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ABSTRACT 
Significant wave heights and wave periods obtained from field measurements in Lake Balaton, Hungary, 
were compared with two versions of the shallow water wave hindcasting model published by the U.S. Army 
Corps of Engineers. The version presented in CERC [3, 4] was found to give very good hindcasts of wave 
height but fall —20% low on wave period. The model presented in CERC [5] was 15-20% above the earlier 
version at long fetches and approximately equivalent at shorter fetches. 

RÉSUMÉ 
On a compare les hauteurs significatives et les périodes d'une houle mesurée en nature sur Ie Lac Balaton en 
Hongrie avec deux versions du modèle d'estimation de la houle a partir du vent concu par l'U.S. Army Corps 
of Engineers. Il apparaït que la version presentee au CERC [3, 4] restitue bien la hauteur de houle a partir du 
vent mais donne des périodes a peu prés 20% plus basses. Avec les modèle présenté au CERC [5], on retrouve 
approximativement les mêmes résultats pour de faibles fetchs et on les majore de 15 a 20% pour de plus 
grands fetchs. 

Introduction 

Sediment transport, benthic ecology, water quality and mean circulation in the shallow waters 

of lakes, sounds and coastal regions may be significantly affected by the presence of locally gen-

erated, wind waves [1, 2, 6, 7, 9, 13]. In conjunction with these types of studies it is often very 

useful to have an easy method for predicting characteristic wave properties. The U.S. Army Corps 

of Engineers, CERC [3, 4, 5], has published two versions of a simple shallow water wave hind-

casting model that have the potential to meet this need. However, there is relatively little field 

data that has been published demonstrating their accuracy, particularly in the wave height range 

generally considered to be surface chop (e.g., wave heights ~ 0.5 m or less). This paper presents 

a comparison of wave hindcasts and wave data measured on Lake Balaton, Hungary, (Fig. 1), 

which has the largest surface area of any lake in central Europe (700 km2) but has a mean depth of 

only 3.2 m. 
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Fig. 1. Lake Balaton, Hungary with detailed drawings of'the Keszthely and Tihany field sites. 

Le Lac Balaton en Hongrie avec la representation détaillée des lieux de mesures en nature de 
Keszthely et Tihany. 

Field study and data analysis 

Field data were collected using a tripod-based system of instruments at two sites in Lake Balaton, 

one in 2.2 m deep water 100 m east of the Tihany peninsula and the other in 2.0 m deep water 

200 m east of the western end of the lake at Keszthely, (Fig. 1). A more detailed description of the 

instrumentation system is presented in Luettich et al. [9]. Bottom sediments at the Tihany field 

site consisted primarily of silty-sand while those at the Keszthely field site were mainly clayey-

silt. Frequent dives finled to indicate the presence of appreciable bed forms at either location. 

Sediments ranged from areas of predominantly silt to areas of predominantly clay along the 

major fetchs of both field sites. 

Data was collected in 6 minute long bursts and the instruments turned off for intervals ranging 

from 4-54 minutes depending on the ambient conditions. During a burst the sensors were 

sampled at a rate of 2 Hz. 

Wind velocity was recorded using sensors 2 m above the mean water level. 

Wave orbital velocities were measured by two BASS velocity meters 28 cm and 94 cm above the 

bottom at the Tihany side and 24 cm and 85 cm above the bottom at the Keszthely site. These 

acoustic sensors have a resolution of 0.03 cm/s, an accuracy of about 0.3 cm/s, measure velocity 

components in all three coordinate directions, and contain no moving parts which might have 

difficulty following a highly oscillatory flow, Williams [15]. 

Extensive comparisons between one-dimensional vertical velocity spectra measured by the 

upper and lower BASS showed that the surface wave band was well defined and that the veloc-

ities were accurately described by linear theory for significant wave heights greater than about 
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4 cm (for smaller waves a reliable separation between wave velocities and turbulent velocities 

could not be obtained). Therefore, linear wave theory was used to extrapolate the surface wave 

part of each vertical velocity spectrum measured at the upper BASS into a wave amplitude spectrum at 

the water surface. The significant wave height, //s, was determined from the approximate relation, 

ff,~4ff (1) 

wherezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a is the standard deviation of water surface elevation in the wave band. Equation (1) is 

justified theoretically since all of the wave amplitude spectra satisfied the narrow bandedness 

criteria of Ochi [11] and Longuet-Higgins [8]. It's use with the data sets presented below also 

agrees with the results of Thompson and Vincent [14- Fig. 6], regarding the relationship between 

statistical and energy based wave heights in shallow water. 

The wave amplitude power spectra were used to compute the peak frequency, the centroid 

frequency and the expected zero-crossing frequency, Nath and Yeh [10]. Due to the narrowness 

of the wave spectra, there was virtually no difference among the three. Wave periods presented 

below were computed from the centroid frequency. It should be noted that since data was collect-

ed at 2 Hz it is theoretically impossible to resolve wave periods smaller than 1 sec and in practice, 

wave periods near 1 sec will be poorly represented as well. To check whether this was a problem 

with any of the measured data, the roll off of the measured velocity spectra and the computed 

wave amplitude spectra in the vicinity of 1 sec were examined. In all cases no indication of alias-

ing by improperly sampled high frequency waves was found. 

Using the horizontal components of velocity it was also possible to estimate the direction of wave 

propagation (+ 180°). Occasions that the waves were not closely aligned with the wind are noted 

in the next. 

Wave models 

The two versions of the shallow water wave hindcasting model used in this study are summarized 

in Table 1. Equations (2)-(7) are based on the assumption that a spatially uniform wind has been 

blowing long enough for the waves to have reached a steady state at the point of interest, (i.e., 

fetch limited conditions). Dimensionless parameter groupings appear in equations (4)-(7) so that 

any consistent system of units can be used without changing the coefficient values. 

As indicated in Table 1 and discussed below, the two model versions differ in their coefficient 

values, definitions of wind speed and fetch, and the inclusion of duration limitation. 

Model 73 uses the effective fetch, Fe, to account for the loss of wave energy at lateral boundaries 

in enclosed and partially enclosed water bodies. Fe is computed as a weighted average of the 

distance from the measurement point to the shoreline at angles up to 45° on either side of the 

up-wind direction, CERC [3, 4]. The fetch in model 84 is defined simply as the distance between 

the measurement point and the shoreline in the up-wind direction. 

Both models require the wind speed at a height of 10 m above the water surface and therefore 

it was necessary to adjust the measured windspeeds from 2 m up to 10 m. CERC [5] recommends 

a power law expression for model 84. No recommendation is made by CERC [3, 4] and therefore 

the adjustment for model 73 was performed assuming a logarithmic wind profile and the drag 

coefficient formula of Wu [16]. Wind velocities were smoothed with a 30-minute running average 

when measurement bursts were made more frequently than twice per hour. This acted to filter 

out some of the wind fluctuations with periods less than the response time of the wave field, 

particularly when the wind was oriented along the long axis of the lake. 
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CERC [5] suggests several additional adjustments should be made to convert the 10 m wind speed 

tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Wz for use in model 84. Equation (8) is recommended to account for the nonlinear relationship 

between wind speed and wind stress and was used to obtain the results presented below. Correc-

tions for the measurement durat ion and the air-water temperature difference typically canceled 

each other out, al though occasionally up to a 10% increase in H7., was indicated. In all cases that 

this was significant, however, it decreased the agreement between the model 84 hindcasts and the 

measured wave data. Therefore neither the duration nor the air-water temperature adjustments 

were included in the results presented below. 
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Table 1. Shallow water wave hindcasting models 

^ =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 0.283 tanh a • tanh — - — (2) 

Wl LtanhaJ 

— = 2An tanh/?-tanh (3) 

Wa [tanh/? 

a = 0.530(g/;/ Wlf " (4) 

B = 0.833 {ghjWtf
31i (5) 

y=A{gFlWlY (6) 

8 = B{gFjWlY (7) 

Model 1973 - CERC [3, 4] 
A =0 .0125 

Ö = 0 . 4 2 

B =0.077 

£ = 0 . 2 5 

^ 1 = Wio (wind speed measured 10 m above the water surface) 

F = Fe (effective fetch) 

Model 1984 - CERC [5] 

A =0.00565 

5 = 0 . 5 

B =0.0379 

e =0 .333 

F = Fs\ (straight line fetch) 

Wa = 0.71 Wió23 (adjusted wind speed) (8) 

gD lgT\23i 

— = 537 1 — (condition for duration limitation) (9) 
" a \ " a / 

Variable definition 

Hs = significant wave height 

T = wave period 

g = acceleration of gravity 

h = water depth 

D = wind durat ion 
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Model 84 attempts to determine if fetch limited (steady state) conditions exist at the point of 

interest using equation (9). By substituting equation (3) into equation (9) it is possible to com-

pute, for a given fetch, water depth and wind speed, the length of time the wind must blow before 

fetch limited conditions are reached. Waves produced by winds blowing for lesser periods are 

duration limited. 

Both models were applied using the local water depth at each site aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h in equations (4) and (5) due 

to the very gradual changes in bottom bathymetry that occur throughout most of Lake Balaton. 

Results 

Model comparisons are presented with two data sets, one from the Keszthely site and one from 

the Tihany site that were selected based on the presence of periods of reasonably sustained winds. 

Keszthely, 8/15-8/18, 1985 
Data was collected for a period of about 60 hours. Figs. 2a, b contain the measured wind speeds 

and directions and indicate the occurrence of three discrete wind events. During the first event 

the wind speed increased rapidly from near zero to an average of nearly 4 m/s and then dimin-

ished gradually over the following 12 hours. The direction remained quite constant throughout 

the period with winds blowing from the east and therefore nearly aligned with the long axis of the 

lake. Winds during the second event increased rapidly from near zero to about 3 m/s and fluctuat-

ed around this speed for approximately 6 hours before dropping back to zero. For the first half of 

this event the winds were oriented from the north, across the lake. Thereafter, they rotated 90° to 

blow from the east. Winds during the final event averaged 5-8 m/s for about 12 hours and blew 

consistently from the north. 

Wave statistics and model hindcasts for the 60 hours of data are shown in Figs. 2c, d. Overall 

model 73 does a very good job of reproducing the observed significant wave heights both for 

winds blowing along the lake's long axis and for winds blowing across the lake (Fig. 2c). The 

waves observed during hours 10-12 immediatey preceding the first wind event, correspond to a 

period of virtually zero wind at the measurement site and therefore were not locally generated. 

(Horizontal velocity spectra showed that these waves were aligned in the east-west direction and 

therefore propagating down the lake ahead of the storm.) Model 73's over-prediction of signifi-

cant wave height during the first wind event near hour 14 occurs at a time of rapid increase in wind 

speed and suggests that the waves were probably duration limited rather than fetch limited. 

At the beginning of the second event there is also an indication of nonlocally generated waves. 

When the wind does arrive, model 73 has very little overshoot due to the short fetch length across 

the lake. The modeled wave height is a little high after the wind switches to the east, suggesting 

another period of duration limitation. 

No noticeable model overshoot in significant wave height occurs during the final event because 

of the short cross-lake fetch. For the same reason much of the non-steady nature of the observed 

wave heights is reproduced by the model. The under-prediction between hours 54-56 is due in 

part to the smoothing introduced by the 30 minute running average applied to the wind measure-

ments. In this case the waves were apparently responding to fluctuations in wind speed at time-

scales even less than 30 minutes. 

Hindcasts of significant wave height using model 84 were characteristically 15-20% greater then 

those from model 73 when winds were oriented along the long axis of the lake. For cross-lake 

winds the model results were virtually the same, (Fig. 2c). Fig. 3 shows comparisons of the time 
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Fig. 2. Comparison between data and model hindcasts from the Keszthely Held site for the period 8/15/85-
8/18/85. 
a. Wind speed 2 m above the water surface 
b. Wind direction 2 m above the water surface 
c. Measured and modeled significant wave heights 
d. Measured and modeled wave periods 

Comparaison des mesures en nature avec les résultats obtenus a partir du modèle d'estimation de la 
houle a partir du vent a Keszthely dans la période du 15/08/85 au 18/08/85. 
a. Vitesse du vent a 2 m metres au-dessus de la surface de Teau 
b. Direction du vent a 2 m metres au-dessus de la surface de l'eau 
c. Hauteurs significatives de la houle mesurée et obtenue par Ie modèle 
d. Périodes de la houle mesurée et obtenue par Ie modèle 

historieszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA of F and Wa used in both models. During periods that the wind blows along the long axis 

of the lake, the narrowness of Lake Balaton causes Ft (model 73) to be restricted to 8-10 km while 

FS| (model 84) reaches nearly 25 km (Fig. 3a). These occasions occur at relatively low wind speeds 

and WA is nearly the same in each model (Fig. 3b). Therefore the over-prediction of significant 

wave height by model 84 suggests that some reduction in fetch due to the narrowness of the lake 

may be appropriate. During periods that the wind blows across the lake there is no appreciable 

reduction in fetch due to lateral boundaries and Fe and Fsl are nearly identical. When this occurs 

during a period of low wind speed, wave height hindcasts from model 84 are below those from 

model 73, (e.g., hours 34-36). At windspeeds above about 5 m/s, the nonlinear form of equation 

(7) causes W3 in model 84 to be greater than in model 73. In this situation the two models predict 
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Fig. 3. Time histories of fetch and W7., used in each wave hindcasting model for the data set measured at the 
Keszthely field site. 

Historique du fetch et de W7., mesurés a Keszthely et utilises dans chacun des modèles d'estimation 
de la houle a partir du vent. 

similar significant wave heights. As the wind speed increases above 8-10 m/s hindcast wave 

heights from model 84 are again above those from model 73 for the same fetch. 

As shown in Fig. 2d wave periods were not reproduced by either of the models as well as wave 

heights. Model 73 characteristically underpredicted wave periods by about 20% during stretches 

of reasonably constant winds. A comparison of hindcast wave periods from model 84 with those 

from model 73 shows essentially the same behavior as it did for wave heights. Model 84 yielded 

greater periods for the winds aligned with the lake axis and nearly the same periods for the wind 

blowing across the lake. 

Some idea of model 84's ability to predict the time required to reach fetch limited conditions can 

be obtained by computingzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA D using equation (9). This gives 7.5 hours, 7 hours, and 25 minutes as 

the times necessary to reach fetch limited conditions in the three wind events, respectively. For 

cross-lake winds, 25 minutes seems reasonable considering the good dynamic comparison 

between the modeled and observed wave heights. For the initial two events oriented along the 

lake, durations of 7-7.5 hours seem rather long based on the observations, although there was no 

7 hour period of sustained winds in this direction to fully validate this conclusion. 

Tihany, 7/30-7/31, 1985 
Figs. 4a, b present measured wind speeds and directions for a period of 12 hours. The average 

wind speed increased from near zero to approximately 4 m/s over a period of about 1 hour just 
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Fig. 4. Comparison between data and model hindcasts from the Tihany field site for the period 7/30/85-7/ 
31/85. 
a. Wind speed 2 m above the water surface 
b. Wind direction 2 m above the water surface 
c. Measured and modeled significant wave heights 
d. Measured and modeled wave periods 

Comparaison des mesures en nature avec les résultats obtenus a partir du modèle d'estimation de la 
houle a partir du vent a Tihany dans la période du 30/07/85 au 31/07/85. 
a. Vitesse du vent a 2 metres au-dessus de la surface de I'eau 
b. Direction du vent a 2 metres au-dessus de la surface de l'eau 
c. Hauteurs significatives de la houle mesurée et obtenue par Ie modèle 
d. Périodes de la houle mesurée et obtenue par Ie modèle 

prior to and during the initial part of the data. It fluctuated near this intensity for about 2.5 hours 

and decreased to zero over the following 3.5 hours. 

Each of the models exhibited the same characteristic behavior for both significant wave height 

and wave period as was found for the Keszthely data. Model 73 did the best overall job of match-

ing measured wave heights (Fig. 4c) and was about 20% low with wave period (Fig. 4d). The over-

shoot occurring in the first 1.5 hours suggests the waves were duration rather than fetch limited. 

From hour 5 to hour 8 the horizontal velocity spectra in the wave band showed that the waves did 

not follows the shift in wind direction to S30°E that occurred at hour 5. Rather, these waves were 

remnants of the N60°E wind. Therefore the local wind measurements are no longer appropriate 

for modeling the wave properties and the deviation of the model from the data is understandable. 
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Model 84 again gave predictions of wave height and period that exceeded model 73 by 15-20% at 

large fetches and more closely matched at shorter fetches. 

Equation (9) predicts about 12 hours is necessary to reach fetch limited conditions at the meas-

urement site. The comparison between the model results and the observations suggests this 

occurred in about 2 hours. 

Conclusions 

Measurements are presented of wave heights and periods of locally generated wind waves in the 

very shallow waters that characterize Lake Balaton, Hungary. Despite the fact that these waves 

fall in the wave height range generally considered to be surface chop, they can be responsible for 

resuspending large quantities of bottom sediment in Lake Balaton and therefore are quite 

significant to the water quality of the lake, Luettich et al. [9]. Since there has been virtually no 

previous field verification of the ability of the shallow water models presented in CERC [3,4,5] to 

predict wave properties under these conditions, a comparison is presented between model hind-

casts and the measured data. 

The results of this comparison consistently show: 

i. The model version in CERC [3,4] does a very good job of hindcasting significant wave heights 

but falls about 20% under observed wave period for fetch limited conditions, 

ii. The model version in CERC [5] gave hindcasts of wave height and period that were 15-20% 

above the earlier version for winds directed along the axis of the lake and therefore having 

relatively long fetches. For short fetches results from the two model versions were nearly the 

same, 

iii. Equation (9) included in CERC [5] gives a value of the time required to reach fetch limited 

conditions which is consistent with the model/data comparison for short fetches, however, it 

is significantly longer than is suggested by the model/data comparison at long fetches. 

The overprediction of wave height by model 84 at long fetches may be due to its use of the straight 

line fetch rather than an effective fetch. In abandoning the use of an effective fetch, CERC [5] 

notes that "There may be a critical fetch width where width becomes important, but this is not 

known at this time." The results presented above together with the highly elongated shape of 

Lake Balaton, suggest that this effect may be important for waves generated along the lake's long 

axis. 
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Notations 

AzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA model coefficient 

B model coefficient 

D wind duration required to reach fetch limited conditions 

F fetch used in hindcasting models 

Fe effective fetch 

F%\ straight line fetch 

g acceleration of gravity 

h water depth 

Hs significant wave height 

T wave period 

Wa wind speed used in hindcasting models 

Wl0 wind speed measured 10 m above the water surface 

ö model coefficient 

£ model coefficient 

a standard deviation of the water surface elevation in the wave band 
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