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ABSTRACT 

We develop a Bayesian model to invert spectral induced polarization (SIP) data for Cole-

Cole parameters using Markov chain Monte Carlo (MCMC) sampling methods. We compare the 

performance of the MCMC based stochastic method with an iterative Gauss-Newton based 

deterministic method for Cole-Cole parameter estimation through inversion of synthetic and 

laboratory SIP data. The Gauss-Newton based method can provide an optimal solution for given 

objective functions under constraints, but the obtained optimal solution generally depends on the 

choice of initial values and the estimated uncertainty information is often inaccurate or 

insufficient. In contrast, the MCMC based inversion method provides extensive global 

information on unknown parameters, such as the marginal probability distribution functions, 

from which we can obtain better estimates and tighter uncertainty bounds of the parameters than 

with the deterministic method. Additionally, the results obtained with the MCMC method are 

independent of the choice of initial values. Because the MCMC based method does not explicitly 

offer single optimal solution for given objective functions, the deterministic and stochastic 

methods can complement each other. For example, the stochastic method can first be used to 

obtain the means of the unknown parameters by starting from an arbitrary set of initial values 

and the deterministic method can then be initiated using the means as starting values to obtain 

the optimal estimates of the Cole-Cole parameters. 
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INTRODUCTION 

The induced polarization (IP) method has been increasingly used in environmental 

investigations because IP measurements are very sensitive to the low frequency capacitive 

properties of rocks and soils. These properties are associated with diffusion-controlled 

polarization processes that occur at the mineral-fluid interface (Slater and Lesmes, 2002). The 

Cole-Cole model (Cole and Cole, 1941) has been found to be very useful for interpreting spectral 

IP (SIP) data in terms of parameters, such as chargeability and time constant, which in turn have 

been used to estimate various subsurface properties (Lesmes and Friedman, 2005). Among many 

studies in which Cole-Cole parameters were estimated from SIP measurements on soils and 

rocks, the majority employed classical deterministic inversion methods, specifically the iterative 

Gauss-Newton based schemes with the Levenberg-Marquardt damping for stabilization of the 

inverse solution (Pelton et al., 1984; Jaggar and Fell, 1988; Luo and Zhang, 1998; Kemna, 2000; 

Boadu and Seabrook, 2000). 

Two popular routines have been developed for Cole-Cole parameter estimation according 

to the iterative Gauss-Newton algorithms. The first, developed by Pelton et al. (1978), has been 

extensively demonstrated on SIP data from mineralized rock; the second, developed by Kemna 

(2000), has been widely used for inverting SIP data associated with sediments and calibrated 

materials (Kemna et al., 2000, 2005; Binley et al., 2005; Slater et al., 2005, 2006; Mansoor and 

Slater, 2007). Although the two routines are different in terms of parameterization and definition 

of data, they are common in the use of the derivatives of the forward model with respect to 

model parameters (i.e., Jacobian matrix) to iteratively update the Cole-Cole parameters from a 

set of initial values. 
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The main limitation of the Gauss-Newton based deterministic method is that the 

convergence to the global minimum is not guaranteed and the estimation results strongly depend 

on the choice of the starting values. Consequently, successful application of the deterministic 

method for SIP data inversion requires considerable familiarity with the characteristics of Cole-

Cole model responses and with the sensitivity to the underlying Cole-Cole parameters. A 

multiple Cole-Cole model is typically used for describing the SIP responses where multiple 

relaxation mechanisms are superimposed. In such cases, it is often difficult to choose suitable 

sets of initial values in order to obtain an optimal solution of the Cole-Cole parameters. 

Other types of inversion approaches have also been suggested to reduce the dependence of 

the optimal solution on the initial values. Examples include a direct scheme by Xiang et al. 

(2001), which consists of a multifold least-squares estimation combined with an optimal 

searching technique, a genetic algorithm by Cao et al. (2005), and a robust Gauss-Newton based 

method with adaptive regularization by Roy (1999). The main disadvantage of those methods is 

that they provide inaccurate or insufficient information on uncertainty in the parameter 

estimation. 

Ghorbani et al. (2007) developed a Bayesian model to invert time and frequency domain IP 

data for parameters in a single Cole-Cole model. They used a numerical integration technique 

over regular grids to obtain a marginal posterior probability density function (pdf) of each Cole-

Cole parameter from the joint posterior probability distribution function. Through case studies 

based on synthetic and laboratory data sets, they demonstrated that the Bayesian model could 

provide the estimates of the marginal probability density function of each unknown parameter 

and of each paired unknown parameters. However, their method for obtaining many samples 

from the joint posterior distribution is very difficult to apply in practice because of the high 
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dimensionality of the unknown parameter space, which commonly occurs with a multiple Cole-

Cole model. As described in next section, a multiple Cole-Cole model is a more general and 

proper model than a single Cole-Cole model for describing IP data with various dispersion 

ranges, either due to multiple length scales in sediments or due to the coupling effects in the IP 

measurements.  

We begin with a review of the Cole-Cole model. This is followed by our development of a 

Bayesian model to invert SIP data for Cole-Cole parameters using Markov chain Monte Carlo 

(MCMC) sampling methods (Gilks et al., 1996). MCMC methods are effective methods for 

drawing samples from complex and high-dimensional joint probability distribution functions and 

have been increasingly used to invert complex geophysical data (Bosch, 1999; Buland and Omre, 

2003; Gunning and Glinsky, 2004; Chen et al., 2004, 2006). Our goal is to develop an inversion 

approach that is insensitive to initial values and that provides sufficient uncertainty information 

on the estimation when we invert SIP data for parameters in a multiple Cole-Cole model. We 

evaluate the performance of the sampling-based Bayesian model by applying it to both synthetic 

and laboratory SIP data sets and comparing the inversion results with those obtained from the 

Gauss-Newton based deterministic method developed by Kemna (2000). 

COLE-COLE MODEL 

We interpret spectral induced polarization data using the Cole-Cole model (Cole and Cole, 

1941; Pelton et al., 1978), which is an empirical extension of the classic Debye relaxation model. 

For complex resistivity, describing the electric voltage response to an electric current excitation 

in the frequency domain, the Cole-Cole model can be written as 

( )
( )0

11 1 ,
1 cm

j
ρ ω ρ

ωτ

⎧ ⎫⎡ ⎤⎪ ⎪= − −⎢ ⎥⎨ ⎬
+⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

                                                       (1) 
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where 0ρ  is the asymptotic resistivity value towards zero frequency, m is the chargeability that 

describes the magnitude of electric polarization giving rise to the phase shift between voltage and 

current (i.e., the complex nature of ρ ), τ  is the characteristic time constant of the relaxation 

process, and c  is the Cole-Cole exponent that describes the degree of frequency dependence of 

ρ . In the equation, ω and j are the angular frequency and 1− , respectively. For 1c = , the 

Cole-Cole model is reduced to the Debye model. Table 1 list variables and symbols used in this 

paper. Note that both Cole-Cole and Debye models are characterized by a single peak in the 

complex resistivity phase spectrum; the location of the peak along the frequency axis is directly 

related to the relaxation time constant τ . 

The Cole-Cole model was introduced by Pelton et al. (1978) to describe electrical 

properties in mineralized rock, where polarization occurs at interfaces between electronically 

conducting mineral grains and fluid-filled pores with electrolytic conduction. Over the last 

decade, the model has been adopted to describe the observed complex resistivity response of 

sedimentary rock that does not include electronically conducting components (Vanhala, 1997; 

Binley et al., 2005; Kemna et al., 2005) and normally exhibits a much weaker phase response 

than does mineralized rock. In that case, polarization is a result of the interaction of the pore 

fluid (electrolyte) with electrically charged mineral surfaces, where the so-called electric double 

layer is formed (e.g., Leroy et al., 2008). 

Importantly, for both polarization mechanisms, the observed time scale of relaxation, as 

quantified by the Cole-Cole time constant τ, is directly related to the length scale determined by 

the size of electronically conducting grains in mineralized rock (Pelton et al., 1978) or by the 

length scale characteristic of the pore space in sedimentary rock (e.g., Titov et al., 2002; Scott 

and Barker, 2003; Binley et al., 2005; Slater, 2007). In this sense, the measured complex 
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resistivity spectrum represents an integrated response over all length scales presented in the rock 

(e.g., Leroy et al., 2008). For rock with a unimodal distribution of length scales (i.e., a unimodal 

grain or pore size distribution), a phase spectrum with a single peak, as numerously reported in 

the literature, can be expected. However, for more complex distributions of length scales, such as 

bimodal distributions, phase spectra with more than one phase peak can be observed (Leroy et 

al., 2008). The different peaks reflect relaxation processes at different scales. Such behavior was 

also observed in time-domain measurements of induced polarization (Tong et al., 2006; Tarasov 

and Titov, 2007). 

An additional frequency dependence in the measured complex resistivity spectrum is 

typically generated by inductive and/or capacitive coupling effects associated with the 

instrumentation and cable layout. These can be phenomenologically also described by a Cole-

Cole dispersion term (e.g., Pelton et al., 1978; Kemna et al., 1999, 2005). In this case, however, 

the Cole-Cole parameters themselves are normally not of interest, but only the response of the 

parameter set with an objective of removing it from the measured data. 

We adopt a multiple Cole-Cole model as used by Kemna (2000) to allow for analysis of 

phase spectra with more than one dispersion range caused either by the multiple modality of the 

rock or by the coupling effects in the measurements. Such a model represents a discrete 

integration over different relaxation scales and is given by 

0
1

1( ) 1 1 ,
1 ( ) l

L

l c
l l

m
j

ρ ω ρ
ωτ=

⎧ ⎫⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥+⎪ ⎪⎣ ⎦⎩ ⎭
∑                                                        (2) 

where L  is the number of Cole-Cole models that we fit for a given complex resistivity data set. 

A typical value for L  is between 1 and 3, depending on the number of present relaxation scales 

and whether the inversion procedure is applied to remove coupling effects from the measured 

data or to extract intrinsic Cole-Cole parameters from complex resistivity imaging results 
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(Kemna et al., 2000). The symbols lm , lτ , and lc  represent chargeability, time constant, and 

dependence factor for the l th−  dispersion term of the multiple Cole-Cole model, respectively. 

The Cole-Cole model given in equation (2) can be rewritten in the form of real and 

imaginary components of complex resistivity as given by Cao et al. (2005) 

0 2 2
1

Re[ ( )] 1 1 ,
L

l
k l

l l l

Rm
R I

ρ ω ρ
=

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

∑                                                    (3) 

0 2 2
1

Im[ ( )] ,
L

l
k l

l l l

Im
R I

ρ ω ρ
=

= −
+∑                                                             (4) 

where 2k kfω π= , 1, 2, ,k n= L  ( kf  is the k th−  frequency and n  is the total number of 

frequencies at which the IP measurements are collected), ( ) cos( / 2) 1lc
l l lR cωτ π= + , and 

( ) sin( / 2)lc
l l lI cωτ π= . 

STOCHASTIC METHOD 

Bayesian framework 

We develop a Bayesian model to estimate parameters in the Cole-Cole model given by 

equations (3) and (4). The SIP data used for this model are the real and imaginary components 

(i.e., Re[ ( )]obs
kρ ω  and Im[ ( )]obs

kρ ω ) of the complex resistivity collected at frequency kω  

( 1, 2, ,k n= L ), the unknown parameters are the zero-frequency resistivity 0ρ , the base 10 

logarithmic chargeability 1(log( ),m=m  2log( ),m  ,L  log( ))T
Lm , the base 10 logarithmic time 

constant 1(log( ),τ=b  2log( ),τ  ,L  log( ))T
Lτ , and the dependence factor 1 2( , , , )T

Lc c c=c L . To 

account for the unknown measurement errors in the real and imaginary components, we include 

two additional parameters reu  and imu , which are the inverse variances of the measurement 
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errors in the real and imaginary parts of complex resistivity. As a result, we can write the 

Bayesian model as 

0

0
1

0
1

0

( , , , , , |{Re[ ( )], Im[ ( )],  1, 2, , })

          (Re[ ( )] | , , , , )

               (Im[ ( )] | , , , , )

                ( , , , , , ).

obs obs
re im i k

n
obs

k re
k

n
obs

k im
i

re im

f u u k n

f u

f u

f u u

ρ ρ ω ρ ω

ρ ω ρ

ρ ω ρ

ρ

=

=

=

∝∏

∏

m b c

m b c

m b c

m b c

L

                                   (5) 

The first and second terms on the right side of equation (5) are the likelihood functions of the 

real and imaginary components of complex resistivity data, respectively; the third term is the 

prior distribution function of unknown Cole-Cole parameters. Because we assume that the real 

and imaginary parts of complex resistivity at different frequencies are independent of each other, 

we can write the expression in the form of the product of individual likelihood functions as 

shown in equation (5). Below we define the likelihood functions and the prior distributions that 

are included in the equation. 

Likelihood functions 

To define the likelihood function of the real components of complex resistivity, we assume 

that the relative errors between the observed data and the output of the forward Cole-Cole model 

have a normal distribution with zero mean and unknown inverse variance, that is, 

Re[ ( )] Re[ ( )] (0, )
Re[ ( )]

obs
r k k
k reobs

k

e N uρ ω ρ ω
ρ ω

−
= .                                                             (6) 

We choose this likelihood model partly because errors in IP data often have a distribution close 

to the normal distribution and partly because the maximum likelihood estimates of such types of 

likelihood functions are equal to the estimates of the deterministic method (i.e., the least squares 
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estimation). With this error distribution, the likelihood function of the real components is given 

by 

0

2

(Re[ ( )] | , , )

Re[ ( )] Re[ ( )]                       exp .
2 2 Re[ ( )]

obs
k re

obs
re re k k

obs
k

f u

u u

ρ ω ρ

ρ ω ρ ω
π ρ ω

⎛ ⎞⎛ ⎞−⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

m,b,c

                     (7) 

Similarly, we can define the likelihood function of the imaginary components of complex 

resistivity as 

0

2

(Im[ ( )] | , , )

Im[ ( )] Im[ ( )]                exp .
2 2 Im[ ( )]

obs
k im

obs
im im k k

obs
k

f u

u u

ρ ω ρ

ρ ω ρ ω
π ρ ω

⎛ ⎞⎛ ⎞−⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

m,b,c

                          (8) 

Prior models 

The prior distribution of Cole-Cole parameters is determined from our prior knowledge or 

other information about the parameters, which may be subjective and site-specific. Because we 

assume that each parameter is independent of others, we can write the joint prior distribution 

given in equation (5) as the product of prior distributions of each individual parameter 

0 0( , , , ) ( ) ( ) ( ) ( ) ( ) ( )re im re imf u u f f f f f u f uρ ρ=m,b,c m b c .                                (9) 

To minimize subjectivity, we assume in this study that the parameters 0ρ , m , b , and c  have 

uniform distributions over given ranges. For example, for the synthetic case studies presented in 

the section of synthetic studies, the prior ranges of the parameters 0ρ , m , b , and c  are given as 

(1,  1000)  (in Ωm), ( 5,  0)− , ( 5,  5)−  (logτ, τ in s), and (0,  1) , respectively. We similarly use 

proper non-informative prior distributions for inverse variances reu  and imu  as done in the 

software of the Bayesian inference using Gibbs sampling (BUGS) (Spiegelhalter et al., 1994), 

which are the gamma distribution with both shape and inverse scale parameters of 1e-3. The 
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above prior models are quite non-informative. As a result, the estimates of Cole-Cole parameters 

obtained from the stochastic method primarily depend on the data and thus are comparable to 

those obtained from the Gauss-Newton based deterministic method. 

SAMPLING METHODS 

We obtain the estimates of unknown parameters by drawing many samples from the joint 

posterior pdf defined in equation (5) using MCMC methods. MCMC methods provide a 

powerful approach for sampling multivariate variables from a complex joint probability 

distribution. They are superior over conventional Monte Carlo methods because the conventional 

methods draw independent samples and are prohibitive for drawing samples from high-

dimensional joint distribution functions. As opposed to deterministic methods, which seek single 

optimal solutions of unknown parameters, MCMC sampling-based stochastic methods draw 

many samples from the joint posterior pdf. The obtained samples can then be used to infer 

statistics of each parameter, such as its mean, variance, and predictive intervals. As is described 

in the following subsections, we use different methods to draw samples from the joint posterior 

distribution for the Cole-Cole parameters, for the zero frequency resistivity, and for the inverse 

variance of data. 

Conditional probability distributions of the Cole-Cole model parameters 

We first derive the conditional pdfs of the Cole-Cole parameters m , b , and c . Because 

the conditional distribution of each of those parameters is similar, in the following we only 

describe the method for obtaining the conditional distribution of the chargeability vector m , 

given all other unknown parameters and SIP data. As MCMC sampling methods only concern 
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the quantities that are functions of vector m , we can obtain the conditional ( | )f ⋅m  by keeping 

those terms that are related to the vector m . The result is given by 

0
1

0
1

( | ) Ind( ) (Re[ ( )] | , , , , )

                (Im[ ( )] | , , , , ).

n
obs

k re
k

n
obs

k im
i

f D f u

f u

ρ ω ρ

ρ ω ρ

=

=

⋅ ∝ ∈ ∏

∏

mm m m b c

m b c
                                   (10) 

The first term on the right side of equation (10) is an indicator variable that accounts for the 

constraint from the prior distribution of vector m , where Dm  is the given prior range of 

chargeability. Similarly, we can obtain conditional pdfs of the Cole-Cole parameters b  and c . 

Conditional probability distribution of the zero frequency resistivity 

We can obtain the analytical form of the conditional pdf of the zero frequency resistivity 

because the real and imaginary components of SIP data are linear functions of it. We simplify 

equations (3) and (4) as 0Re[ ( )] ( )k kAρ ω ρ ω=  and 0Im[ ( )] ( )k kBρ ω ρ ω=  by letting 

2 2
1

( ) 1 1
L

l
k l

l l l

RA m
R I

ω
=

⎛ ⎞
= − −⎜ ⎟+⎝ ⎠

∑  and 2 2
1

( )
L

l
k l

l l l

IB m
R I

ω
=

= −
+∑ . Consequently, the conditional pdf 

has a truncated normal distribution (see Appendix A) as given below 

* *
0 0( | ) ( ) ( , ),f Ind D N uρ ρ ρρ ρ µ⋅ ∝ ∈                                  (11) 

where Dρ  is the given prior range of the zero frequency resistivity, and 

2 2
*

1 1

( ) ( )
Re[ ( )] Im[ ( )]

n n
k k

re imobs obs
k kk k

A Bu u uρ
ω ω

ρ ω ρ ω= =

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ and 

*
*

1 1

( ) ( ) 1
Re[ ( )] Im[ ( )]

n n
k k

re imobs obs
k kk k

A Bu u
uρ
ρ

ω ωµ
ρ ω ρ ω= =

⎛ ⎞
= +⎜ ⎟
⎝ ⎠
∑ ∑ . 
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Conditional probability distributions of the inverse variance of measurement errors 

As the prior distributions of the inverse variances of measurement errors are conjugate 

priors for the likelihood models defined in equations (7) and (8), we can also obtain the 

analytical forms of their conditional distributions, which are gamma distributions (see Appendix 

B) as follows 

0
1

( | ) ( ) (Re[ ( )] | , , , , )

            ( 0.5 ,  0.5 ),

n
obs

re re k re
k

re

f u f u f u

n S

ρ ω ρ

α λ
=

⋅ ∝

∝ Γ + +

∏ m b c
                                (12) 

0
1

( | ) ( ) (Im[ ( )] | , , , , )

            ( 0.5 ,  0.5 ),

n
obs

im im k im
k

im

f u f u f u

n S

ρ ω ρ

α λ
=

⋅ ∝

∝ Γ + +

∏ m b c
                                 (13) 

where 1 3eα λ= = − , 
2

1

Re[ ( )] Re[ ( )]
Re[ ( )]

obsn
k k

re obs
k k

S ρ ω ρ ω
ρ ω=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑ , 

and 
2

1

Im[ ( )] Im[ ( )]
Im[ ( )]

obsn
k k

im obs
k k

S ρ ω ρ ω
ρ ω=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑ . 

Sampling algorithm and monitoring convergence 

We use the Gibbs sampler (Geman and Geman, 1984) to draw samples from the joint 

posterior distribution defined in equation (5). The main steps are list below 

1. Assign initial values to 0ρ , m , b , c , reu , and imu , and refer to them as  (0)
0ρ , 

(0)m , (0)b , (0)c , (0)
reu , and (0)

imu , respectively. Let 1t = . 

2. Draw a sample from 0( | )f ρ ⋅  given ( 1)t−m , ( 1)t−b , ( 1)t−c , ( 1)t
reu − , and ( 1)t

imu − , and 

refer to it as ( )
0

tρ . 
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3. Draw a sample from ( | )f ⋅m  given ( )
0

tρ , ( 1)t−b , ( 1)t−c , ( 1)t
reu − , and ( 1)t

imu − , and refer 

to it as ( )tm . 

4. Draw a sample from ( | )f ⋅b  given ( )
0

tρ , ( )tm , ( 1)t−c , ( 1)t
reu − , and ( 1)t

imu − , and refer 

to it as ( )tb . 

5. Draw a sample from ( | )f ⋅c  given ( )
0

tρ , ( )tm , ( )tb , ( 1)t
reu − , and ( 1)t

imu − , and refer to 

it as ( )tc . 

6. Draw a sample from ( | )ref u ⋅  given ( )
0

tρ , ( )tm , ( )tb , ( )tc , and ( 1)t
imu − , and refer to 

it as ( )t
reu . 

7. Draw a sample from ( | )imf u ⋅  given ( )
0

tρ , ( )tm , ( )tb , ( )tc , and ( )t
reu , and refer to 

it as ( )t
imu . 

8. Let 1t t= + . If t T> , where T  is the maximum number of iterations allowed, 

stop; otherwise, go to step 2. 

We can obtain many samples of the unknown Cole-Cole parameters and inverse variances 

of measurement errors, i.e. { }( ) ( ) ( ) ( ) ( ) ( )
0 ,  ,  ,  ,  ,  ,  1, 2, ,t t t t t t

re imu u t Tρ =m b c L , by following the 

aforementioned algorithm. Theoretically, after a sufficiently long run (e.g., 0t  iterations, referred 

to as burn-in by Gilks et al., 1996), the drawn samples are approximately the samples drawn 

from the true joint pdf given in equation (5). Many methods can be used to find the burn-in 

number and to monitor the convergence of the obtained Markov chains, such as the methods 

developed by Gelman and Rubin (1992), Geweke (1992), and Raftery and Lewis (1992); we 

employ the Gelman and Rubin (1992) method in this study. 
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We run three different chains by starting from different sets of initial values for the total 

number of T  iterations. As the samples drawn early in the process may depend on the starting 

values, we throw away the first 0.5T  number of samples for each chain and consider them as the 

burn-in. We calculate a criterion, referred to as the scale reduction score in Gelman and Rubin 

(1992), based on the three Markov chains. With that approach, if the scale reduction score is less 

than 1.2, the Markov chain is considered to be converged; otherwise, more runs are needed. 

SYNTHETIC STUDIES 

We first demonstrate the use of the sampling-based Bayesian model for Cole-Cole 

parameter estimation using a synthetic SIP data set; we then compare the results obtained from 

the stochastic approach with those obtained from the deterministic method developed by Kemna 

(2000). We choose a synthetic case with a dual Cole-Cole model because this case is often 

encountered in practice, either to describe an SIP response with two relaxation domains or to 

describe a single-relaxation SIP response contaminated by capacitive and/or inductive coupling 

associated with the measurement layout (Pelton et al., 1978; Kemna et al., 1999). 

True Cole-Cole model parameters and synthetic IP data 

The synthetic Cole-Cole model parameters are listed in the second column of Table 2. 

These values are the same as those used by Cao et al. (2005), except for the zero frequency 

resistivity, whose value was not provided by the paper. The dual Cole-Cole model is mainly 

separated by the two chargeabilities, which have a ratio of 50. We generated synthetic SIP data 

using frequencies ranging from 1 mHz to 10 kHz as is typical of SIP measurements, and added 

1% relative random noise to the real and imaginary components of the generated resistivity data. 
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This level of noise is reasonable based on noise distributions estimated from the laboratory SIP 

data presented in the section of laboratory studies. 

Inversion procedure of the MCMC-based stochastic method 

We start to invert the SIP data using common and wide (i.e., non-informative) prior ranges, 

specifically (1, 1000) (in Ωm) for the zero-frequency resistivity 0ρ , (1e-5, 1) for  chargeabilities 

1m  and 2m , (0, 1) for dependence factors 1c  and 2c , and (-5, 5) (in s) for base 10 logarithmic 

time constants 1log( )τ  and 2log( )τ  (see column 3 of Table 2). We run three Markov chains using 

the three sets of initial values given by the fourth, fifth, and  sixth columns of Table 2. We run 

each chain by beginning with one of the three sets of initial values for 20,000 iterations and use 

the latter half to estimate the marginal posterior pdf of each Cole-Cole parameter. The CPU time 

for the sampling is on the order of minutes using a personal computer with 1.8 GHz speed. 

Figure 1 shows the estimated marginal pdf of chargeability 1m , obtained stochastically 

using the synthetic SIP data with 1% relative noise. Two modes appear in the pdf: one is close to 

0.0 and the other is around 0.5. This is because if we switch the values between the Cole-Cole 

parameters 1 1 1( , , )m cτ  and 2 2 2( , , )m cτ , the IP responses calculated from equations (3) and (4) do 

not change. To avoid the bimodality, we re-run the Markov chains by modifying the prior ranges 

of chargeability as follows, (0.25, 1) for 1m  and (1e-5, 0.25) for 2m . Using such a two-step 

procedure, we obtain the marginal posterior pdfs of all the Cole-Cole parameters with a unique 

mode. 
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Comparison between the stochastic and deterministic inversion methods 

In this subsection, we explore how the choice of initial values impacts the deterministic 

and stochastic estimation results, and assess the uncertainty information provided by both 

inversion methods. 

Dependence on the choice of initial values 

The choice of initial values is not critical for the stochastic inversion method because it 

affects only the speed of convergence of Markov chains to the target probability distribution 

function being sampled, but not the inversion result. In fact, it is essential for the MCMC-based 

methods to run multiple chains with very different sets of initial values in order to avoid possible 

local convergence. Although the stochastic method provides extensive information about each 

unknown parameter, we use only the medians as the best estimates and compare them with the 

estimates obtained from the deterministic method. In the third column of Table 3, we show the 

estimated medians of unknown Cole-Cole parameters based on all the three Markov chains 

obtained using the three initial sets given in Table 2 because the estimated medians from each 

individual chain are almost identical. From the comparison between the estimated medians and 

their corresponding true values, which are given in the second column of the same table, we can 

see that even if we start from very different initial values, the MCMC based method can provide 

good estimates of unknown parameters. 

The choice of initial values is critical for the deterministic inversion, especially when 

considering a multiple Cole-Cole model. We found that the method often can not converge given 

an arbitrary choice of initial values. For example, when we applied the initial values given in 

Table 2 for the stochastic inversion to the deterministic inversion method, none could  converge 

to a solution that was close to the true values. A main problem caused by the dependence of the 
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estimates on the initial values is that if differences between resultant data misfits for estimates 

obtained from different sets of initial values are subtle, it is difficult to decide which solution 

should be preferred without knowing the probability of the parameter sets. 

Table 3 shows the estimates of Cole-Cole parameters obtained deterministically using 

different sets of initial values. The first one is listed in the last column of Table 2, obtained after 

several tries by observing the SIP data fits without knowing the true values, and the second one 

uses the true values of the synthetic model. Figure 2 shows the fits to the synthetic SIP data with 

1% relative noise using the deterministic approach with these two different sets of initial values, 

together with the fit obtained from the stochastic method. If we did not know the true model 

parameters, given 1% relative noise in the data, we may be satisfied with the estimates obtained 

from the first set of initial values. However, comparison with the true Cole-Cole parameters 

shows that the results in column 4 of Table 3, having the root mean square of errors (RMS) of 

0.57, is clearly worse than the results in column 3 of the same table, having the RMS of 0.084 

and obtained from the stochastic inversion method. The estimates found from the second set of 

initial values (column 5 in Table 3) are better (RMS=0.065) and represent the global solution of 

the inverse problem because we started from the true Cole-Cole parameters; these estimates are 

comparable with those (column 3 in Table 3) obtained from the stochastic inversion method. 

In practice, we rarely have enough a-priori information about SIP mechanisms to choose 

good initial values that are close enough to the true values to lead to a global optimal solution 

using the deterministic approach. However, we may desire a single parameter estimate rather 

than a pdf. We can achieve both goals by using a combination of the stochastic and deterministic 

approaches, whereby we initialize the deterministic method using the medians of the 

stochastically obtained marginal posterior pdfs. The sixth column of Table 3 illustrates this 
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approach, and indicates that the obtained estimates are indeed very close (RMS=0.072) to the 

true Cole-Cole parameters, which are just slightly worse than the results obtained by starting 

from the true values (RMS=0.065). 

Estimated uncertainty information 

The stochastic method can provide the entire estimated posterior pdfs and hence extensive 

information of the unknown parameters. To compare the stochastic estimation results with those 

obtained using the deterministic method, we use only the 95% highest probability domain (HPD) 

of unknown parameters as a measure of uncertainty, which is equivalent to the 95% confidence 

intervals (CIs) in the deterministic inversion method. Table 4 shows the 95% HPD of Cole-Cole 

parameters obtained from the stochastic method and the 95% CIs of estimated parameters from 

the deterministic inversion method. Note that the upper bound of the possible 2c  range was also 

set to 1 in the deterministic approach. This table suggests that the stochastic method provides 

very high precision for all the unknown variables; the true values are all within the 95% HPD. 

The quality of uncertainty information obtained from the deterministic method varies, 

depending on the obtained optimal solutions. For the initial values given in the last column of 

Table 2, the resultant estimates do not represent a global solution, as shown in Table 3 and 

Figure 3. Their 95% CIs are very wide; some even do not include the true values. For example, 

the deterministically-obtained time constant 2τ  and dependence factor 2c  shown in Figure 3 vary 

significantly from the true value. However, when the initial values are well chosen (i.e., close to 

the true values), the deterministic method provides good uncertainty information. For example, 

when the initial values for the deterministic approach are the true values or the medians of the 

stochastic results, the resulting 95% CIs are comparable to those obtained from the stochastic 

method (except for the zero frequency resistivity 0ρ ). 
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The uncertainty information obtained from the stochastic method is different from that 

obtained from the deterministic method by definition. The uncertainty information of the 

stochastic method depends on the measurement errors in the data and the prior distributions, 

whereas the uncertainty information of the deterministic method is a function of the 

measurement errors in the data and is related to the obtained solution. If the estimated values are 

close to the true values, the 95% CIs are tight; otherwise, they are inaccurate, as shown in Table 

4. For the stochastic method, as long as the Markov chains converge, we can get good estimates 

of uncertainty information about the unknown parameters. 

LABORATORY STUDIES 

Spectral IP laboratory measurements  

We use two laboratory SIP data sets measured on unconsolidated sediment samples to 

compare the performance of the deterministic and stochastic methods for Cole-Cole parameter 

estimation. The first data set (Figure 4) was measured on a silica sand sample that has grain size 

of 125-250 µm and was saturated with a 4103 −×  molar KCl solution (Kemna et al., 2005). The 

data show a Cole-Cole type behavior in the low to moderate frequency range (i.e., below 

100 Hz) at relatively low polarizability as is typical of silica sands. Note that the decrease of the 

real part of resistivity towards lowest frequencies (i.e., below 30 mHz) is due to ions being 

detached from the matrix and going into solution during data acquisition time, which is of the 

order of two hours for this frequency range. Towards higher frequencies (i.e., above 100 Hz), the 

data are increasingly dominated by capacitive coupling effects associated with the measurement 

setup, as typical in impedance spectroscopy. These coupling effects may be described by the 

low-frequency branch of a higher-frequency Cole-Cole dispersion term (Kemna et al., 2000). 
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The second data set (Figure 5) was collected from a sample that was extracted from a 

sand/gravel aquifer at the Krauthausen test site in Germany (Kemna et al., 2002; Hördt et al., 

2007), using the same device and experimental setup as for the first set of laboratory 

measurements. The sample was saturated with water having an electrical conductivity of 

approximately 0.05 S/m. The fluvial aquifer at the site partly exhibits a strongly non-uniform 

grain size distribution. This is reflected in the selected data set, where two Cole-Cole type 

dispersion regions can be identified with phase peaks at approximately 0.1 Hz and 100 Hz, again 

superimposed by a continuous phase shift increasing towards higher frequencies (i.e., above 1 

kHz) due to capacitive coupling associated with the measurement layout. 

Inversion of the SIP data from the silica sand sample 

We first inverted the SIP data obtained from the silica sand sample using the deterministic 

method for a dual Cole-Cole model. After trying several sets of initial values, we chose the 

values given in the second column of Table 5. The corresponding estimates of the Cole-Cole 

parameters and their associated 95% CIs are listed in the third and fourth columns of the same 

table, respectively. The estimated Cole-Cole parameters seem to fit the SIP data well as shown 

by the red curves in Figure 4. For ease of comparison, we calculate the relative half width 

(RHW) of 95% confidence intervals by normalizing each actual half width by the absolute value 

of its corresponding optimal estimate. We can see that the obtained confidence intervals of the 

estimates overall are tight (RHW<6%), except for those of 2m  (RHW=101%),  1log( )τ  

(RHW=10%), and 2log( )τ  (RHW=25%). Note that the lower bound of the possible 2m  range 

was set to 0. 

We also inverted the same SIP data set for a dual model using our stochastic method. We 

used common prior ranges for the two sets of Cole-Cole model parameters, i.e., (1, 1000) (in 
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Ωm) for zero-frequency resistivity, (-5, 0) ( log( )m ) for chargeability, (-10, 10) ( log( )τ , τ in s) 

for time constant, and (0, 1) for dependence factor. Following the two-step procedure described 

in the section of synthetic studies, we obtained the estimated marginal posterior pdfs of the Cole-

Cole parameters. For comparison with the deterministic result, we list the medians and their 

corresponding 95% HPDs in Table 5. Except for chargeability 2m  and time constant 2log( )τ , 

which are poorly constrained by the data, the medians of the estimated posterior pdfs of the 

Cole-Cole parameters are very close to those obtained from the deterministic method. However, 

the stochastic method provides much tighter uncertainty bounds for those estimates; all the 

relative half widths of 95% HPDs are less than 3%, except for those of 2m  (RHW=52%),  

1log( )τ  (RHW=4%), and 2log( )τ  (RHW=5%). 

Figure 6 compares the estimated pdfs of the Cole-Cole parameters obtained from the 

stochastic method with the optimal estimates obtained from the deterministic method. Except for 

the time constant 2log( )τ  and the dependence factor 2c , the estimates obtained from the 

deterministic method are all within the HPDs of the posterior pdfs. To demonstrate the effect of 

initial values, we inverted the same data set using the deterministic method starting from the 

medians of our posterior pdfs. The corresponding new estimates are also shown in Figure 6. Note 

that all the estimated Cole-Cole parameters now are very close to the medians of the estimated 

marginal posterior pdfs. The new estimates represent a better solution in terms of the Chi-square 

misfit, which is 0.44 for the original initial values and 0.37 for the new initial values. 

Table 6 compares the correlation coefficients of Cole-Cole parameters obtained from the 

deterministic (above slashes) and the stochastic (below slashes) methods. Both methods give us 

very small values of cross-correlation between the zero-frequency resistivity and other 

parameters. In addition, we can see that the stochastic method provides very similar but slightly 
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smaller values of cross-correlation among the parameters ( 1m , 1log( )τ , 1c ), which are reasonably 

constrained by the data, than does the deterministic method. However, the differences in cross-

correlations between parameters involving 2m , 2log( )τ , or 2c  are quite large, which may be 

contributed to the poor resolvability of particularly 2m  and 2log( )τ . 

Inversion of the SIP data from the Krauthausen sand/gravel sample 

We also inverted the SIP data obtained from the sand and gravel sample from the 

Krauthausen site using the deterministic and stochastic methods. For the deterministic method, 

we fitted the data with a triple Cole-Cole model after several tries with different initial values. 

Table 7 shows the initial values, the obtained estimates, and the 95% CIs of the estimates. As 

shown in Figure 5, the estimated Cole-Cole parameters seem to fit the complex resistivity data 

very well. As in the example before, chargeability and time constant of the highest-frequency 

Cole-Cole terms (i.e., 3m  and 3log( )τ ) are effectively not resolved (i.e., exhibit huge 95% CIs, 

for 3m , the CI is actually given by the pre-set lower and upper bounds of the allowed range), as 

expected from the spectral behavior of the data (Figure 5). 

For the stochastic method, we also inverted for the triple Cole-Cole model parameters 

using the common prior ranges. The medians and the 95% HPDs of the Cole-Cole parameters are 

given in the fifth and sixth columns of Table 7. Similarly, the medians of the estimated pdfs are 

very close to the optimal solution obtained from the deterministic inversion method, except for 

3m  and 3log( )τ . As shown in Figure 7, the estimates of the Cole-Cole parameters from the 

deterministic approach are all very close to the modes of the estimated marginal pdfs. This 

means that the optimal estimates found by the deterministic method likely represent a global 

solution for the triple Cole-Cole model. Again, the uncertainty bounds estimated from the 
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deterministic method are much wider than those obtained from the stochastic method as shown 

in Table 7. If we assume that the true model indeed is a triple model, the estimated relative errors 

of real and imaginary components of the SIP data are 0.5% and 1.9%, respectively, both of 

which are quite small. 

CONCLUSIONS 

We have developed an MCMC based Bayesian model to invert for Cole-Cole parameters 

from SIP data and have compared its performance with the commonly used deterministic 

(Gauss-Newton) method through inversion of synthetic and laboratory data. The Bayesian 

method estimates the marginal posterior pdfs of Cole-Cole parameters using samples obtained 

from the joint posterior pdf defined by the likelihood functions of SIP data and prior distributions 

of unknown parameters, whereas the deterministic method seeks the optimal solution by 

minimizing the squared misfit of the model response with the SIP data. We use non-informative 

priors in the stochastic method, the estimates of Cole-Cole parameters obtained from the 

stochastic method primarily depend on the data and thus can be compared to those obtained from 

the deterministic method. Through detailed comparison between the stochastic and deterministic 

inversion methods for inverting synthetic and laboratory SIP data, we found that the sampling 

based stochastic method has two key advantages over the deterministic method. 

The first advantage is that the stochastic method provides a global approach for inverting 

SIP data for Cole-Cole parameters; the obtained estimates are independent of initial values. The 

deterministic method is a localized approach for inverting the SIP data by finding an optimal 

solution that fits the SIP data through iteratively updating the model from a starting model of 

initial values, which typically need to be very close to the true model parameters. Because of the 

nonlinearity of the forward Cole-Cole modeling and the general non-uniqueness and ill-posed 
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nature of the inverse problem, many local optimal solutions may exist. Consequently, as 

demonstrated in the synthetic and laboratory data analyses, different initial values can yield 

different solutions with similar misfit criteria. The MCMC sampling based stochastic method 

virtually can start from a wide range of initial values; the obtained Markov chains converge to 

the target probability distribution function. Indeed, it is good to run Markov chains from several 

very different sets of initial values in order to detect possible local convergence. 

The second advantage is that the stochastic method provides a better way to quantify 

uncertainty in the inverse problem. The deterministic method estimates the uncertainty of 

unknown parameters from the diagonal terms of the covariance matrix that is determined by both 

the regularization and the Jacobian matrices evaluated at a presumed optimal solution. The 

precision of such estimation depends on whether the found minimum is a local or a global 

minimum and the local characteristics (e.g., nonlinearity and non-uniqueness) of the solution. If 

the minimum indeed is a local minimum, the estimated uncertainties of the parameters are 

wrong. In contrast, the stochastic method estimates the uncertainty of unknown parameters using 

an Monte Carlo approach. We use MCMC sampling methods to draw many samples of unknown 

parameters from the joint posterior pdf. As long as those Markov chains converge to the target 

pdf, the obtained uncertainty information about the unknown parameter is global information, 

independent of the choice of initial values and the local characteristics of specific solutions. 

The MCMC based inversion methods compared to the Gauss-Newton based inversion 

methods potentially have two downsides. The first one is that the computation time for the 

MCMC method is couple of orders larger than that of deterministic methods. But for IP data 

inversion, it is not an issue because the running time for deterministic methods is in the order of 

seconds and that of stochastic methods is in the order of minutes on a PC or laptop, which is 
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acceptable. The second possible limitation of stochastic methods is that they provide marginal 

probability distribution but not optimal solutions like the deterministic methods. The users may 

pick the mean, median, or the mode of the marginal probability distribution as the optimal 

estimate of unknown parameters. The two methods can complement each other; for example, we 

can use stochastic methods to find the distribution and use the medians or modes as initial values 

for the Gauss-Newton methods to pick one set of optimal solution. 
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APPENDIX A -- Derivation of conditional distribution of the zero frequency resistivity 

The derivation of equation (11) is given below 
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APPENDIX B -- Derivation of conditional distributions of the inverse variances 

The gamma distribution is a conjugate prior for the multivariate normal likelihood function 

defined in equations (7) and (8), hence the posterior distributions of the inverse variances of the 

measurement errors are also gamma distributions as given below 
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Similarly, 
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FIGURE CAPTIONS 

Figure 1: Estimated chargeability ( 1m ) for synthetic dual Cole-Cole model data using the 

common prior ranges. 

Figure 2: Synthetic SIP data with 1% relative noise and obtained fits using the stochastic 

method (green curves) and the deterministic method for two sets of initial values (blue curves 

represent true values, and red curves represent Init0 values in Table 2) for a dual Cole-Cole 

model. 

Figure 3: Comparison between estimated pdfs from the stochastic method (black curves) and 

estimated parameters from the deterministic method for three sets of initial values (blue lines 

represent true values, green lines represent medians of the stochastic results, and red lines 

represent Init0 values in Table 2) for the synthetic SIP data with 1% relative noise using a dual 

Cole-Cole model. 

Figure 4: Silica-sand SIP data and fits obtained using the stochastic method (blue curves) and 

deterministic method (red curves) for a dual Cole-Cole model. 

Figure 5: Krauthausen SIP data and fits obtained using the stochastic method (blue curves) and 

deterministic (red curves) method for a triple Cole-Cole model. 

Figure 6: Comparison between estimated pdfs from the stochastic method (black curves) and 

estimated parameters from the deterministic method for two sets of initial parameters (blue lines 

represent medians of the stochastic results, red lines represent values found from test tries) for 

the silica-sand SIP data using a dual Cole-Cole model. 

Figure 7: Comparison between estimated pdfs from the stochastic method (black curves) and the 

estimated parameters from the deterministic method (red lines) for Krauthausen SIP data using a 

triple Cole-Cole model. 
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Table 1. True Cole-Cole parameters of the synthetic dual model, the prior ranges and initial

values of the stochastic method, and the initial values of the deterministic method for inverting

the synthetic SIP data

Cole-Cole True Stochastic Inversion Deterministic Inversion

Parameters Values Prior Ranges Initial-1 Initial-2 Initial-3 Initial Values (Init0)

ρ0 (Ωm) 25.0 (1,1000) 5 50 500 20

m1 0.5 (1e-5,1) 0.1 0.4 0.6 0.1

log(τ1) (τ1 in s) 1.0 (-5,5) -4 -1 1 1

c1 0.4 (0,1) 0.1 0.4 0.6 0.5

m2 0.01 (1e-5,1) 0.1 0.4 0.6 0.1

log(τ2) (τ2 in s) 0 (-5,5) -4 -1 1 -1

c2 0.98 (0,1) 0.1 0.4 0.6 0.5
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Table 2. Comparison of the estimates from inversion of the SIP data with 1% relative noise

using the stochastic and deterministic methods

Cole-Cole True Stochastic Deterministic Inversion

Parameters Values Inversion Estimates Estimates Estimates

Medians (Using Init0) (Using True Values) (Using Medians)

ρ0(Ωm) 25 25.01 24.92 25.01 25.02

m1 0.5 0.496 0.410 0.490 0.490

log(τ1) (τ1 in s) 1.0 1.009 0.878 1.009 1.012

c1 0.4 0.398 0.416 0.398 0.397

m2 0.01 0.015 0.1 0.016 0.017

log(τ2) (τ2 in s) 0 0.147 1.218 0.137 0.145

c2 0.98 0.836 0.311 0.896 0.881
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Table 3. Comparison of uncertainty information obtained from inversion of the synthetic SIP

data with 1% relative noise using the stochastic and deterministic methods

Cole-Cole True Stochastic Deterministic Inversion

Parameters Values Inversion 95% CI 95% CI 95% CI

95% HPD (Using Init0) (Using True Values) (Using Medians)

ρ0 (Ωm) 25 (24.89,25.15) (22.94,26.90) (23.04,26.97) (23.05,26.98)

m1 0.5 (0.475,0.504) (0,0.869) (0.484,0.496) (0.483,0.497)

log(τ1) (τ1 in s) 1.0 (0.974,1.066) (0.538,1.218) (0.983,1.034) (0.986,1.038)

c1 0.4 (0.390,0.402) (0.352,0.480) (0.395,0.401) (0.393,0.401)

m2 0.01 (0.007,0.037) (0,0.567) (0.013,0.019 (0.014,0.020)

log(τ2) (τ2 in s) 0.0 (-0.008,0.337) (0.049,2.387) (-0.092,0.366) (-0.087,0.377)

c2 0.98 (0.635,1.0) (0.114,0.508) (0.738,1.0) (0.726,1.0)
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Table 4. Comparison of inversion results using the deterministic and stochastic methods for

the silica sand SIP data

Parameters Deterministic method Stochastic method

Initial Values Estimates 95% CI Medians 95%HPD

ρ0 (Ωm) 770.77 773.40 (752.96,794.39) 773.33 (772.38,774.37)

m1 1e-3 6.94e-3 (6.77e-3,7.11e-3) 6.90e-3 (6.7e-3,7e-3)

log(τ1) (τ1 in s) -1 -0.992 (-1.095,-0.889) -0.972 (-1.005,-0.933)

c1 0.5 0.418 (0.406,0.429) 0.423 (0.413,0.433)

m2 1e-1 1.29e-1 (0,2.62e-1) 6.71e-1 (3.05e-1,1)

log(τ2) (τ2 in s) -6 -6.406 (-7.989,-4.823) -7.462 (-7.734,-6.948)

c2 1.0 0.765 (0.725,0.804) 0.736 (0.719,0.754)
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Table 5. Comparison of correlation coefficients obtained from the deterministic and stochastic

methods for the silica sand SIP data

Parameters ρ0 m1 log(τ1) c1 m2 log(τ2) c2

ρ0 1

m1 0.01/-0.04 1

log(τ1) 0.00/0.01 -0.69/-0.62 1

c1 0.00/-0.02 -0.67/-0.63 0.64/0.60 1

m2 -0.01/-0.01 -0.51/-0.12 0.51/0.13 0.39/0.10 1

log(τ2) 0.01/0.01 0.52/0.19 -0.52/-0.20 -0.40/-0.16 -0.99/-0.97 1

c2 0.01/0.00 0.66/0.59 -0.67/-0.60 -0.53/-0.50 -0.89/-0.33 0.91/0.46 1
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Table 6. Comparison of inversion results using the deterministic and stochastic methods for

the Krauthausen data

Parameters Deterministic method Stochastic method

Initial Values Estimates 95% CI Medians 95% HPD

ρ0 (Ωm) 98.49 98.38 (95.78,101.05) 98.37 (98.25,98.50)

m1 5e-3 3.38e-3 (2.69e-3,4.07e-3) 3.4e-3 (3.2e-3,3.6e-3)

log(τ1) (τ1 in s) 0 0.283 (-0.024,0.590) 0.285 (0.239,0.329)

c1 0.5 0.58 (0.527,0.633) 0.580 (0.562,0.599)

m2 2e-2 1.97e-2 (1.10e-2,2.83e-2) 1.97e-2 (1.82e-2,2.12e-2)

log(τ2) (τ2 in s) -3 -3.13 (-3.876,-2.384) -3.134 (-3.201,-3.067)

c2 0.5 0.492 (0.425,0.558) 0.491 (0.474,0.510)

m3 2e-1 3.66e-1 (0,1) 5.318e-1 (1.753e-1,9.96e-1)

log(τ3) (τ3 in s) -7 -7.998 (-60.318,44.322) -8.325 (-8.988,-7.263)

c3 1.0 0.551 (0.425,0.558) 0.551 (0.504,0.604)
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Figure 1. Estimated chargeabiliy (m1) using the common prior ranges.
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Figure 2. Synthetic SIP data with 1% relative noise and obtained fits using the stochastic

method (green curves) and the deterministic method with two different sets of initial values (blue

curves: true values, and red curves: Init0 values in Table 1) for a dual Cole-Cole model.
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Figure 3. Comparison between the estimated pdfs from the stochastic method (black curves)

and the estimated parameters from the deterministic method for three different sets of initial

values (blue lines: true values, green lines: medians of the stochastic inversion results, and red

lines: Init0 values in Table 1) for the synthetic SIP data with 1% relative noise using a dual

Cole-Cole model.
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Figure 4. Silica sand SIP data and obtained fits using the stochastic (blue curves) and the

deterministic (red curves) methods for a dual Cole-Cole model.
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Figure 5. Krauthausen SIP data and obtained fits using the stochastic (blue curves) and the

deterministic (red curves) methods for a triple Cole-Cole model.
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Figure 6. Comparison between the estimated pdfs from the stochastic method (black curves)

and the estimated parameters from the deterministic method for two different sets of initial

values (blue lines: medians of the stochastic inversion results, and red lines: values found from

test tries) for the silica sand SIP data using a dual Cole-Cole model.
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Figure 7. Comparison between the estimated pdfs from the stochatsic method (black curves)

and the estimated parameters from the deterministic method (red lines) for the Krauthausen

SIP data using a triple Cole-Cole model.
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