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Abstract: 
The order fill rate is less commonly used than the volume fill rate (most often just 
denoted fill rate) as a performance measure for inventory control systems. However, in 
settings where the focus is on filling customer orders rather than total quantities, the order 
fill rate should be the preferred measure. In this paper we consider a continuous review, 
base-stock policy, where all replenishment orders have the same constant lead time and 
all unfilled demands are backordered. We develop exact mathematical expressions for the 
two fill-rate measures when demand follows a compound renewal process. We also 
elaborate on when the order fill rate can be interpreted as the (extended) ready rate. 
Furthermore, for the case when customer orders are generated by a negative binomial 
distribution, we show that it is the size of the shape parameter of this distribution that 
determines the relative magnitude of the two fill rates. In particular, we show that when 
customer orders are generated by a geometric distribution, the order fill rate and the 
volume fill rate are equal (though not equivalent when considering sample paths). For the 
case when customer inter-arrival times follow an Erlang distribution, we show how to 
compute the two fill rates.  
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1. Introduction 
Service levels are used in inventory control systems for performance evaluation and in 
target setting as substitutes for shortage costs that are hard to estimate. A review of 
standard service level measures and their relationships to shortage costs and different 
inventory control policies is provided by Schneider (1981). One of the most commonly 
used performance measures in inventory control is the volume fill rate (VFR), defined as 
the fraction of total demand that can be satisfied from inventory without shortages (Silver 
et al., 1998, p. 245). It is most often just denoted fill rate; in Silver et al. (1998) it is also 
referred to as P2. Somewhat less common as a performance measure is the order fill rate 
(OFR), specified as the fraction of complete orders that can be filled directly from 
inventory (sometimes also identified as the line fill rate).  

The motivation for our interest in this service measure is that we have recently been 
involved in a logistical analysis for a major Danish company operating as a provider of 
spare parts to various industries. The company used a base-stock inventory policy and 
was considering how to set the base-stock levels in order to provide adequate customer 
service. Through our discussions with the logistics managers we realized that the service 
measure of main concern to the company was the OFR, as defined above. To determine 
the base-stock levels the company used a standard heuristic method, assuming that lead-
time demand can be described by a normal distribution. However, demands are often low 
frequent and the individual customer orders are erratic to such a degree that this 
assumption is not very satisfactory. Furthermore, even if the normal distribution 
approximation did hold, it was also clear that the method in use was not consistent with 
the preferred OFR service measure.  

In most inventory control models as well as in some case studies, e.g. Ward (1978), the 
Poisson process is used to characterize arrivals of customer orders. However, by 
examining historical demand data from the company we found that a Poisson process 
sometimes gave a very poor representation of the observed arrival patterns. This is also 
noted by Smith and Dekker (1997) in connection with spare parts’ demand. Hence, what 
was needed was to develop a decision-support tool for the company that could offer 
flexibility with respect to modeling the inter-arrival times as well as the order-size 
distributions. To this end, we developed a computer program that computes the base-
stock level required to achieve a pre-specified level of the OFR under the assumption that 
inter-arrival times of customer orders are Erlang distributed, and that customer order 
sizes follow a binomial, a Poisson or a negative binomial distribution. The particular 
distributions for a certain item are to be fitted from historical demand data. This computer 
program is now in the process of being integrated with the company’s Business 
Warehouse system.  

In this paper, we generalize from the case study and derive formulas for the OFR and the 
VFR under the assumption that demand follows a compound renewal process. We also 
investigate the relationship between the two fill rates when customer order sizes can be 
represented by a negative binomial distribution with shape parameter s and probability 
parameter ρ. It turns out that whether s is above, equal to or below 1 determines if the 
VFR is above, equal to or below the OFR for any given base-stock policy. Thus, when 
customer order sizes follow a geometric distribution (the case when s = 1), the two 
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service measures are equal, although their actual sample paths are different, in general. 
This special case is of particular practical interest, since Johnston et al. (2003) recently 
found empirical evidence to support it. 

The rest of the paper is organized as follows. In Section 2 we specify mathematical 
expressions for the two service measures considered, i.e. the OFR and the VFR, 
respectively. Next, in Section 3 we comment on when the OFR can be identified as the 
(extended) ready rate. We also question the relevance of the ready rate as a service 
measure, when customer order arrivals do not follow a Poisson process. Section 4 
contains the derivation of our main result on the relative magnitude of the two fill rates, 
when customer order size follows a negative binomial distribution. In Section 5 we then 
show how to compute the two service measures when inter-arrival times are Erlang 
distributed, thus indicating how we have developed the decision support tool for the 
company referred to above. Section 6 contains numerical comparisons and sensitivity 
analyses of the two fill rates. In a simulation study we also highlight the case with 
geometrically distributed customer order size (s = 1). We demonstrate that, although the 
two service measures are equal in terms of their mean values, their actual sample paths 
may differ (even though they are strongly positively correlated). Finally, Section 7 
contains some concluding remarks. 

2. Specification of the two service measures 
First, we specify the compound renewal process used to model the demand process. The 
customer order inter-arrival times are assumed to be independently and identically 
distributed as a positive and continuous random variable T. In addition, the customer 
order sizes are independently and identically distributed as the positive, integer-valued 
random variable J. For any instant τ at which a demand occurs, let the random variable Dt 
represent the aggregate demand in the time interval [τ – t,τ). Note that Dt and the demand 
at time instant τ (represented by the random variable J) are independent.  

Now, assume that we apply a continuous review, base-stock policy with base-stock level 
S, where each replenishment order has a fixed lead time L and all unfilled demands are 
backordered. The base-stock policy is assumed simply because of its general popularity 
in practice, and because of its use in the particular company that motivated this study. It 
should be recalled that even if the base-stock policy might be the optimal policy in the 
special case of a compound Poisson demand process, this is not the case in general for a 
compound renewal demand process.  

Under these assumptions, when a customer order arrives, with probability P(DL = n) 
there will at the time of the arrival be a net inventory of S – n. With probability P(J ≤  
S – n) the whole customer order can then be delivered immediately. Hence, the order fill 
rate, OFR for a given base-stock level S is obtained as 

1

0
( ) ( ) ( )

S

L
n

OFR S P D n P J S n
−

=

= = ≤ −∑ .      (1) 

Equivalently, this can be written as  
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1
( ) ( ) ( )

S

L
n

OFR S P D S n P J n
=

= ≤ − =∑ ,      (2) 

which is how it appears in Song (1998, Eq. 4), where it is denoted the item fill rate (in her 
terminology order fill rate is used to denote the fill rate of customer orders for a group of 
items.) The service measure OFR also appears in Rosling (2002, Eq. 5). For the case 
when the random variable T is a constant, we could interpret the random variable J as the 
demand per period. Then OFR is equal to the service measure αper in Tempelmeier (2000, 
Eq. 1). 

The volume fill rate, VFR, service measure can be derived by applying a similar 
reasoning. When a customer order arrives, there will at the time of the arrival with 
probability P(DL = n) be a net inventory of S – n. Then 

1 1

( ) ( ) ( 1) ( ) ( )
S n S n

j j

jP J j S n P J S n j S n P J j S n
− −

= =

= + − ≥ − + = − + = + −∑ ∑   (3) 

is the expected amount of that particular order that is delivered immediately. Therefore, 
the VFR is 

1

0 1

( )( ( ) ( ) )
( )

[ ]

S S n

L
n j

P D n j S n P J j S n
VFR S

E J

− −

= =

= − + = + −
=
∑ ∑

.    (4) 

When the random variable T is a constant and if we then again interpret the random 
variable J as the demand per period, the VFR is equal to the service measure β in 
Tempelmeier (2000; Eq. 3). 

In concluding this section we note that for the special case when P(J=1) = 1, i.e., J ≡ 1, it 
(trivially) follows that  

( ) ( ) ( )1LOFR S VFR S P D S= = ≤ −  .  (5) 

3. Relationship to the ready rate service measure 
The ready rate service measure is defined as the fraction of time when the net inventory 
is positive; see Axsäter (2000, p. 57) and Silver et al. (1998, p. 245). For the pure Poisson 
process, i.e., if P(J=1)=1 and T is exponentially distributed, it is well known, see Axsäter 
(ibid., p. 59) and Silver et al. (ibid., p. 246), that the VFR and the ready rate are the same. 
From (5) it then follows that for this case the OFR is also identical to the ready rate. 
Moreover, we note that when the demand process is a compound Poisson process, the 
OFR, as defined in our paper, can be interpreted as an extended ready rate. This 
observation is due to the PASTA property (Wolff, 1982) and to the fact that when 
applying the OFR one takes into account that it is not enough just to have a positive 
inventory, but that it must also be buffered against possible different customer order 
sizes.  
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However, for the case when inter-arrival times are not exponentially distributed, we 
would like to caution against using the ready rate as a service measure. This is illustrated 
by the following small numerical example. Let T be uniformly distributed between 2 and 
18 and let L = 1.  Assume that P(J=1) = 0.5 and P(J=2) = P(J=3) = 0.25. Then P(DL 
=0) =1. It is now easy to specify how the three service measures OFR, VFR and the 
ready rate (RR) depend on S. The results are summarized in Table 1. 

<Table 1 about here> 

Of course, the numerical example is somewhat constructed, but nevertheless the results in 
Table 1 indicate that the ready-rate service measure might be quite misleading when 
customer order arrivals do not follow a Poisson process.  

4. Relationship between the two fill-rate service measures 
We now explore the relationship between the two fill-rate service measures for the case 
when J follows a delayed negative binomial distribution. The distribution is termed 
‘delayed’, because it is specified for the positive integers rather than for the non-negative 
integers. Hence, it has the probability mass function 

1( 2)!( ) (1 )
( 1)!( 1)!

s js jP J j
j s

ρ ρ −+ −
= = −

− −
  ,  j = 1, 2, …     (6) 

Note that s need not be integer valued, since the factorials in (6) can then be interpreted 
as gamma functions (see Zipkin, 2000, p. 452).  

From (1) and (4) we can derive the following expressions  

1

0

1 ( ) ( ) ( 1) ( )
S

L L
n n S

OFR S P D n P J S n P D n
− ∞

= =

− = = ≥ − + + =∑ ∑     (7) 

and 

( )
1

0 1

( ) ( )
1 ( ) ( )

[ ]

S

L
n j S n

L
n S

P D n j S n P J j
VFR S P D n

E J

− ∞

∞
= = − +

=

= − + =
− = + =

∑ ∑
∑ .  (8) 

The inequality OFR(S) ≥ VFR(S) is then equivalent to 

1

0
[ ] ( ) ( 1)

S

L
n

E J P D n P J S n
−

=

= ≥ − +∑  

          

 
1

0 1

( ) ( )( ) ( 1)
( 1)

S

L
n j S n

j S n P J jP D n P J S n
P J S n

− ∞

= = − +

− + =
≤ = ≥ − +

≥ − +∑ ∑ .   (9) 
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Before proceeding with the comparative analysis, we interpret the inner summation on 
the right-hand side of (9), i.e.  

1

( ) ( )

( 1)
j S n

j S n P J j

P J S n

∞

= − +

− + =

≥ − +

∑
.        (10) 

The expression in (10) specifies the expected number of units recorded on the backorder 
list, given that we know the order will incur a backorder. If the stochastic variable J had 
been associated with the time duration of an “activity” (for instance a service time) we 
would have interpreted this expression as the expected remaining duration of the activity, 
given that we have already observed that the activity has been in duration for S-n time 
units. This analogy provides the intuition why our analysis concludes that it is the size of 
the form parameter s that determines the relative magnitude of OFR(S) and VFR(S). It 
follows from the fact that when s = 1, J is geometrically distributed. The geometric 
distribution is the discrete “counterpart” of the exponential distribution and from 
elementary queuing theory (see e.g. Hillier and Lieberman, 2001, Ch.17) we know that 
when the duration is exponentially distributed, the expected remaining duration of an 
ongoing activity is equal to the expected duration of that activity. 

After changing the summation index and introducing the new random variable X, (10) 
can be rewritten as 

( ) ( )
1

( )
i a

i a P X i

P X a

∞

=

− =
+

≥

∑
 ,        (11) 

where the random variable X is distributed as J -1. Hence, X follows a standard negative 
binomial distribution. Therefore, a sufficient condition for the comparative analysis of (9) 
concerns whether H(a), given by 

( ) ( )
( )

( )
i a

i a P X i
H a

P X a

∞

=

− =
=

≥

∑
 ,        (12) 

is greater than E[X] for all a ≥ 1. Note that the numerator of the right-hand side in (12) is 
the first-order loss function. It then follows from Zipkin (2000, p. 452) that 

( ) ( 1)
1( ) [ ]

( )

P X a P X a
H a E X a

P X a

ρ
ρ

= − ≥ +
−= +

≥
     (13) 

Therefore, investigating whether H(a) is greater or smaller than E[X] is equivalent to 
investigating whether the function g(a) = ρP(X ≥ a) - P(X ≥ a+1) is greater or smaller 
than zero for all a ≥ 1. First, note that g(a) approaches zero as a approaches infinity. 
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Second, observe that from (6) it follows that g(0) = (1-ρ)s – (1-ρ), which is negative when 
s >1, zero when s = 1, and positive when s < 1. Third, using (6) the first-order difference 
∆g(a) = g(a+1) – g(a) is obtained as 

( ) ( ) 1
1

sg a P X a
a

ρ −
∆ = =

+
 ,  (14) 

which means that g(a) is increasing when s > 1, constant when s = 1, and decreasing 
when s < 1. Collecting these three observations proves the following theorem, which is 
our main result. 

Theorem: Consider a continuous review, base-stock inventory policy, with base-stock 
level S, where all unfilled demands are backordered and all replenishment orders have a 
fixed lead time L. Then, for any compound renewal demand process in which the 
customer order size follows a (delayed) negative binomial distribution with shape 
parameter s and probability parameter ρ, it holds that VFR(S) < OFR(S) when s < 1, 
VFR(S) = OFR(S) when s = 1 and VFR(S) > OFR(S) when s > 1. 

Observe that the equality of the two service measures in the case s=1 is between their 
expectations and not regarding their corresponding sample paths. The example to follow 
in Section 6 illustrates this. The implication of this observation is that empirically 
observed estimates of the two service measures will be different in general. A similar 
observation can of course be made for the cases s < 1 and s > 1. 

5. The case of Erlang distributed inter-arrival times 
In order to make the derived service measures computable, one needs to be able to 
specify the probability distribution of the lead-time demand. We show how this can be 
accomplished when the customer order inter-arrival times are Erlang distributed with k 
phases and mean k/λ. This implies that the duration of each phase is exponentially 

distributed with mean 1/λ. Define ( )

1

m
m

r
r

J J
=

= ∑  where J1,J2,… are independent and 

distributed as J, and J(0) = 0. Then it follows from Rosling (2002, Eq. 4) and Cox (1962, 
Eq. 4, p. 37) that 

1

0

1
( )

1 0

( ) , 0 ,
!

( )
( )( ) , 0 .
( )!

ik
L

i
L mk ix k

L m

m i

Le x
i

P D x
Le P J x x

mk i

λ

λ

λ

λ

−
−

=

+−
−

= =

⎧
=⎪

⎪= = ⎨
⎪ = >⎪ +⎩

∑

∑ ∑
    (15) 

Note that when J follows a (delayed) negative binomial, (delayed) binomial or (delayed) 
Poisson distribution, as assumed in our logistical analysis for the case company, then it is 
straightforward to specify the probability distribution of J(m) and to develop an algorithm 
for computing the fill-rate service measures as functions of the base-stock level S. Note 
also that in the case k = 1, i.e. when demands are generated from a compound Poisson 
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process, then (15) can be further simplified by use of the recurrence scheme due to 
Adelson (1966). 

6. Numerical results 
First, we conduct a sensitivity analysis in order to investigate the magnitude of difference 
between the two fill-rate service measures. Note that the expected value of the random 
variable J specified in (6) is 

1[ ]
1

sE J ρ ρ
ρ

+ −
=

−
         (16)  

and that its variance is  

2[ ]
(1 )

sV J ρ
ρ

=
−

 .         (17) 

 
Thus for any choice of s and ρ, the fraction 

[ ] 1
[ ] 1 1
V J

E J ρ
=

− −
         (18) 

is always greater than 1 and does not depend on s. It is the lexis ratio (Law and Kelton, 
1991, p. 359) for the random variable J–1, which is the standard (non-delayed) 
representation of a negative binomially distributed random variable. Therefore, it is not 
surprising that if one conducts a sensitivity analysis in which the parameter ρ is fixed, 
then, because the lexis ratio stays the same, the difference between the fill-rate service 
measures will not change dramatically when the parameter s is varied. This kind of 
sensitivity analysis is presented in Table 2. 

<Table 2 about here> 

In Table 2 the results are obtained from a renewal demand process with inter-arrival 
times that are Erlang distributed with k=1, i.e. demand follows a compound Poisson 
process. The value SOFR indicates the smallest value of S which makes OFR(S) ≥ 0.98 and 
the value SVFR is correspondingly the smallest value of S which makes VFR(S) ≥ 0.98. 
The results confirm how the relative magnitude of the fill rates depends on the parameter 
s, as stated in the theorem in Section 4. In particular, for case 5 (s = 1) we see that SOFR = 
SVFR and OFR(SRR) = VFR(SFR). We also observe that as s increases, a small and 
increasing but not dramatic difference SOFR - SVFR appears. Note that owing to the discrete 
nature of the base-stock levels, OFR(SOFR) is in general not exactly equal to 0.98, 
especially not for some of the lower base-stock levels.   

Another sensitivity analysis to conduct in order to understand the behavior of the two fill 
rates is to keep E[J] fixed while varying V[J]. The relevant values of the parameters s 
and ρ can then be computed from (17) and (18). As in the previous analysis, the demand 
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process is compound Poisson. The result of this sensitivity analysis is presented in Table 
3, organized similarly to Table 2.  

<Table 3 about here> 

As V[J] increases (when E[J] is fixed, this means that s approaches 0 and ρ approaches 
1) we observe a significant discrepancy between the two service measures, as is 
exemplified by case 15 of Table 3. The result is intuitively reasonable, since in case 15 
there are many small and a few large customer orders. This implies that in order to obtain 
a good OFR performance one does not need to set S that high, because the small orders 
count just as much as the large orders. However, in order to achieve a good VFR 
performance, one needs to have a larger S to cover also the larger orders which account 
for a large share of the total demand volume.  

Finally, we focus on a specific item for which the two fill-rate service measures are 
equal. The item belongs to the sample provided to us by our case company and for this 
particular item a (delayed) geometric distribution (i.e. a negative binomial distribution 
with parameter s = 1) gave a fair fit to the observed order-size pattern. We also fitted the 
parameters k, λ and ρ to be k ≈ 1, λ ≈ 0.3174 (orders per day) and ρ ≈ 0.6229. The lead-
time L is 4 days, and in order to satisfy a target OFR = VFR of 98% it is required to let S 
= 18 giving OFR(18) = VFR(18) ≈ 0.9842. We then simulated a base-stock inventory 
system, with the data given above. The system was simulated for 11000 days, and data 
for the two fill-rate service measures were collected after a 1000-day run-in period. This 
experiment was replicated 50 times. The result of our simulation study is summarized in 
Table 4. 

<Table 4 about here> 

First, we note that both of the estimated service levels are close to their theoretical value 
of VFR(18) = OFR(18), which are well within the respective 95% confidence intervals. 
Second, the two fill-rate service measures are not equivalent, though indeed highly 
positively correlated with a correlation coefficient that has an estimated mean value of 
0.9267 (and a 95% confidence interval ranging from 0.8738 to 0.9580). Third, the fill-
rate service measures are evidently hard to estimate. Although we have effectively run 
our simulation experiments for more than 10000 days, which of course in any practical 
setting is meaningless (though meaningful from a statistical point of view), it is 
interesting to note that in 8% of the cases for OFR and in 14% of the cases for VFR, the 
target service level at 98% is not attained. Thus, when setting base-stock levels based on 
mean service levels and then collecting performance, say after a year, one might very 
well see considerable deviations between the observed and the predicted performance. 
This calls for focusing not solely on the mean value of a service measure, but also on its 
higher order moments. Further discussion on this issue is found in, e.g. Chen and Krass 
(2001) and Thomas (2005). 
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7. Concluding remarks 
In this paper we have focused on the inventory performance measure known as the order 
fill rate. We have specified this measure mathematically and under quite general 
assumptions about the demand process, we have shown its relationship to the more 
commonly applied volume fill rate. From our experience with a case company, we have 
noted the importance of first choosing an appropriate service measure and then also being 
able to develop a methodology that computes inventory control parameters consistently 
with the chosen service measure. Otherwise, lack of consistency between the 
performance measure and the control policy might leave the logistics manager unable to 
take the right steps in order to try to rectify an inventory system that is out of balance.  

However, even if these deliberations are settled appropriately, it should also be noted that 
due to their inherent stochastic properties, empirically observed service performance in 
general deviates from the targeted performance. This could call for further research 
emphasis on service measures by not only focusing on their mean values, but also on 
their variability, or even their complete distributions. 
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Tables: 

S OFR VFR RR 

0 0 0 0 

1 0.500 0.571 0.900

2 0.750 0.857 0.950

3 1 1 0.975

Table 1. Relationship between the three service measures OFR, VFR and RR 
for a specific numeric example and varying base-stock levels S. 

 

Case s SOFR OFR(SOFR) VFR(SOFR) SVFR 

1 0.01 5 0.9947 0.9944 5 

2 0.05 5 0.9878 0.9863 5 

3 0.1 6 0.9910 0.9895 6 

4 0.5 9 0.9872 0.9860 9 

5 1 12 0.9862 0.9862 12 

6 1.5 14 0.9811 0.9825 14 

7 2 17 0.9836 0.9857 16 

8 5 31 0.9808 0.9863 30 

9 10 54 0.9803 0.9877 50 

10 20 100 0.9807 0.9890 91 

11 50 235 0.9802 0.9893 214 

12 100 457 0.9800 0.9888 417 

13 200 890 0.9800 0.9875 820 

14 500 2141 0.9800 0.9852 2023

15 1000 4196 0.9800 0.9839 4022

Table 2. Sensitivity analysis with respect to the shape parameter s.  
For all items k = 1, λ = 0.25, ρ = 0.5 and L = 4. 
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Case V[J] SOFR OFR(SOFR) VFR(SOFR) SVFR 

1 12 53 0.9822 0.9895 48 

2 13 53 0.9817 0.9891 49 

3 14 53 0.9812 0.9887 49 

4 15 53 0.9806 0.9883 49 

5 16 53 0.9801 0.9879 49 

6 17 54 0.9818 0.9889 50 

7 18 54 0.9813 0.9885 50 

8 19 54 0.9808 0.9881 50 

9 20 54 0.9803 0.9877 50 

10 50 61 0.9810 0.9856 58 

11 100 71 0.9806 0.9814 70 

12 200 89 0.9808 0.9743 95 

13 500 129 0.9804 0.9535 168 

14 1000 174 0.9801 0.9211 290 

15 5000 286 0.9800 0.7168 1257

Table 3. Sensitivity analysis with respect to V[J].  
For all items k = 1, λ = 0.25, E[J] = 11, and L = 4. 

 

Performance measure OFR VFR 

Estimated mean 0.9841 0.9839 

Standard deviation across replications 3.719E-03 4.437E-03 

Minimum across replications 0.9728 0.9689 

Maximum across replication 0.9922 0.9914 

95% confidence interval, lower limit 0.9830 0.9827 

95% confidence interval, upper limit 0.9851 0.9852 

Target percentage 92% 86% 

Correlation coefficient 0.9267 

Table 4. Summary results of simulation experiment. 
For item with k = 1, λ ≈ 0.3174, s = 1, ρ ≈  0.6229 and L = 4.   
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