of

analysis when viewing human faces (Gothard et al., 2009).

The capacity to efficiently recognize heterospecific faces appears to be, at least in part,

shaped by experience. Chimps raised in a human environment, having more exposure to

human than chimp faces, were better at discriminating pictures of unknown human faces

than unknown chimp faces (Martin-Malivel & Okada, 2007). Similarly, rhesus macaques

explicitly trained for several months to discriminate between four human faces with reduced

identity cues scored nearly as well as humans performing the same task (Leopold & Bondar,

2005). Under normal conditions, experience may determine which categories of faces will

be analyzed in a configural manner and which will not (Pascalis et al., 2002; Sugita, 2008)

(see Development section below).

Finally, tests of self-recognition in a mirror can be used to assess individual recognition to

some extent. This paradigm allows for testing in a wide range of species, and typically

involves observing whether or not an animal, upon observing a mark on its face in the

mirror, attempts to remove it by touching its own face. Using this test, many (but not all)

chimps are able to recognize themselves in the mirror (Gallup, 1970; Povinelli, Rulf,

Landau, & Bierschwale, 1993). While this appears to be a shared cognitive capability of the

great apes (Swartz, 1997), there is minimal evidence for self-recognition in other primate

species (Gallup, 1977; Hauser, Miller, Liu, & Gupta, 2001).

Emotional Expression

Facial expression in primates is a difficult topic to summarize. Whereas some universal

facial gestures appear to be shared across a broad range of primate species (see Figure 2C),

others are distinctly species-specific and highly stereotyped (Gaspar, 2006; Preuschoft &

van Hooff, 1995). Similarly, whereas aspects of facial expression perception may be inborn,

others can be learned socially. In an example of inborn expression recognition, rhesus

macaques raised in isolation of their conspecifics respond immediately to facial threats

without any prior experience with faces (Sackett, 1966).

Emotional expressions are tightly linked to the mobility of the face, which increased during

primate evolution, possibly reflecting the increasing importance of social exchange

(Andrew, 1963; Burrows, 2008; Huber, 1931). To communicate anything, faces must be

configurable into a range of postures. Primates, including apes, Old World monkeys and

New World monkeys, are endowed with a broad repertoire of facial expressions involving

the lips and eyes (Hauser, 1993; Maestripieri & Wallen, 1997; Preuschoft & van Hooff,

1995; Thierry, Demaria, Preuschoft, & Desportes, 1989; Tomonaga et al., 2004; van Hooff,

1962; Weigel, 1979), owing to an elaboration of the mimetic facial musculature compared to

other mammals (Burrows, 2008; Burrows, Waller, Parr, & Bonar, 2006; Waller, Parr,

Gothard, Burrows, & Fuglevand, 2008).

Experimental testing has shown that chimps can accurately interpret photographed

expressions (Parr, 2003; Parr, Hopkins, & de Waal, 1998) and can, through experience, learn

to categorize expressions of both monkeys and humans (Dittrich, 1990; Kanazawa, 1996).
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As with humans, the eyes, including the closure of the lid and position of the brow, are

important components of expression for many nonhuman primates (Andrew, 1963;

Ghazanfar, Nielsen, & Logothetis, 2006), as are some aspects of mouth behavior. For

example yawning can serve as a signal to conspecifics (Smith, 1999), with the exposure of

canines serving as a low-grade threat among Old World monkeys (Hadidian, 1980). In both

chimps and macaques, facial signals are coordinated with acoustic vocalizations. In

extracting the social meaning of these signals, primates are therefore sensitive to the

congruency of visual and acoustic facial signals (Ghazanfar & Logothetis, 2003; Parr, 2004)

(Figure 2E). Accurate interpretation of facial and bodily expressions facilitates social

learning in monkeys, as shown by macaques' acquisition of the fear of toy snakes and

crocodiles after observing videos of their conspecifics reacting fearfully to them (Cook &

Mineka, 1989).

Gaze

In addition to their role in emotional expression, eyes serve as important cues to gaze

direction and objects of interest in the environment. Eyes, which are often high-contrast

features, highlighted by coloration or patterning such as eye-rings to enhance visibility (Coss

& Goldthwaite, 1995), attract primates' attention. For example, macaques focus their gaze

on the eye region in pictures of monkeys (Guo, Robertson, Mahmoodi, Tadmor, & Young,

2003; Keating & Keating, 1982; Kyes & Candland, 1987) and other animals (Demaria &

Thierry, 1988). The importance of eyes and eye-like patterns is also evident in at least one

prosimian species, as mouse lemurs were shown to have a selective aversion to looking at

pairs of horizontally spaced dots (Coss, 1978c).

Accurate gaze monitoring is important in primate society, in which rules often govern who

may look at whom. Prolonged gaze sometimes serves as an aggressive gesture to reinforce

submissive gaze aversion in lower ranking group members (Coss, Marks, & Ramakrishnan,

2002; Deaner et al., 2005; Emery, 2000). Some primates can additionally infer the direction

of another's gaze to an object or individual of interest (Emery, Lorincz, Perrett, Oram, &

Baker, 1997; Tomasello, Call, & Hare, 1998). Rhesus monkeys rely primarily on head

orientation for this, but follow eye-based direction of gaze under some conditions (Deaner &

Platt, 2003; Ferrari, Kohler, Fogassi, & Gallese, 2000; Lorincz, Baker, Perrett, & Fagot,

1999). Chimps and bonobos are able to follow head orientation of a human experimenter to

a target. Interestingly, they cease to do this when the object of attention is deemed to be out

of the experimenter's line of sight (Okamoto-Barth, Call, & Tomasello, 2007). Humans are

able to follow their mothers' gaze within the first year of life (Butterworth & Jarrett, 1991).

In contrast to monkeys and apes, human infants rely primarily on the eyes rather than the

head (Tomasello et al., 2007) (for a review, see Emery & Clayton, 2009).

Attraction

Like humans, rhesus macaques appear to find symmetry attractive, preferring to gaze at

artificially symmetric photos of conspecific faces over asymmetric ones (Waitt & Little,

2006) (Figure 3B). Preference for symmetry may be related to phenotypic quality, as

suggested by a study of fluctuating asymmetry (random deviations from perfect bilateral

symmetry) of canine teeth in a wide range of primates (Manning & Chamberlain, 1993). It is

not known whether non-human primates or other animals find averageness attractive,

although it has been suggested that they might (Koeslag, 1990). It would be particularly

interesting to know whether apes and monkeys share the human preference for averaged

composite faces.

A particularly important facial cue for nonhuman primate mate selection is skin color.

Primate faces are often decorated with patterns and colors that appear to play a role in mate

Leopold and Rhodes Page 6

J Comp Psychol. Author manuscript; available in PMC 2010 December 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



selection (Figure 3A, for a review, see Bradley & Mundy, 2008). Trichromatic primates are

usually bare-faced, underscoring the potential role of color vision in primate face perception

(Changizi, Zhang, & Shimojo, 2006). Facial skin coloration in chimps is variable within a

social group (Bradley & Mundy, 2008), but its relationship to dominance and sexual

selection is unknown. In monkeys, several studies have explored the connection between

coloration and various social factors. Following computer graphic manipulation of redness

in the coloration of faces, female rhesus macaques spent more time looking at artificially

reddened male faces than the original versions of the same face, with increased looking

times taken as a possible indicator of sexual attraction (Waitt et al., 2003) (Figure 3C). This

preference may be because redness can signal male dominance rank and fitness (Setchell &

Wickings, 2005). Their male counterparts showed no such preference for artificially

reddened faces, but did prefer artificially reddened hindquarters (Waitt, Gerald, Little, &

Kraiselburd, 2006). Both males and females attended to female facial coloration signaling

pregnancy (Gerald, Waitt, & Little, 2009).

It is important to note that attractiveness in monkeys is often inferred by observing their

gaze behavior when they are presented with multiple visual stimuli. This paradigm, which is

similar to that used to assess novelty and recognition, must be interpreted with caution, as

diverse social and non-social factors also contribute to gaze behavior. For example, male

rhesus monkeys will spend more time looking at images containing sexual content than

nonsexual images, and similarly spend more time looking at dominant than submissive male

faces (Deaner et al., 2005; Sackett, 1965). Whether these stimuli should be considered

attractive in the same sense as symmetrical and reddened faces, and how these factors

contribute to paradigms using preferred looking to assess attraction, novelty, or recognition,

remains an open question.

Development

The development of primate face processing is complex, involving an innate predisposition

to look at the mother's face, along with a strong learning component. Chimpanzees can

recognize their mother's face within a month of birth, with an increase in mutual gaze in the

following month (Myowa-Yamakoshi, Yamaguchi, Tomonaga, Tanaka, & Matsuzawa,

2005; Tomonaga et al., 2004). Subsequent exposure is also important for their developing

face recognition skills, as evidenced by the fact that chimps brought up primarily among

humans become experts with human faces (Martin-Malivel & Okada, 2007).

Like humans, infant monkeys prefer schematic faces to other stimuli, with spatial

configuration being the important factor for the first month, and feature details becoming

important later (Kuwahata, Adachi, Fujita, Tomonaga, & Matsuzawa, 2004). Macaques

deprived of any exposure to faces over the first 6-24 months of life showed immediate

interest in subsequently shown faces, and gained expertise with either human or macaque

faces thereafter, depending on subsequent experience (Sugita, 2008). Thus macaques exhibit

both an innate preference for faces, along with a window of plasticity (abnormally extended

in that case) in which their perceptual skills for a given category of faces are sharpened. A

comparable developmental sharpening has also been observed in humans, whose capacity to

discriminate monkey faces declines during development, presumably in part due to

extensive selective exposure to human faces (Pascalis et al., 2002).

Neural Specialization

Most of our information about neural specialization for faces in nonhuman primates comes

from electrophysiological single-unit experiments in macaques (see Gross, 2008 for a

review). These studies reveal a core of face processing circuitry in the lower bank and

fundus of the superior temporal sulcus and the adjacent surfaces of the inferior temporal
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cortex, in cortical area TE (Desimone, Albright, Gross, & Bruce, 1984; Gross, Rocha-

Miranda, & Bender, 1972; Perrett, Rolls, & Caan, 1982; Tanaka, Saito, Fukada, & Moriya,

1991). Face-selective responses have also been observed elsewhere in the cortex, including

the superior temporal polysensory (Bruce, Desimone, & Gross, 1981), orbitofrontal (Rolls,

Critchley, Browning, & Inoue, 2006) and ventrolateral prefrontal (Wilson, Scalaidhe, &

Goldman-Rakic, 1993) cortical areas. More recent fMRI studies have supported and

extended these initial findings (Logothetis, Guggenberger, Peled, & Pauls, 1999; Pinsk,

DeSimone, Moore, Gross, & Kastner, 2005; Tsao, Freiwald, Knutsen, Mandeville, &

Tootell, 2003), with combined fMRI/microstimulation demonstrating that patches of face

responsive areas are functionally linked (Moeller, Freiwald, & Tsao, 2008). Other work

suggests that the analysis of bodies takes place in regions of temporal cortex directly

adjacent to face patches (Bell, Hadj-Bouziane, Frihauf, Tootell, & Ungerleider, 2009;

Hasselmo, Rolls, & Baylis, 1989; Jellema & Perrett, 2003). And, as in humans, face

processing shows hemispheric asymmetry, with strongest activation in the right hemisphere

of both macaques (Pinsk et al., 2005) and vervets (Zangenehpour & Chaudhuri, 2005).

Some subcortical structures also show selective neural responses to faces. The macaque

amygdala, for example, is sensitive to facial expressions (Gothard, Battaglia, Erickson,

Spitler, & Amaral, 2007; Hoffman, Gothard, Schmid, & Logothetis, 2007), with the eyes

playing a particularly important role in its responses (Gothard et al., 2007; Hoffman et al.,

2007; Leonard, Rolls, Wilson, & Baylis, 1985). Amygdala responses probably primarily

reflect input from high-level visual cortex. Direct subcortical input to the amygdala might

also contribute to face-selective responses passing through the superior colliculus and

pulvinar (Adolphs, 2002; Johnson, 2005; Morris, Ohman, & Dolan, 1999; Palermo &

Rhodes, 2007), though the existence of a viable functional pathway has not yet been firmly

established in either humans or macaques (for a discussion, see Pessoa & Ungerleider, 2004

and Andino, Menendez, Khateb, Landis, & Pegna, 2009). Face-selective single-unit

responses have also been reported in the macaque medial dorsal thalamus (Tanibuchi &

Goldman-Rakic, 2003), striatum (Logothetis et al., 1999), superior colliculus (Arendes,

1994), and hippocampus (Hampson, Pons, Stanford, & Deadwyler, 2004).

Summary and Discussion

Primates extract a rich amount of social information from faces of their conspecifics. For the

three species studied in the greatest detail, humans, chimps, and macaques, the many shared

features of face processing, along with the apparently similar face-selective responses in the

brain, suggests that our most recent common ancestor, living more than 20 million years

ago, may have enjoyed a similar fluency with faces. The functional and anatomical

similarities raise the possibility of evolutionary homology (similarity due to shared

ancestry), between the primary face selective cortical areas in the macaque and human,

albeit with a ventral shift in their anatomical location in humans (Pinsk et al., 2009; Tsao,

Moeller, & Freiwald, 2008). However, to distinguish between homology and convergent

(independent) evolution would require a detailed phylogenetic analysis of the species

involved (Brooks & McLennan, 1991). While neural specialization for faces has not been

investigated in New World monkeys, the few behavioral studies suggest that they also

possess sophisticated face perception (Dufour et al., 2006; Phelps & Roberts, 1994),

potentially pushing the origins of complex face processing back as far as stem anthropoid

primates, who lived more than 40 million years ago (Janecka et al., 2007).

Did the exquisite face perception abilities we share with chimps and macaques evolve to fit

the social needs of interactive primates, or did primate sociality exploit an existing fluency

with faces? While evolutionary cause/effect relationships are notoriously difficult to

establish, it is interesting to consider that high spatial acuity may have been the primary

driver for the evolution of primate social vision. Nearly all anthropoid primates, including
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apes, New World and Old World monkeys, have excellent acuity that stems from their large,

forward-facing eyes and foveas. One theory holds that these features may, in part, reflect

adaptations acquired during a nocturnal phase of their evolutionary history (Ross, 2000). A

different theory attributes advances in the primate visual system to selection pressure arising

from predation, in particular from snakes (Isbell, 2009). Whatever its basis, a pre-adaptation

resulting in a high-resolution fovea that could be quickly directed to objects of interest

would have greatly enhanced visual social communication (Allman, Sprague, & Epstein,

1977). It is interesting to note that extant primate species with larger eyes, and hence better

acuity, have a particularly wide range of facial expressions (Dobson, 2009; Kiltie, 2000),

consistent with this conjecture. In short, primate face perception and consequent aspects of

sociality depend upon making quick and accurate visual discriminations at a distance. The

emergence of our complex, vision-based sociality may ultimately be traced to a prior

adaptation for visual acuity that emerged for reasons unrelated to social interaction.

Mammals

Compared to primates, other mammals rely less on vision and more on olfaction and

audition for social communication. Nonetheless, many mammals have good visual acuity,

though the use of vision in face perception has only been evaluated in a few species.

Curiously, the most studied non-primate species, sheep, shows a pronounced visual

specialization for faces at both behavioral and neural levels. In the mid 1980s, Keith

Kendrick and colleagues began a series of landmark studies aimed at understanding social

communication in sheep (for a review see (Tate, Fischer, Leigh, & Kendrick, 2006), and

found that their face processing closely resembles that of humans and monkeys.

Identity

Sheep have excellent visual acuity (Kendrick, 2008), advanced social perception, and the

ability to visually recognize faces of their conspecifics in photographs (Kendrick, da Costa,

Leigh, Hinton, & Peirce, 2001)(Figure 1C, Figure 4A). They can recognize individual sheep

on a computer screen even when identity information is reduced using morphing techniques,

or when photographs are presented at a small scale (Tate et al., 2006). They can also

recognize the faces of individual human caretakers and sheep dogs. Like primates, they

prefer to look at pictures of their conspecifics over heterospecifics (Da Costa, Leigh, Man, &

Kendrick, 2004).

Key features of sheep face perception are similar to those of primates. For example, the eyes

seem to be a particularly important cue for discriminating individuals (Kendrick et al.,

1995). Also, like humans, sheep exhibit a right hemisphere (left visual field) advantage for

identifying other sheep based on photographs of their faces (Peirce, Leigh, & Kendrick,

2000), with lateralized activity in the right temporal cortex (Broad, Mimmack, & Kendrick,

2000; Peirce & Kendrick, 2002). Their individual recognition is dependent upon the correct

configuration of facial features (Peirce et al., 2000) and their expertise appears greatest for

their own species (Peirce, Leigh, daCosta, & Kendrick, 2001).

Recent work shows that sheep are not the only mammals capable of face recognition. Cattle

are also able to recognize one another from photographs of their faces (Coulon, Deputte,

Heyman, & Baudoin, 2009; Coulon et al., 2007). Domestic dogs can also recognize

photographs of their owners' faces (Adachi & Fujita, 2007). These results suggest that the

capacity for face recognition may, in fact, be common among mammals.

Several mammals have been tested for self-recognition in a mirror. The bottlenose dolphin

exhibits some capacity for self-recognition (Marino et al., 2007; Marten & Psarakos, 1995;

Reiss, 2001) (Figure 4B), though the interpretations of such experiments are not always
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straightforward (Gallup, 1995). Killer whales also show signs of self inspection in a mirror,

whereas sea lions do not (Delfour & Marten, 2001). Likewise, elephants have been reported

to inspect marks on their face in front of a large mirror (Plotnik, de Waal, & Reiss, 2006)

(but see (Nissani & Hoefler-Nissani, 2007)) (Figure 4C).

Emotional Expression

Some non-primate mammals convey their emotions using dynamic postures of the face and

body, as documented by Darwin (Darwin, 1872). Muscles in the mammalian face permit a

range of facial expressions involving the mouth, eyes, and ears, which are usually

complemented by posturing of the body. Sheep readily communicate their facial expression

of fear to one another, and can recognize emotion in photographs of their conspecifics (Da

Costa et al., 2004; Tate et al., 2006) (Figure 4D). When given a choice between a distressed

facial expression and a calm one, they choose the latter in exchange for food reward, even if

it is displayed by a less familiar individual (overriding their preference for viewing familiar

conspecifics). Again, the eyes appear to be the most important stimulus feature (Tate et al.,

2006). In cattle, the percentage of eye white has been shown to be an indicator of stress, and

may serve as an emotional signal for conspecifics (Sandem, Janczak, Salte, & Braastad,

2006).

In general, mammals display a wide range of facial behavior. Canids' expressive faces can

signal both fear and aggression (Fox, 1969, 1970; Lorenz, 1966). Dogs, bears and related

animals frequently engage in play, which involves gesturing with both the face and body

(Bekoff, 1977; Henry & Herrero, 1974). Elephants use movements of the ears, head, and jaw

to signal aggression or submission (Langbauer, 2000). Brow lowering, ear flattening,

whisker movements, and the flehmen response (the stereotyped curling of the upper lip) are

present in many mammalian species, and serve as salient cues for conspecifics (Andrew,

1963). However, little systematic work has been done to examine the mechanisms by which

such visual expressions are processed and interpreted.

Gaze

The direction of gaze is likely to be important for many mammals, particularly those living

in social hierarchies, though different species may use gaze differently. In canids, the use of

direct gaze resembles that in primates: passive submission is associated with aversion of the

eyes accompanied by flattening of the ears and a slight grimace, whereas aggression is

associated with a direct stare, erect ears, and a slight pucker (Fox, 1970). In contrast, staring

in domestic cats is associated with both offensive and defensive behaviors (van den Bos &

de Vries, 1996).

Several mammalian species have been tested on their ability use gaze to infer a human's or

conspecific's focus of attention. Testing often begins with asking whether an animal is able

to find a hidden reward based on cues provided by the experimenter (for a review, see

Emery & Clayton, 2009). Under such conditions, domestic dogs can follow their owner's

head orientation and eye position to find a reward (Hare & Tomasello, 2005). This ability

may be related to domestication, as the results in human-raised wolves are mixed (Hare,

2002; Virányi et al., 2008). However, the use of gaze cues is not strictly limited to

domestication, since cetaceans, which are not the product of human domestication, can also

follow human gaze (Pack & Herman, 2006, 2007; Tschudin, Call, Dunbar, Harris, & van

der, 2001). Domestic goats, while unable to use either eye or head orientation to follow the

gaze of humans, are able to use head orientation to follow the gaze of their conspecifics

(Kaminski, Riedel, Call, & Tomasello, 2005). In summary, some non-primate mammal

species that have been studied seem able to extract cues from the orientation of the eyes and
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head to determine the direction of attention. Testing of additional species is needed to

determine how widely this capacity is present.

A related issue is whether animals alter their gaze-following based on whether they believe

an object is visible to the gazer. As mentioned above, chimps have this capability, though

there is no evidence that monkeys do. While most species have not been tested in this

regard, recent work demonstrated that domestic dogs are sensitive to the experimenter's field

of visual attention (Miklosi, 2007). It is possible that this sensitivity is linked to dogs'

general attentiveness to the human face and eyes (Gacsi, Varga, TopaL, & Csanyi, 2004).

Attraction

Mammals typically use multiple sensory modalities for mate selection, kin recognition, and

the assessment of dominance. Vision is often of minor importance, playing a secondary role

to acoustic, and particularly chemical, signaling (Brennan & Kendrick, 2006; Wyatt, 2003).

For species that do rely on vision, the key features influencing mate selection are often

aspects of the body, such as size, ornamentation, and posture. Nevertheless, some looking

preferences for facial feature have been observed. For example, sheep prefer to look at faces

of familiar over unfamiliar conspecifics, and conspecifics over heterospecifics (Da Costa et

al., 2004). These preferences could be related to perceptions of attractiveness and mate

choice, although they might simply be driven by a general preference for familiarity.

Development

It is unknown whether other non-primate mammals display innate preferences to face-like

patterns, or whether their face processing improves with experience. There is a small amount

of evidence for visual imprinting in mammals. Newborn guinea pigs, who, like some birds,

are mobile and self-sufficient shortly after birth, will imprint upon and follow individual

humans, though it is unknown which visual cues are used (Hess, 1959). It is clear, however,

that at least in some non-primate mammals early experience with faces can significantly

shape later behavior. In an ingenious cross-fostering experiment, baby goats were raised by

sheep mothers, and vice-versa. As adults, when cross-fostered males from each species were

shown photographs of sheep and goat faces, they preferred to look at females of the foster

mother's species (rather than their own). Moreover, when placed in the pen with females of

both species, they preferentially attempted to mate with the foster mother's species

(Kendrick, Hinton, Atkins, Haupt, & Skinner, 1998), demonstrating that early facial

experience determines sexual preference.

Neural Specialization

Aside from primates, neural specialization for faces has only been studied in sheep, whose

brains display a striking similarity to those of monkeys in this regard. Single-cell recordings

showed that neurons display a range of selectivity for faces, ranging from those selective for

individuals, to those selective for stimulus categories (Kendrick, 1991, 2008; Kendrick &

Baldwin, 1987). The demonstration of such face cells in the sheep's temporal cortex

(Kendrick & Baldwin, 1987) is the sole piece of evidence that the brain's specialization for

face processing extends outside the sphere of primates. Photographs of familiar faces

elicited stronger neural responses than those of unfamiliar faces (Kendrick et al., 2001).

Moreover, familiarity-based neural responses were not restricted to sheep faces, but

extended to humans and sheepdogs. Interestingly, the tuning for “horn length” in one class

of neurons (Kendrick, 1994) in the sheep temporal cortex bears more than a superficial

resemblance to tuning for face distinctiveness by neurons in the monkey (Leopold, Bondar,

& Giese, 2006) and human (Loffler, Yourganov, Wilkinson, & Wilson, 2005) temporal

cortex (Figure 5). Finally, like neurons in the monkey temporal cortex, neurons in the sheep
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temporal cortex respond to faces in a view-dependent manner (Perrett et al., 1985; Tate et

al., 2006).

Discussion: Mammals

Many mammals readily produce and interpret facial gestures. Is this behavior the result of a

shared and evolutionarily conserved cortical face processing circuitry? It is possible that at

least some aspects of face perception were inherited from a common ancestor rather than

that all aspects of face expertise emerged independently in all mammalian superorders.

However, it is by no means obvious how shared modules for face processing could have

been preserved: Much of mammalian evolution occurred during the age of the dinosaurs,

where most mammals occupied nocturnal niches, thus diminishing the usefulness of visual

cues for social signaling. Nonetheless, it is possible that some conspicuous facial markings

such as eye-ring patterns that are commonly found in extant mammals (Caro, 2005;

Ortolani, 1999) first evolved to make faces more conspicuous in moonlight, when some

extant nocturnal prosimians are most active (Nash, 2007). During this nocturnal era, critical

adaptations for facial signaling, such as moveable ears and elaborated mimetic musculature,

became permanent fixtures of the mammalian face, though perhaps at first having little to do

with visual signaling. Following the extinction of the dinosaurs, as some mammals became

diurnal, these facial patterns and natural movements may have increasingly served as the

basis for individual recognition and social signaling.

Clearly, there are many open questions regarding mammalian face processing and its

evolutionary relationship to face processing in primates. Since neither brains nor cognitive

processes leave behind a fossil record, the evolutionary history of face perception must be

inferred from the similarity of behaviors, anatomy, and neural responses across different

species. Distinguishing between homology and convergent evolution is particularly difficult

(Wenzel, 1992). Homology would require functionally and anatomically similar face-

responsive regions to be present in the common ancestor of mammals and primates, a

mammal living with dinosaurs during the Cretaceous period (Springer, Murphy, Eizirik, &

O'Brien, 2003). For some critical aspects of face processing, this intriguing possibility

cannot be ruled out. Alternatively, given that both sheep and macaques are diurnal and

social, their face-selective cortical machinery might have evolved independently, as parallel

adaptations of a general visual processing system, driven by similar sources of natural and

sexual selection. In either case, the functional and neural similarities of mammalian and

primate face perception highlight the probable ancient evolutionary origins of face

perception.

In the future, neurophysiology and imaging experiments in a wider range of mammalian

species may shed light on the origins of primate face perception. For example, the presence

of face selective cortical responses in a large proportion of mammals with widely varying

different ecologies, perhaps diurnal and nocturnal carnivores, rodents, and marsupials,

would be consistent with specialization for face processing as early as the Cretaceous

period. If, on the other hand, the cortical specialization for faces is present in only a few

species of mammals with very similar ecologies (e.g., highly social and diurnal) then it

would seem more likely that face perception in primates and non-primate mammals are

examples of convergent evolution arising in response to similar sources of natural selection.

Given the multiple, interacting aspects of face processing in the primate brain, it may only

be through comparative and behavioral studies that scientists are able to disentangle the

recently evolved neural circuits specialized for primate sociality from older, more general

mammalian circuits involved in the more basic visual analysis of faces.
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Vertebrates

Reptiles, birds, and fish lack the elaborated facial musculature of mammals, and therefore

have a limited repertoire of facial behavior. Nonetheless, many species depend on their

vision for social interaction, with some paying particular attention to the face and head.

Identity

Visual conspecific recognition has been demonstrated in birds (Bird & Emery, 2008; D'Eath

& Stone, 1999; Ryan & Lea, 1994; Thorpe, 1968), reptiles (Olsson, 1994; Van Dyk &

Evans, 2007) and fish (Bshary, Wickler, & Fricke, 2002; Grosenick, Clement, & Fernald,

2007) (see Figure 1D,E). Some fish are able not only to visually recognize their

conspecifics, but can even infer and remember their relative dominance rank based on

appearance (Grosenick et al., 2007). Heterospecific individual recognition has also been

demonstrated in some species of birds. For example, mockingbirds can recognize individual

humans after repeated exposures (Levey et al., 2009). In crows, individual recognition of

humans seems to be based on the face, since a familiar human wearing a mask is treated as a

stranger (Cornell, Marzluff, & Peccorro, 2009).

Unfortunately, little is known about the specific cues underlying visual conspecific

recognition in vertebrates, though a few studies suggest the face is sometimes important. For

example, pigeons can discriminate pictures of conspecific faces (Nakamura, Croft, &

Westbrook, 2003; Watanabe & Ito, 1991). In birds, plumage on the face supports individual

recognition of conspecifics in white-throated sparrows (Whitfield, 1987), male ruffs (Dale,

Lank, & Reeve, 2001), and budgerigars (Brown & Dooling, 1992). Experiments using

parametrically manipulated stimuli have shown that budgerigars, like humans, rely on

second order configural cues in their recognition (Brown & Dooling, 1993) (Figure 6A).

Magpies, like chimps, and a few other mammalian species mentioned above, have also been

reported to recognize their reflection, removing a mark on their face in front of a mirror

(Prior, Schwarz, & Gunturkun, 2008).

Emotional Expression

For non-mammals, most communicative gestures involve displays of the body, which have

been analyzed and quantified in birds (Davies, 1978; van Rhijn, 1981) and reptiles

(Carpenter, 1977). Video playback testing has shown that such conspecific displays elicit

appropriate behavioral responses (Ord & Evans, 2002). Though birds, lizards, and fish lack

the capacity to make complex facial expressions, some basic facial musculature, such as the

that involved in moving the eyes and jaw, is shared (Noden & Francis-West, 2006). This

leaves open the possibility, albeit only weakly supported, that mouth and eye movements

play a role in social signaling in non-mammalian vertebrates. There are some obvious facial

gestures, such as stereotypical begging signals in nestling birds (Figure 6B) (Hunt, Kilner,

Langmore, & Bennett, 2003; Kilner & Davies, 1998). In addition, communicative gestures

of the head, mouth, and throat have been reported in some species of frogs (Hodl,

Amezquita, & Ryan, 2001), lizards (Jennsen, 1977), birds (Andrew, 1961), and fish

(Baerends & Baeronds-Van Roon, 1950).

Gaze

Eyes are an important stimulus for a wide range of non-mammalian vertebrates (reviewed in

Emery, 2000). Previous work has shown that representatives of all major vertebrate taxa are

capable of reacting to a pair of dark eyes. In some cases eye sensitivity is important for

conspecific interactions, such as gaze aversion. In young jewelfish, for example, a pair of

horizontally spaced black disks elicits an evasive response, while other spatial
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configurations do not (Coss, 1979). This eye-specific reaction is thought to be innate and

important for establishing social dominance (Coss, 1978a).

In other cases eye sensitivity appears to be more strongly geared for interspecific

interactions, such as predator-avoidance. Eyes, as visual stimuli, serve as a basis for

recognizing predators. For example, pied flycatchers respond to “dummy” birds shaped like

natural predators (a shrike or owl) with anti-predator behavior in the form of mobbing,

vocalization, freezing, and tail-flicks (Curio, 1975). However, when the eye stripe or eyes

themselves were altered in the dummy, the incidence of these behaviors decreased

significantly. Lizards and snakes also react with avoidance or defensive behavior to the

presence of eyes, either the direct gaze of an experimenter or detached glass eyes (Bern &

Herzog, 1994; Burger, 1998; Hennig, 1977). White Leghorn chicks avoided eye-like

patterns compared to control patterns (Scaife, 1976b), and were more likely to approach a

model of a stuffed hawk when its eyes were obscured with feathers (Scaife, 1976a). In

addition, some birds and snakes are able to detect when they are the object of an

experimenter's (or predator's) gaze, and adjust their behavior accordingly (Burghardt &

Greene, 1988; Carter, Lyons, Cole, & Goldsmith, 2008; Hampton, 1994). This widespread

sensitivity to eyes may stem from a simple principle of natural selection: those able to notice

and avoid a pair of eyes fixed upon them are more likely to survive. At the same time,

certain predators use their heterospecific eye perception as a target for attack, such as the

spitting cobras, who consistently aim for the eyes in both natural and laboratory conditions

(Westhoff, Tzschatzch, & Bleckmann, 2005).

In following visual gaze, birds show a striking, and somewhat surprising, convergence with

primates. Like primates, ravens can follow shifts in combined head- and eye-gaze direction

in humans. When a barrier is present, they move into a position in which they can determine

the object of the experimenter's gaze (Bugnyar, Stowe, & Heinrich, 2004), with this latter

skill requiring several months to develop (Schloegl, Kotrschal, & Bugnyar, 2008a).

Interestingly, despite having the requisite perceptual skills to compute and follow gaze

direction, ravens do not naturally seem to exploit such information to locate a food reward in

an object choice task (Schloegl, Kotrschal, & Bugnyar, 2008b). In one experiment, however,

jackdaws could do this, although only when the experimenter's gaze alternated back and

forth between the bird and the reward providing a strong cuing signal (von Bayern & Emery,

2009).

Attraction

Social attraction and dominance of many non-mammalian vertebrates is often based on

visual appearance. This is apparent in the beautiful displays of many birds, which are

commonly used to illustrate principles of sexual selection (Pruett-Jones & Pruett-Jones,

1990; Trainor & Basolo, 2000). Some such displays involve markings on the face and head,

such as the status marks on white crowned sparrows and great tits (Whitfield, 1987), as well

as the markings on the cheeks and chest of the zebra finch (Brazas & Shimizu, 2002).

Symmetry is also an important feature for sexual selection, although little is known about

preferences for facial symmetry in vertebrates (Swaddle & Cuthill, 1994; Thornhill &

Moller, 1998; Waas & Wordsworth, 1999).

Development

Like humans, some non-mammalian vertebrates are born with innate predispositions to react

to certain visual patterns. These predispositions can serve as a basis for attraction, or as a

signal of danger that causes them to flee. An example of the latter is in jewel fish, who, as

early as 13-days post-spawning, instinctively avoid pairs of black dots resembling eyes,

even in the absence of previous experience with real eyes (Coss, 1978a). Juvenile and adult
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fish become highly sensitive to this cue and use it to guide their aggressive or avoidance

behavior in the dominance hierarchy.

One aspect of avian visual development that resembles the development of face perception

in primates is the innate preference to orient to a particular configural stimulus shortly after

birth. In some birds, filial imprinting undergoes a similar temporal sequence to that seen in

humans. For example, chicks are initially attracted to any stimulus with eyes and/or head

and neck shape (Bolhuis & Honey, 1998). Then, following a relatively short period of

experience, the preference becomes more narrowly focused on a single object or individual,

a critical step in filial imprinting (Bolhuis & Honey, 1998). These two stages are thought to

represent a transition from processing in the mesencephalon (e.g. optic tectum) to processing

in the telencephalon (e.g. the mesopallium, formerly called hyperstriatum ventrale). Damage

to the latter structure abolishes filial imprinting (Bolhuis & Honey, 1998; Johnson & Horn,

1987). Note that these two sequential mechanisms of orientation to conspecifics resembles

those observed in human newborns and infants, and may represent a homologous ontogenic

transition (Johnson, 2005).

Neural Specialization

To our knowledge, there are no reports of selective neural responses in the non-mammalian

vertebrate brain to faces or other complex forms. It is presently difficult to assess whether

this absence is because form-selective neurons do not exist, or simply because complex

stimuli have not been systematically tested. Lesion studies in birds suggest that high-level

specialization related to social aspects of vision may exist in the avian brain. In pigeons,

damage to the entopallium (formerly called the ectostriatum) causes a deficit in complex

form vision (Bessette & Hodos, 1989), including conspecific recognition, while damage to

the Wulst does not. This dissociation is interesting, since the Wulst receives retinofugal

input, and is thought to be homologous to mammalian primary visual cortex (Medina &

Reiner, 2000; Pettigrew & Konishi, 1976), whereas the entopallium in birds and lizards

receives tectofugal input, and may be homologous to mammalian extrastriate visual cortex

(or possibly only to its input layers) (Krutzfeldt & Wild, 2005). Recent studies in the zebra

finch further support the interpretation that the entopallium supports high-level vision

(Watanabe, Maier, & Bischof, 2008).

Discussion: Vertebrates

Vision is abundantly used for social interplay among nonmammalian vertebrates, and

particularly birds, although the role of the face is unclear and probably minor compared to

mammals. The eyes appear to be important stimuli for all major verterbrate taxa, and the

capacity of corvids to read human gaze is remarkable. Given that birds are so distantly

related to primates and have such different brain structures, it seems likely that their gaze

perception mechanisms evolved independently of those in primates. Nevertheless, it remains

possible that while their common ancestors, who lived roughly 320 million years ago (Butler

& Hodos, 2005), may not have had complex gaze following abilities, they had some

sensitivity to eyes. Ancient circuits in the midbrain, diencepalon, and pallium mediating this

sensitivity may have then evolved into more specialized face-processing circuitry in both

primates and birds, and possibly many other vertebrates.

Invertebrates

For completeness, we also consider complex visual processing in invertebrates, asking

whether there could be any connection to human face perception. Some invertebrates can

learn and remember complex forms (Heisenberg, 1995) and vision is an important social

sense for some invertebrate species, including butterflies (Vane-Wright & Boppre, 1993),
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spiders (Clark & Uetz, 1990) (see Figure 1F), and horseshoe crabs (Barlow, Ireland, & Kass,

1982). In spiders, eyes seem to be a salient feature for visually mediated social interaction

(Harland & Jackson, 2002). While there is good evidence that octopi can recognize objects,

conspecific recognition in cephalopods has not yet been tested rigorously (Boal, 2006). In

cuttlefish, five experiments failed to show vision-based individual recognition (Boal, 1996),

despite rich intraspecific interaction, visual displays, and mate-guarding.

Some invertebrates can recognize each other visually using “facial” cues (Detto, Backwell,

Hemmi, & Zeil, 2006; Tibbetts, 2002; Van Der Velden, Zheng, Patullo, Macmillan, &

Brembs, 2008). In one study wasps treated familiar conspecifics as strangers when artificial

markings were added to their faces or abdomens, effectively changing their visual identity

(Tibbetts, 2002). In another, crayfish remembered the appearance of their opponents' faces

following a direct conflict (Van Der Velden et al., 2008). Bees can discriminate and

remember human faces, even interpolating between studied views to recognize novel views

of these faces (Dyer, 2005; Dyer & Vuong, 2008). These observations demonstrate that

comparatively simple visual systems are able to perform complex discriminations to support

individual recognition (but see Pascalis, 2006).

Finally, in an ironic evolutionary twist, the sensitivity of vertebrates to faces has been

unknowingly exploited by some invertebrates (Figure 7). For example, some Lepidoptera

possess eye-like patterning on their wings, which is thought to protect them against predator

attacks (Stevens, 2005) (although they may also be used in intraspecific visual mate

selection (Robertson & Monteiro, 2005)). A remarkable example of eye patterning is found

in cuttlefish, who dynamically create high contrast eyespots on their body before fleeing

from visually oriented teleost fish, but not from crabs and dogfish, which are chemosensory

predators (Langridge, Broom, & Osorio, 2007). Thus while invertebrates themselves may be

somewhat indifferent to the visual appearance of faces, they exploit the fact that their

predators are not!

Conclusions

This review has focused on the behavioral importance of faces in a wide range of animals.

We first asked to what extent faces represent a special category of stimuli. We conclude that

faces are important for a wide range of animals, as representative species from all vertebrate

classes exhibit behavioral responses to faces that differ from those to non-face stimuli. In

primates and sheep, for which face perception is highly developed and serves as the

foundation of their social exchange, the brain contains neurons in multiple areas that are

dedicated to the analysis of faces. Thus for these species, which are the only ones to have

been systematically tested, the behavioral importance of faces appears to have

fundamentally shaped processing in the visual pathway.

We next asked what types of visual information different animals extract from a face. At the

most basic level, horizontally paired dark eyes elicit specific behavioral responses from a

wide range of species, including primates, other mammals, birds, reptiles and fish. For

visually oriented animals, the importance of eye detection may be understood in an

evolutionary context, as it might indicate the approach of a competitor, predator, or potential

mate, all of which have important implications for survival. In addition, some species of

primates, sheep and birds were shown to extract more complex information from faces, such

as species or individual identity, the direction of gaze, or the level of aggression, with

primates showing the most sophisticated face-reading behavior. An intriguing possibility is

that the shared perceptual basis reviewed here may be particularly suited to facilitate some

forms of heterospecific interaction. This can include recognition of threatening species,

which important for survival (Coss, Ramakrishnan, & Schank, 2005), as well as the playful
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or nurturing behavior sometimes observed between members of different species living

together under unnatural conditions.

Finally, we asked how different aspects of face processing might have evolved. We can

speculate that paired dark eyes served as the earliest “face” cue, providing visible markers of

sighted conspecifics to all sighted creatures. This important cue may have led to the

evolution of eye-selective neural responses in animals living hundreds of millions of years

ago, before the first dinosaur, and perhaps even before the first vertebrate. Other important

aspects of face perception, such as the detection of an open mouth or a fixed gaze involved

in predator detection, may also have very ancient origins and may have further shaped the

evolution of visual processing in the brain. We can speculate that recognition based on faces

came later, and probably first pertained to the identification of the species rather than the

individual. It is possible that visual species recognition in mammals emerged while they

were predominantly nocturnal, aided by highly visible and stereotyped patterns on the face

and head. After the extinction of the dinosaurs, diurnal mammals may have then capitalized

on this pre-existing recognition system and adapted it to identify and remember individuals

based on more subtle cues. For many primates, including humans, face perception takes

center stage in social signaling, and the origin of such signaling may lie in the enhanced

sensitivity to detail afforded by high visual acuity. In addition, the learning of subtle facial

gestures and the capacity to discriminate highly similar faces require a wide network of

brain areas whose division of labor is presently under intense investigation along with an

extended period of experience-dependent development. The preeminence face recognition in

primates over that of other animals, which is exemplified by the use configural cues to

recognize unfamiliar faces, appears to hinge on neural encoding that is both systematic and

adaptable. Through experiential learning, primates including humans optimize their own

personal face interpreting machinery, as both psychophysical and physiological experiments

have demonstrated that, over time, the brain automatically tunes itself the natural statistical

variation of the faces it has experienced (for a review, see Rhodes & Leopold, 2010).

In choosing animal models for biological research, there is a trade-off between depth and

breadth of study. Systems and behavioral neuroscience has opted for depth, and has invested

monumental effort into a small number of animal models. While this approach has

uncovered a wealth of information about face processing in the (typically rhesus macaque)

monkey and human brain, it has not led to the proper biological or evolutionary

contextualization of this information. Dobzhansky's admonition that nothing makes sense

except in the light of evolution can be applied just as well to face perception as it can to any

other biological feature (Dobzhansky, 1973). If not for Kendrick's investigation in sheep,

there would be no evidence that non-primate brains were specialized for perceiving complex

visual stimuli, let alone faces. In the future, exploration of face processing in other animals,

such as prosimians, carnivores, diurnal rodents, and marsupials, would be of great value for

interpreting the currently available neurophysiological data from the temporal cortex of

primates and sheep. Similarly, discovering whether vertebrates such as birds and lizards

have specialized neural machinery responding to eyes and other natural stimuli would be

highly informative, and might lead primate neurophysiologists to discover other circuits,

perhaps subcortical ones that are homologous to circuits in the human brain, that would

otherwise remain hidden. Discovery is, by definition, a process that is impossible to predict.

When the experiments are too narrowly focused on a single species, however, some forms of

discovery are ruled out from the start.
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Figure 1.

Methods for testing animals on visual conspecific perception. A. A chimp indicates its

recognition of a face by pressing on a touch-screen [1]. B. Macaque monkeys tested for

capacity to visually recognize kin with whom they had no prior experience [2]. C. A sheep

discriminates between two faces by pressing one of two panels in exchange for a food

reward [3]. D. A fish inspects two neighbors in order to test whether it can subsequently

recognize them [4]. E. Reactions of individual great tits to a radio-controlled maneuverable

dummy was used to investigate the contribution of breast-stripe width to establishing social

dominance [5]. F. A male jumping spider courts the video image of a female [6].

Figure 1 Citations

[1] adapted from Martinez and Matsuzawa (2009). Animal Cognition, Suppl 1:S71-75.

[2] adapted from Wu, H. M., Holmes, et al. (1980). Nature, 285(5762), 225-227.

[3] adapted from Kendrick, K.M. (2008), in The Welfare of Sheep, (C. Dwyer, Ed.),

Springer, Netherlands.

[4] adapted from Balshine-Earn and Lotem (1997) Behaviour 135:369-386.

[5] adapted from Jarvi and Bakken (1984) Animal Behaviour 32: 590-596.

[6] adapted from Clark and Uetz (1990) Animal Behaviour. 40:884-890.
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Figure 2.

The recognition and interpretation of conspecific primate faces. A. Chimps can recognize

familial face similarity between mothers (left column) and their sons (right column) [1]. B.

Tonkean macaques and brown-faced capuchins are better able to discriminate between

members of their own species (top and bottom rows, respectively) than between members of

other species [2]. C. Homologous play face in bonobo and human [3]. D. Lip-smacking,

neutral, and threat expressions from a rhesus macaque, used as stimuli for

neurophysiological experiments [4]. E. Images taken from video stimuli shown to macaques

with either matching or nonmatching acoustic vocalizations [5].

Figure 2 Citations

[1] adapted from Parr and de Waal (1999) Nature, 399: 647-8.

[2] adapted from DuFour et al (2006) Behavioral Processes, 73: 107-13.

[3] adapted from Schmidt and Cohn (2001) Yearbook of Physical Anthropology, 44:8-24.

[4] adapted from Gothard et al (2007) J Neurophysiology, 97:1671-1683.

[5] adapted from Ghazanfar and Logothetis (2003) Nature, 423:937-8.

Leopold and Rhodes Page 32

J Comp Psychol. Author manuscript; available in PMC 2010 December 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.

Face attributes associated with sexual selection in primates. A. Primate faces are often high

contrast or colored, often with highlights around the eyes [1]. B. Both male and females

rhesus monkeys prefer symmetrical (left column) over asymmetrical (right column) faces [2].

C. Male facial coloration in rhesus macaques affects viewing preference of females, with

artificially reddened faces attracting longer periods of inspection [3].

Figure 3 Citations

[1] adapted from Bradley B and Mundy N (2008). Evolutionary Anthropology, 17(2),

97-111.

[2] adapted from Waitt C and Little AC (2006) International Journal of Primatology, 27(1),

133-45.

[3] adapted from Waitt C et al (2003) Proceedings of the Royal Society B: Biological

Sciences, 270, S144-6.
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Figure 4.

The recognition of identity, expression, and self in mammals other than primates. A. Sheep

(superorder Laurasiatheria) use the variation in the structure of the face to recognize one

another [1]. B. Bottlenose dolphins (superorder Laurasiatheria) pass tests of self-recognition.

When marked on the skin (left), they position themselves in front of the mirror in order to

see the mark on their body (right) [2]. C. Similarly, elephants (superorder Afrotheria) pass

tests of self-recognition. After receiving a mark on their face (left), they use their trunk in

front of a mirror in an attempt to remove it (right) [3]. D. Sheep communicate emotion with

their face, in this case indicating fear by drawing back the ears and opening the eyes [1].

Figure 4 Citations

[1] adapted from Tate AJ et al (2006) Philosophical Transactions of the Royal Society B:

Biological Sciences, 361: 2155-2172.

[2] adapted from Marino et al (2007) PLOS Biology 5(5):966-972 and Reiss and Marino

(2001) Proceedings of the National Academy of Sciences of the United States of America,

98:5937-42.

[3] adapted from Plotnick et al (2006) Proceedings of the National Academy of Sciences of

the United States of America, 103(45):17053-57.
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Figure 5.

Face processing in sheep and monkeys. (a) A subset of neurons in the sheep temporal cortex

respond as a function of the visible length of the horns, a distinguishing feature for

recognition of individual and species, as well as for social dominance [1]. (b) Neurons in the

monkey temporal cortex respond to images of human faces, in this case responding

monotonically to increasing amounts of “identity” level, or individuating feature

information [2].

Figure 5 Citations.

[1] adapted from Kendrick, KM (1994) Behavioral Processes 33:89-112.

[2] Leopold DA et al (2006) Nature 442:572-575.

Leopold and Rhodes Page 35

J Comp Psychol. Author manuscript; available in PMC 2010 December 7.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6.

Visual analysis of conspecific faces in birds. (a) Budgerigars can discriminate pairs of real

and synthetic conspecific faces. They are quicker at discriminating pairs of individuals when

faces are configurally intact (left) than when they are scrambled (right) [1]. (b) The

appearance of a nestling's open mouth determines the parental feeding response. Visual

features include the size of the gape, internal patterning, and coloration [2].

Figure 6 Citations

[1] adapted from Brown SD and Dooling RJ (1993) Journal of Comparative Psychology.

107(1):48-60.

[2] adapted from Kilner RM et al (1999) Nature, 397:667-72.
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Figure 7.

Examples of invertebrate species with eyespot markings. (a) Owl butterfly with a

conspicuous eyespot on its wing [1]. (b) Eyespot displays on the dorsum of a cuttlefish

appear according to what type of predator is approaching [2]. (c) Caterpillar of the Great

Orange Tip butterfly has false eyespots and the facial appearance of a green vine snake [3].

[1] adapted from http://en.wikipedia.org/wiki/Caligo_memnon.

[2] adapted from Langridge KV et al (2007) Current Biology 17:R1044-R1045

[3] http://en.wikipedia.org/wiki/Hebomoia_glaucippe
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