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Abstract

This work addresses the problem of tracking humans

with skeleton-based shape models where video footage is

acquired by multiple cameras. Since the shape deforma-

tions are parameterized by the skeleton, the position, ori-

entation, and configuration of the human skeleton are esti-

mated such that the deformed shape model is best explained

by the image data. To solve this problem, several algorithms

have been proposed over the last years. The approaches

usually rely on filtering, local optimization, or global opti-

mization. The global optimization algorithms can be further

divided into single hypothesis (SHO) and multiple hypothe-

sis optimization (MHO). We briefly compare the underlying

mathematical models and evaluate the performance of one

representative algorithm for each class. Furthermore, we

compare several likelihoods and parameter settings with re-

spect to accuracy and computation cost. A thorough evalua-

tion is performed on two sequences with uncontrolled light-

ing conditions and non-static background. In addition, we

demonstrate the impact of the likelihood on the HumanEva

benchmark. Our results provide a guidance on algorithm

design for different applications related to human motion

capture.

1. Introduction

Markerless human motion capture has been studied since

more than 25 years and is still a very active research area in

computer vision. In this work, we concentrate on track-

ing algorithms for skeleton-based shape models where sur-

face models of humans with underlying skeletons are used

to find a sequence of poses that fits the image data best. For

a complete overview of markerless human motion capture,

we refer to the surveys [19, 20]. In contrast to the surveys,

we perform a quantitative evaluation and compare the math-

ematical models on which filtering (Filter), single hypothe-

sis optimization (SHO), and multiple hypothesis optimiza-

tion (MHO) are based. For the experimental evaluation, one

Figure 1. Two successive frames of a multi-view video sequence

with low contrast, rapidly changing illumination, and people in the

background.

representative algorithm is selected for each class:

• Filter: particle filter [21],

• SHO: local optimization based on twists and clos-

est points (local) [6], fast simulated annealing

(global) [10],

• MHO: annealed particle filter (local) [11], interacting

simulated annealing (global) [13].

In addition, we evaluate several likelihoods and parameter

settings with respect to accuracy and computation cost. This

offers further trade-offs to tune for one or the other in order

to match the needs of the application.

Most of the public available datasets as [1, 22] have been

recorded in a controlled studio environment even though

controlled lighting conditions or static background are not

given for many applications. Hence, we perform a thor-

ough quantitative evaluation on two sequences with low

contrast, rapidly changing illumination, and people in the



background, see Figure 1. Furthermore, we provide a quan-

titative comparison of various likelihoods on the HumanEva

benchmark [22].

The paper is structured as follows: Section 2 compares

the underlying mathematical models for filtering, single hy-

pothesis, and multiple hypothesis optimization and gives a

brief overview of algorithms that belong to the three classes.

The likelihoods that are used for the comparison are dis-

cussed in Section 3. The paper concludes with a brief dis-

cussion after the experimental section.

2. Models and Algorithms

In order to compare the different concepts, we use the

same Bayesian formulation for optimization and filtering

where xt ∈ E denotes the state, i.e. the position, orien-

tation, and joint angles of the skeleton, and yt denotes the

observed image features at time t. We distinguish between a

random variable X : Ω 7→ E and its realization x ∈ E. For

both optimization and filtering, the same likelihood func-

tion p(Yt = yt|Xt = xt) can be used to measure how well

the shape model deformed by the skeleton pose xt explains

the image data yt.

2.1. Filtering

Filtering models the states Xt, · · · , X1 as hidden ran-

dom variables. The only observations that are available at

frame t are the realizations yt, · · · , y1 of the random vari-

ables Yt, · · · , Y1, i.e. the observed image features. Under

the Markov property [12], the posterior probability can be

written as

p(Xt|Yt = yt, · · · , Y1 = y1) =

1

Z
p(Yt = yt|Xt)
︸ ︷︷ ︸

likelihood

∫

E

p(Xt|Xt−1 = xt−1)
︸ ︷︷ ︸

temporal transitions

· . . . (1)

. . . · p(Xt−1 = xt−1|Yt−1 = yt−1, · · · , Y1 = y1)dxt−1,

where Z is a normalization factor. Depending on the model

assumptions, the posterior is given in closed-form by a

Kalman filter [17] or approximated by a particle filter [16].

For skeleton-based human motion capture, Sidenbladh

et al. [21] have combined a particle filter with very strong

motion priors to resolve the ambiguities from monocular

sequences. Motion priors have been also proposed for a

Rao-Blackwellised particle filter [27]. In [24] various vari-

ants of particle filters like the unscented particle filter have

been evaluated for human motion capture. In [8] hybrid

Monte Carlo filtering has been applied where a Markov

chain Monte Carlo technique is used within a particle filter

to get better samples from the posterior. Another approach

follows the idea of search space decomposition where the

space is divided into independent low-dimensional sub-

spaces [18].

2.2. Single Hypothesis Optimization

In contrast to filtering, single hypothesis optimization

approaches seek for a single pose xt ∈ E instead of a ran-

dom variable:

argmax
xt∈E

p(Xt = xt|Yt = yt, x̂) =

argmax
xt∈E

p(Yt = yt|Xt = xt)
︸ ︷︷ ︸

likelihood

p(Xt = xt|x̂)
︸ ︷︷ ︸

smoothness prior

. (2)

The optimization is usually initialized by a value x̂ ∈ E that

is deterministically obtained from the estimate of the previ-

ous frame xt−1. The smoothness term penalizes strong de-

viations from the previous estimate and can be modeled as

higher order smoothness term to penalize velocity or accel-

eration changes. When the smoothness term is uniform, the

pose is completely estimated from the current image data

yt. While a good initialization is important for local op-

timization, global optimization like fast simulated anneal-

ing [10] forgets the initialization and converges to the global

optimum. For an exhaustive list of local optimization ap-

proaches, we refer to the surveys [19, 20].

2.3. Multiple Hypothesis Optimization

Instead of working with a single hypothesis, multiple hy-

pothesis optimization estimates a density and is initialized

by a distribution p̂. The density can be continuous or dis-

crete, e.g. a sum of weighted Dirac measures,
∑

i wiδxi
,

where each xi ∈ E can be regarded as hypothesis. The

random variable X with the sought density can be modeled

as:

X : Ω 7→ E such that (3)

∀ε > 0 p(X ∈ Bε|Yt = yt, p̂) = 1, (4)

where

Bε =
{

xt ∈ E : f(xt, yt, p̂) ≥ max
x

f(x, yt, p̂) − ε
}

,

f(xt, yt, p̂) = p(Yt = yt|Xt = xt)
︸ ︷︷ ︸

likelihood

p(Xt = xt|p̂)
︸ ︷︷ ︸

smoothness prior

. (5)

The single hypothesis optimization can be regarded as spe-

cial case where the distribution is modeled by a Dirac mea-

sure δx. In contrast to filtering, the random variable X re-

lies on the last realization of Yt and the initial distribution

p̂. However, p̂ is not (1) since this distribution is usually

unknown. While global approaches like interacting simu-

lated annealing [13] forget anyway the initialization, local

approaches assume that one of the estimated local optima

is a global optimum. For instance, covariance scaled sam-

pling [23] guides the samples to the local maxima of a dis-

tribution that is modeled by a mixture of Gaussians. Smart



particle filtering [5] follows a similar idea but uses a non-

parametric kernel estimator to model the distribution. The

annealed particle filter [11] is similar to interacting simu-

lated annealing, but the distribution of the samples in the

search space relies on the fluctuating survival rate of the

particles.

3. Likelihoods

Aiming at high performance, we investigate low-level

features for the likelihood function like silhouettes, edges,

color, and an anatomic prior. They are fast to evalu-

ate and their proper combination still achieves high ac-

curacy. We write V (x) for the negative log-likelihood

− log p(Yt = yt|Xt = x):

V (x) =λsilh Vsilh(x) + λedge Vedge(x)

+ λcolor Vcolor(x) + λanat Vanat(x), (6)

where the λs control the influence of each term.

3.1. Silhouettes

In order to model the log-likelihood for a pose x ∈ E

and a silhouette image Iv extracted by background subtrac-

tion, a template image Tv(x) is generated by projecting the

surface of the human model that is translated, rotated, and

deformed according to x. The inconsistent areas between

the silhouette and the template are then measured for each

view v by

Vv(x) =
1

2ZT
v

∑

p∈P T
v

|Tv(x, p) − Iv(p)|

+
1

2ZI
v

∑

p∈P I
v

|Iv(p) − Tv(x, p)| , (7)

where Iv(p) and Tv(x, p) are the pixel values for a pixel

p and PT
v and P I

v denote the sets of pixels that are used

to sample from. The sums are normalized by the sample

sizes ZT
v and ZI

v . The function Vsilh(x) is then given by

the average value Vv(x) of all views.

The simplest way to compute (7) is the Hamming dis-

tance that can be implemented by an XOR operation. In

this case, Iv and Tv(x) are binary images and the sampling

is performed on the whole image. The normalization con-

stants ZT
v and ZI

v are fixed to
∑

p∈P T0

v

T 0
v (p) where T 0 de-

notes the projected mesh in its default pose, i.e. without any

deformations. We denote the simple silhouette comparison

by Vsilh.

In order to penalize pixels that are far away from the sil-

houette more severely, a Chamfer distance transform [4] can

be applied to the images. The sampling is then performed

on the sets of pixels inside of the silhouettes. The silhouette

term based on the Chamfer transform is denoted by V Ch
silh.

Since local single hypothesis optimization algorithms of-

ten rely on gradients or a Taylor approximation, the types of

log-likelihoods given by Equation (7) are not optimal. An

alternative are correspondence-based log-likelihoods that

minimize the distance error of the correspondences between

the silhouette rim pv,i and the vertices of the shape model

Vi(x) in the least squares sense [6, 15, 2]:

V (x) =
∑

i

‖πv(Vi(x)) − pv,i‖
2
2 , (8)

where πv is the projection from the world coordinate system

onto the image plane for view v. The correspondences can

be established by closest points search.

3.2. Edges

The log-likelihood for edges is modeled in a similar way.

The Sobel operator is applied to the image Iv to extract an

edge map Ev that is compared to the boundaries of the pro-

jected body parts denoted by Edges(Tv(x)):

Vedge(x) =
1

Y

∑

v

∑

p∈Edges(Tv(x))

Ev(p), (9)

where Y = |Edges(T 0
v )| is a normalization constant. The

edge map can be represented by a binary image where pix-

els on edges are labeled with 0, and 1 otherwise. In contrast

to the other features this is a one sided comparison looking

for the edges of the projected template in the recorded im-

age but not vice versa. Another variant applies a Chamfer

distance transform to Ev . We denote this variant by V Ch
edge.

3.3. Color

The color distribution of a channel c and a body part s

is modeled by a normalized histogram H(s,c) where we fix

the number of bins to K = 64. In order to measure devia-

tions of a pose x ∈ E from the color model given by the

histogram H(s,c), the color distribution for x, denoted by

H̃(s,c)(x), is estimated by sampling from all views. For this

purpose, the triangles of the human model are used to en-

code the body parts of the projected surface. Hence, a pixel

p that belongs to a body part s contributes for each chan-

nel c to the histogram H̃(s,c)(x). The total deviation is then

measured by the Bhattacharya distance:

Vcolor(x) =
∑

s

ws

C

C∑

c=1

(

1 −
K∑

k=1

√

h
(s,c)
k h̃

(s,c)
k (x)

)

,

(10)

where the weights ws reflect the size of the body parts.

To increase the distinctiveness of the color model, we use

the CIELab color space that mimics the human percep-

tion of color differences. Since the L-channel is very sen-

sitive to illumination changes, we use only the a- and b-

channel. Since image noise becomes an important issue for



small body parts, we reduce noise without smoothing over

the edges that separate body parts by applying the edge-

enhancing diffusivity function [7]

g(|∇u|2) =
1

|∇u|p + ǫ
(11)

with ǫ = 0.001 and p = 1.5, where the smoothing is effi-

ciently implemented by the AOS scheme [25].

During tracking, the color model H(s,c) is adapted to the

changing appearance. To this end, a normalized histogram

Ĥ(s,c) is generated for an estimated pose by sampling from

all views. The update for bin k is then given by

(1 − λ)M (s) h
(s,c)
k + λM̂ (s) ĥ

(s,c)
k

(1 − λ)M (s) + λM̂ (s)
, (12)

where M (s) and M̂ (s) are the sample sizes for the body

part s to generate H and Ĥ , respectively. The parameter

λ controls the speed of adaptation and the consideration of

the sample sizes avoids that the statistics are distorted by a

small number of samples, e.g. due to self-occlusions.

3.4. Anatomical Constraints

Anatomical constraints are modeled by the probabil-

ity of a skeleton configuration panat that is estimated

from 200 training samples yl taken from the CMU motion

database [9]. For efficiency reasons, we regard the proba-

bilities for the three body parts as uncorrelated, i.e.

Vanat(x) = −
1

3
log
(
phead

anat(x)pupper
anat (x)plower

anat (x)
)
. (13)

The probability for a body part is approximated by a Parzen-

Rosenblatt estimator with a Gaussian kernel K:

panat(x) =
1

Lhd

∑

l

K

(
x − yl

h

)

, (14)

where the d-dimensional vectors x and yl contain only the

joints for the body part. The bandwidth h is given by

the maximum second nearest neighbor distance between all

training samples.

4. Implementation Issues

4.1. Setup

The 3d surface models are acquired by a static full-

body laser scan. For subject S4 of the HumanEva-II

dataset [22], the 3d model is already part of the dataset.

The surface models are reduced to around 2000 triangles

and a skeleton with 30 degrees-of-freedom is inserted into

the surface mesh by manually marking the joint positions.

For the deformation, we use standard linear blend skinning

where the weights for linear blend skinning are extracted

automatically [3]. The intial pose for each sequence is es-

timated with global MHO. For the comparison, the same

initial pose is used for all approaches.

4.2. Temporal Transitions and Smoothness Prior

In order to obtain a reasonable model for the tempo-

ral transitions, we use a 3rd order autoregression mod-

eled by Gaussian processes [26], i.e. the temporal tran-

sitions are given by a conditional Gaussian distribution

p(Xt|Xt−1, Xt−2, Xt−3). We use a uniform smoothness

prior for SHO and MHO, i.e. the optimization is driven by

the likelihood. The initialization value x̂ and the distribu-

tion p̂ are predicted from the previous estimates and ob-

tained by the mutation operator proposed in [14], respec-

tively.

4.3. GPU Implementation

Since all approaches except of local SHO evaluate the

log-likelihood V several thousand times per frame which

takes nearly the complete computation time, we evaluate

likelihoods that can be efficiently computed on a GPU. The

computation of V (x) includes the deformation of the hu-

man surface model with respect to x, the projection onto

the image plane for each view, and the consistency mea-

surements for the selected image features. Since building

histograms for each body part as in [14] is expensive on a

GPU, only the silhouette and edge term are implemented on

a GPU:

Silhouettes. The template images Tv(x) of each particle

x are rendered on the GPU. To avoid the expensive transfer

between the CPU and the GPU, the human surface model

in its initial pose is stored on the GPU. For each particle

x, the 3d coordinates of the mesh vertices are computed in

the vertex shader. For the silhouette comparison Vsilh, the

Hamming distance is used which is less discriminative than

the Chamfer transformed silhouette images. To this end, the

images Tv and Iv are pixelwise compared in the fragment

shader where the number of inconsistent pixel values are

counted by occlusion queries.

Edges. In the binary case Vedge, the edges are computed

as the silhouettes where the edge map Ev is pixelwise com-

pared with the edges of the projected surface Tv(x). To

this end, the body parts of the projected surface Tv(x) are

encoded by the color of the triangles. The body part bound-

aries are detected by a four neighborhood color comparison.

By sampling along the edges of Ev and comparing pixel-

wise the edge values of Ev and Tv(x) in a fragment shader,

the number of overlapping edge pixels are counted. The

counting is performed by occlusion queries.

For the Chamfer transformed edge map V Ch
edge, the val-

ues of Ev at the body part boundaries are accumulated in a

texture target by enabling the hardware blending operation.



(a) (b)

(c) (d)

(e) (f)

Figure 2. Tracking errors with respect to various parameters for

sequences Maria1 and Maria2. From top to bottom: (a)

Weight for color term λcolor . (b) Adaption of color model. (c)

Number of particles. (d) Number of iterations. (e) Weights for sil-

houette λsilh and edge term λedge. (f) Binary edge map vs. Cham-

fer edge map.

5. Experiments

Uncontrolled Environment. The first two rows of Fig-

ure 5 show estimates for the sequences Maria1 and

Maria2. Both sequences were captured by 5 synchro-

nized and calibrated cameras with resolution of 640x480

pixels and 50 fps. They contain a walking person in an un-

controlled environment with people in the background, low

contrast, motion blur, and challenging illumination changes

as shown in Figure 1. In Maria2, the walking person addi-

tionally swings her arms. The sequences and result videos

are provided as supplemental material. The human model

is a low-resolution model of a 3D scan that consists of 2000

triangles. For a quantitative error analysis, circular markers

with a diameter of approximately 5 pixels were attached to

the forearms and lower legs and were tracked manually.

(pix) Maria1 Maria2 Time (sec)

CPU/GPU

silh(ch) + color 4.40 ± 1.26 5.09 ± 1.43 40/-

silh 4.49 ± 1.46 5.34 ± 1.45 22.8/1.2

silh + edge 4.10 ± 1.41 4.90 ± 1.37 26.8/1.8

silh + edge(ch) 4.17 ± 1.43 5.06 ± 1.58 25.3/3.4

Table 1. Average error and standard deviation for ISA using var-

ious likelihoods (ch: Chamfer transform). GPU-ISA with silhou-

ettes and edges is as accurate as standard ISA with silhouettes and

color. The achieved speed-up is in the range of 12-33.

Likelihoods. We evaluated various log-likelihoods where

we fixed the parameter λanat = 2.0 (6). Figure 2 shows

how sensitive global MHO is with respect to the parameters

of the log-likelihood. Rows 1-2 show the results for silhou-

ette and color, where λsilh = 2, λcolor = 40, λ = 0.3, 200
particles, and 15 iterations are used unless otherwise stated.

The diagrams show clearly that the sequence Maria2 is

more challenging for tracking due to the dynamic move-

ment of the arms. The resulting motion blur in the im-

ages affects the appearance of the arm and explains the in-

crease of the error for large values of λcolor in contrast to

the Maria1 sequence. Good values for both sequences are

in a broad range from 30 to 50. The optimal value for the

speed of adaption λ depends on the environment, however,

Figure 2(b) shows that the error is not very sensitive to the

chosen value as long as the adaption is not too fast. The op-

timal numbers of particles and iterations are trade-offs be-

tween accuracy and computation cost. Figures 2(c-d) show

a significant decrease of the error until 100 particles and 15
iterations. More particles or iterations improve the results

only marginally. The last row shows the error for param-

eter settings when silhouettes and edges are used. A low

error is achieved for values in the top right quarter of Fig-

ures 2(e), i.e. λsilh ≥ 25 and λedge ≥ 1.6. While the errors

of the binary and the Chamfer edge map are similar for the

Maria sequences, see Figure 2(f) and Table 1, the lower

standard deviation in Table 2 and Figure 3 justifies the ad-

ditional computational cost for the Chamfer transform.

Algorithms. For comparison of filtering, single hypoth-

esis optimization, and multiple hypothesis optimization, we

have applied the following algorithms to the sequences:

PF standard particle filter [21]

ICP iterative closest point approach with

twists (local SHO) [6]

FSA fast simulated annealing (global SHO) [10]

APF annealed particle filter (local MHO) [11]

ISA interacting simulated annealing

(global MHO) [13]

The results are given in Table 3 and Figure 4. While PF,

APF, FSA, and ISA use the same log-likelihood based on

silhouettes and color, ICP relies on silhouettes. The anatom-



(mm) sch+c s+ech s+e

Set1 34.59 ± 4.63 33.31 ± 5.17 36.60 ± 17.28

Set2 38.53 ± 6.90 42.35 ± 13.45 44.03 ± 18.66

Set3 38.07 ± 5.84 40.26 ± 10.97 40.91 ± 15.22

Time 76sec/ 29.4sec/ 28sec/

CPU/GPU - 4.8sec 2.2sec

Table 2. Average error and standard deviation for ISA using var-

ious likelihoods (s: silhouettes, c: color, e: edges, ch: Chamfer

transform). While the error for the edge model is 6-7% higher,

the computation time is reduced by 94-97% when a GPU imple-

mentation of the less discriminative model is used. The standard

deviation of the Chamfer edge map is lower than the one for the

binary edge map. The values are plotted in Figure 3.

Figure 3. HumanEva-II (S4). Average error and standard de-

viation. The three sets contain the frames (2-350), (2-700), and

(2-1258) of S4. The values and timings are given in Table 2.

ical constraints are used for all approaches. The number of

particles and iterations was set to 3000 for PF and FSA, re-

spectively, which yields the same computational effort as

APF and ISA with 200 particles and 15 iterations, i.e. 40
seconds per frame (Table 1). While the log-likelihood, the

number of particles, and the number of iterations were fixed

for comparison, the other involved parameters of the algo-

rithms were chosen as the best one obtained by dense grid

search. For the comparison, we show only the best results

for each algorithm.

The annealing approaches clearly outperform the local

optimization and the filtering. While the huge error of the

PF indicates the weakness of the likelihood and dynamics,

ICP gets stuck in local optima. FSA provides similar re-

sults as ISA for Maria1, however, the error significantly

increases for Maria2 whereas ISA performs well for both

sequences, see Table 3. Since single hypothesis optimiza-

tion like FSA cannot handle ambiguities, it lacks the robust-

ness of ISA. The error for each frame is given in row 3 of

Figure 5.

HumanEva. We also compared the likelihoods on the

HumanEva-II [22] benchmark to measure the absolute

3D tracking error. Since the lighting conditions are con-

trolled, we set λ = 0 for the color model of ISA. The aver-

age errors are given in Table 2 and Figure 3. The error per

frame is shown in Figure 5(m). In a controlled environment,

the color model performs better than the edge model that is

faster to compute on a GPU. However, the less discrimina-

tive edge model is preferable where computation time mat-

ters. The better performance of the Chamfer edge map can

be explained by the larger object size in pixels compared to

Maria. In this case, inaccuracies of the shape model have

a stronger impact on the overlap between the binary edge

map and the projection even for the true pose.

6. Conclusion

A quantitative comparison has shown that multiple hy-

pothesis optimization performs better than single hypothe-

sis optimization and global approaches are better than filter-

ing or local approaches for markerless human motion cap-

ture with 3d models. Particularly in an uncontrolled envi-

ronment, local optima are unavoidable which favors global

optimization methods. The filtering method failed to esti-

mate accurate poses for the arms and legs. Since it estimates

the integral over time (1), it needs a good approximation of

the distributions for each frame. However, when the models

for the temporal transitions and the likelihood are weak or

the number of particles is low, this cannot be satisfied any-

more. Even though multiple hypothesis optimization meth-

ods might also suffer from a low number of particles, they

have shown to work well already with 100 particles in a 30-

dimensional search space. This comes from two facts. First,

the estimated distributions concentrate on a small region of

the search space (4) such that good estimates are already

obtained with a few particles. Second, the optimization

is performed only on the current frame which means that

the impact of previous estimates is reduced, particularly for

global MHO. However, the approximated distribution from

the previous frame helps to recover from ambiguities which

favors MHO over SHO for human motion capture.

The comparison of the likelihoods revealed that in an

uncontrolled environment the low-level features silhouettes

and edges are sufficient enough to obtain accurate human

poses at low computational cost since these features can

be efficiently evaluated on a GPU. In a controlled envi-

ronment like the HumanEva benchmark, more expensive

features like color histograms per body part are more ac-

curate, but the less discriminative edge features provide a

good trade-off between accuracy and computation time for

applications.

The work was partially funded by the Cluster of Excellence on Multimodal

Computing and Interaction and the Max Planck Institute for Visual Com-

puting.



(a) PF (b) ICP (c) APF (d) FSA (e) Mean error

Figure 4. A quantitative comparison of filtering, single and multiple hypothesis optimization: particle filter (PF), local optimization (ICP),

annealed particle filter (APF), fast simulated annealing (FSA), interacting simulated annealing (ISA). Estimates for frame 94 or 18 of

Maria2 are shown for PF, ICP, APF, and FSA (a-d). The estimates for ISA are given in row 2 of Figure 5. While the global MHO (ISA)

tracks the sequence without significant errors, the other approaches fail to estimate the barely visible right arm or swap the legs. (e) The

global optimization approaches FSA and ISA perform best. For sequence Maria2, the errors obtained by ISA approaches increase only

slightly and are significant lower than the one for APF and FSA, cf. Table 3.

error (pix) PF (sch+c) ICP (s) APF (sch+c) FSA (sch+c) ISA (sch+c) ISA (s+e)

Maria1 λ = 0.2 14.09 ± 9.95 6.81 ± 3.45 6.96 ± 2.74 4.56 ± 1.28 4.40 ± 1.26 4.10 ± 1.41

Maria2 λ = 0.3 33.96 ± 16.55 16.33 ± 12.88 8.40 ± 4.98 7.71 ± 4.69 5.09 ± 1.43 4.90 ± 1.37

Table 3. Average error and standard deviation. For Maria2, the error is reduced by 42% and 36% compared to APF and FSA, respectively.

A comparison of the likelihoods is given in Table 1 (s: silhouettes, c: color, e: edges, ch: Chamfer transform).
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