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Abstract. The paper gives a snapshot of the state of the art in affine covariant region detectors, and compares

their performance on a set of test images under varying imaging conditions. Six types of detectors are included:

detectors based on affine normalization around Harris (Mikolajczyk and Schmid, 2002; Schaffalitzky and

Zisserman, 2002) and Hessian points (Mikolajczyk and Schmid, 2002), a detector of ‘maximally stable extremal

regions’, proposed by Matas et al. (2002); an edge-based region detector (Tuytelaars and Van Gool, 1999)

and a detector based on intensity extrema (Tuytelaars and Van Gool, 2000), and a detector of ‘salient regions’,
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proposed by Kadir, Zisserman and Brady (2004). The performance is measured against changes in viewpoint, scale,

illumination, defocus and image compression.

The objective of this paper is also to establish a reference test set of images and performance software, so that

future detectors can be evaluated in the same framework.

Keywords: affine region detectors, invariant image description, local features, performance evaluation

1. Introduction

Detecting regions covariant with a class of transforma-

tions has now reached some maturity in the computer

vision literature. These regions have been used in

quite varied applications including: wide baseline

matching for stereo pairs (Baumberg, 2000; Matas

et al., 2002; Pritchett and Zisserman, 1998; Tuytelaars

and Van Gool, 2000), reconstructing cameras for

sets of disparate views (Schaffalitzky and Zisserman,

2002), image retrieval from large databases (Schmid

and Mohr, 1997; Tuytelaars and Van Gool, 1999),

model based recognition (Ferrari et al., 2004; Lowe,

1999; Obdržálek and Matas, 2002; Rothganger et al.,

2003), object retrieval in video (Sivic and Zisserman,

2003; Sivic et al., 2004), visual data mining (Sivic

and Zisserman, 2004), texture recognition (Lazebnik

et al., 2003a,b), shot location (Schaffalitzky and

Zisserman, 2003), robot localization (Se et al., 2002)

and servoing (Tuytelaars et al., 1999), building

panoramas (Brown and Lowe, 2003), symmetry

detection (Turina et al., 2001), and object categoriza-

tion (Csurka et al., 2004; Dorko and Schmid, 2003;

Fergus et al., 2003; Opelt et al., 2004).

The requirement for these regions is that they

should correspond to the same pre-image for dif-

ferent viewpoints, i.e., their shape is not fixed but

automatically adapts, based on the underlying image

intensities, so that they are the projection of the same

3D surface patch. In particular, consider images from

two viewpoints and the geometric transformation

between the images induced by the viewpoint change.

Regions detected after the viewpoint change should be

the same, modulo noise, as the transformed versions

of the regions detected in the original image–image

transformation and region detection commute. As

such, even though they have often been called

invariant regions in the literature (e.g., Dorko and

Schmid, 2003; Lazebnik et al., 2003a; Sivic and

Zisserman, 2004; Tuytelaars and Van Gool, 1999),

in principle they should be termed covariant regions

since they change covariantly with the transformation.

The confusion probably arises from the fact that, even

though the regions themselves are covariant, the nor-

malized image pattern they cover and the feature de-

scriptors derived from them are typically invariant.

Note, our use of the term ‘region’ simply refers to a

set of pixels, i.e. any subset of the image. This differs

from classical segmentation since the region bound-

aries do not have to correspond to changes in image

appearance such as colour or texture. All the detectors

presented here produce simply connected regions, but

in general this need not be the case.

For viewpoint changes, the transformation of most

interest is an affinity. This is illustrated in Fig. 1.

Clearly, a region with fixed shape (a circular exam-

ple is shown in Fig. 1(a) and (b)) cannot cope with the

geometric deformations caused by the change in view-

point. We can observe that the circle does not cover the

same image content, i.e., the same physical surface.

Instead, the shape of the region has to be adaptive, or

covariant with respect to affinities (Fig. 1(c)–close-ups

shown in Fig. 1(d)–(f)). Indeed, an affinity is suffi-

cient to locally model image distortions arising from

viewpoint changes, provided that (1) the scene sur-

face can be locally approximated by a plane or in case

of a rotating camera, and (2) perspective effects are

ignored, which are typically small on a local scale any-

way. Aside from the geometric deformations, also pho-

tometric deformations need to be taken into account.

These can be modeled by a linear transformation of the

intensities.

To further illustrate these issues, and how affine

covariant regions can be exploited to cope with the

geometric and photometric deformation between

wide baseline images, consider the example shown in

Fig. 2. Unlike the example of Fig. 1 (where a circular

region was chosen for one viewpoint) the elliptical

image regions here are detected independently in each

viewpoint. As is evident, the pre-images of these affine
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Figure 1. Class of transformations needed to cope with viewpoint changes. (a) First viewpoint; (b, c) second viewpoint. Fixed size circular

patches (a, b) clearly do not suffice to deal with general viewpoint changes. What is needed is an anisotropic rescaling, i.e., an affinity (c).

Bottom row shows close-up of the images of the top row.

Figure 2. Affine covariant regions offer a solution to viewpoint and illumination changes. First row: one viewpoint; second row: other

viewpoint. (a) Original images, (b) detected affine covariant regions, (c) close-up of the detected regions. (d) Geometric normalization to circles.

The regions are the same up to rotation. (e) Photometric and geometric normalization. The slight residual difference in rotation is due to an

estimation error.

covariant regions correspond to the same surface

region. Given such an affine covariant region, it is

then possible to normalize against the geometric and

photometric deformations (shown in Fig. 2(d), (e))

and to obtain a viewpoint and illumination invariant

description of the intensity pattern within the region.

In a typical matching application, the regions are

used as follows. First, a set of covariant regions is
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detected in an image. Often a large number, perhaps

hundreds or thousands, of possibly overlapping

regions are obtained. A vector descriptor is then asso-

ciated with each region, computed from the intensity

pattern within the region. This descriptor is chosen to

be invariant to viewpoint changes and, to some extent,

illumination changes, and to discriminate between

the regions. Correspondences may then be established

with another image of the same scene, by first detect-

ing and representing regions (independently) in the

new image; and then matching the regions based on

their descriptors. By design the regions commute with

viewpoint change, so by design, corresponding regions

in the two images will have similar (ideally identical)

vector descriptors. The benefits are that correspon-

dences can then be easily established and, since there

are multiple regions, the method is robust to partial

occlusions.

This paper gives a snapshot of the state of the

art in affine covariant region detection. We will

describe and compare six methods of detecting

these regions on images. These detectors have been

designed and implemented by a number of researchers

and the comparison is carried out using binaries

supplied by the authors. The detectors are: (i) the

‘Harris-Affine’ detector (Mikolajczyk and Schmid,

2002, 2004; Schaffalitzky and Zisserman, 2002);

(ii) the ‘Hessian-Affine’ detector (Mikolajczyk and

Schmid, 2002, 2004); (iii) the ‘maximally stable

extremal region’ detector (or MSER, for short) (Matas

et al., 2002, 2004); (iv) an edge-based region detec-

tor (Tuytelaars and Van Gool, 1999, 2004) (referred

to as EBR); (v) an intensity extrema-based region

detector (Tuytelaars and Van Gool, 2000, 2004)

(referred to as IBR); and (vi) an entropy-based region

detector (Kadir et al., 2004) (referred to as salient

regions).

To limit the scope of the paper we have not included

methods for detecting regions which are covariant only

to similarity transformations (i.e., in particular scale),

such as (Lowe, 1999, 2004; Mikolajczyk and Schmid,

2001; Mikolajczyk et al., 2003), or other methods of

computing affine invariant descriptors, such as image

lines connecting interest points (Matas et al., 2000;

Tell and Carlson, 2000, 2002), or invariant vertical line

segments (Goedeme et al., 2004). Also the detectors

proposed by Lindeberg and Gårding (1997) and Baum-

berg (2000) have not been included, as they come

very close to the Harris-Affine and Hessian-Affine

detectors.

The six detectors are described in Section 2. They

are compared on the data set shown in Fig. 9. This

data set includes structured and textured scenes as

well as different types of transformations: viewpoint

changes, scale changes, illumination changes, blur and

JPEG compression. It is described in more detail in

Section 3. Two types of comparisons are carried out.

First, in Section 10, the repeatability of the detector is

measured: how well does the detector determine cor-

responding scene regions? This is measured by com-

paring the overlap between the ground truth and de-

tected regions, in a manner similar to the evaluation

test used in Mikolajczyk and Schmid (2002), but with

special attention paid to the effect of the different scales

(region sizes) of the various detectors’ output. Here,

we also measure the accuracy of the regions’ shape,

scale and localization. Second, the distinctiveness of

the detected regions is assessed: how distinguishable

are the regions detected? Following (Mikolajczyk and

Schmid, 2003, 2005), we use the SIFT descriptor de-

veloped by Lowe (1999), which is an 128-dimensional

vector, to describe the intensity pattern within the im-

age regions. This descriptor has been demonstrated to

be superior to others used in literature on a number of

measures (Mikolajczyk and Schmid, 2003).

Our intention is that the images and tests de-

scribed here will be a benchmark against which fu-

ture affine covariant region detectors can be assessed.

The images, Matlab code to carry out the performance

tests, and binaries of the detectors are available from

http://www.robots.ox.ac.uk/∼vgg/research/affine.

2. Affine Covariant Detectors

In this section we give a brief description of the six re-

gion detectors used in the comparison. Section 2.1 de-

scribes the related methods Harris-Affine and Hessian-

Affine. Sections 2.2 and 2.3 describe methods for

detecting edge-based regions and intensity extrema-

based regions. Finally, Sections 2.4 and 2.5 describe

MSER and salient regions.

For the purpose of the comparisons the output re-

gion of all detector types are represented by a common

shape, which is an ellipse. Figures 3 and 4 show the el-

lipses for all detectors on one pair of images. In order

not to overload the images, only some of the corre-

sponding regions that were actually detected in both

images have been shown. This selection is obtained by

increasing the threshold.
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Figure 3. Regions generated by different detectors on corresponding sub-parts of the first and third graffiti images of Fig. 9(a). The ellipses

show the original detection size.

In fact, for most of the detectors the output

shape is an ellipse. However, for two of the de-

tectors (edge-based regions and MSER) it is not,

and information is lost by this representation, as

ellipses can only be matched up to a rotational

degree of freedom. Examples of the original re-

gions detected by these two methods are given in

Fig. 5. These are parallelogram-shaped regions for

the edge-based region detector, and arbitrarily shaped

regions for the MSER detector. In the following

the representing ellipse is chosen to have the same

first and second moments as the originally detected

region, which is an affine covariant construction

method.



Mikolajczyk et al.

Figure 4. Regions generated by different detectors continued.

2.1. Detectors Based on Affine Normalization—

Harris-Affine & Hessian-Affine

We describe here two related methods which detect

interest points in scale-space, and then determine an

elliptical region for each point. Interest points are

either detected with the Harris detector or with a

detector based on the Hessian matrix. In both cases

scale-selection is based on the Laplacian, and the shape

of the elliptical region is determined with the second

moment matrix of the intensity gradient (Baumberg,

2000; Lindeberg and Gårding, 1997).

The second moment matrix, also called the auto-

correlation matrix, is often used for feature detection

or for describing local image structures. Here it is

used both in the Harris detector and the elliptical
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Figure 5. Originally detected region shapes for the regions shown in Figs. 3(c) and 4(b).

shape estimation. This matrix describes the gradient

distribution in a local neighbourhood of a point:

M = µ(x, σI , σD) =

[

µ11 µ12

µ21 µ22

]

= σ 2
D g(σI ) ∗

[

I 2
x (x, σD) Ix Iy(x, σD)

Ix Iy(x, σD) I 2
y (x, σD)

]

(1)

The local image derivatives are computed with

Gaussian kernels of scale σD (differentiation scale).

The derivatives are then averaged in the neighbourhood

of the point by smoothing with a Gaussian window

of scale σI (integration scale). The eigenvalues of

this matrix represent two principal signal changes in

a neighbourhood of the point. This property enables

the extraction of points, for which both curvatures

are significant, that is the signal change is significant

in orthogonal directions. Such points are stable in

arbitrary lighting conditions and are representative

of an image. One of the most reliable interest point

detectors, the Harris detector (Harris and Stephens,

1988), is based on this principle.

A similar idea is explored in the detector based on

the Hessian matrix:

H = H (x, σD) =

[

h11 h12

h21 h22

]

=

[

Ixx (x, σD) Ixy(x, σD)

Ixy(x, σD) Iyy(x, σD)

]

(2)

The second derivatives, which are used in this matrix

give strong responses on blobs and ridges. The regions

are similar to those detected by a Laplacian operator

(trace) (Lindeberg, 1998; Lowe, 1999) but a function

based on the determinant of the Hessian matrix penal-

izes very long structures for which the second deriva-

tive in one particular orientation is very small. A local

maximum of the determinant indicates the presence of

a blob structure.

To deal with scale changes a scale selection

method (Lindeberg, 1998) is applied. The idea is to

select the characteristic scale of a local structure,

for which a given function attains an extremum over

scales (see Fig. 6). The selected scale is characteristic

in the quantitative sense, since it measures the scale
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Figure 6. Example of characteristic scales. Top row shows images taken with different zoom. Bottom row shows the responses of the Laplacian

over scales. The characteristic scales are 10.1 and 3.9 for the left and right image, respectively. The ratio of scales corresponds to the scale factor

(2.5) between the two images. The radius of displayed regions in the top row is equal to 3 times the selected scales.

at which there is maximum similarity between the

feature detection operator and the local image struc-

tures. The size of the region is therefore selected in-

dependently of image resolution for each point. The

Laplacian operator is used for scale selection in both

detectors since it gave the best results in the ex-

perimental comparison in Mikolajczyk and Schmid

(2001).

Given the set of initial points extracted at their char-

acteristic scales we can apply the iterative estimation of

elliptical affine region (Lindeberg and Gårding, 1997).

The eigenvalues of the second moment matrix are used

to measure the affine shape of the point neighbourhood.

To determine the affine shape, we find the transforma-

tion that projects the affine pattern to the one with equal

eigenvalues. This transformation is given by the square

root of the second moment matrix M1/2. If the neigh-

bourhood of points xR and xL are normalized by trans-

formations x′
R = M

1/2

R xR and x′
L = M

1/2

L xL , respec-

tively, the normalized regions are related by a simple

rotation x′
L = Rx′

R (Baumberg, 2000; Lindeberg and

Gårding, 1997). The matrices M ′
L and M ′

R computed

in the normalized frames are equal to a rotation matrix

(see Fig. 7). Note that rotation preserves the eigen-

value ratio for an image patch, therefore, the affine

deformation can be determined up to a rotation fac-

tor. This factor can be recovered by other methods, for

example normalization based on the dominant gradi-

ent orientation (Lowe, 1999; Mikolajczyk and Schmid,

2002).

The estimation of affine shape can be applied to any

initial point given that the determinant of the second

moment matrix is larger than zero and the signal to

noise ratio is insignificant for this point. We can there-

fore use this technique to estimate the shape of initial

regions provided by the Harris and Hessian based de-

tector.

The outline of the iterative region estimation:

1. Detect initial region with Harris or Hessian detector

and select the scale.

2. Estimate the shape with the second moment matrix

3. Normalize the affine region to the circular one

4. Go to step 2 if the eigenvalues of the second moment

matrix for new point are not equal.

Examples of Harris-Affine and Hessian-Affine re-

gions are displayed on Fig. 3(a) and (b).

2.2. An Edge-Based Region Detector

We describe here a method to detect affine covariant

regions in an image by exploiting the edges present

in the image. The rationale behind this is that edges

are typically rather stable features, that can be detected

over a range of viewpoints, scales and/or illumination

changes. Moreover, by exploiting the edge geometry,

the dimensionality of the problem can be significantly

reduced. Indeed, as will be shown next, the 6D search

problem over all possible affinities (or 4D, once the
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Figure 7. Diagram illustrating the affine normalization using the second moment matrices. Image coordinates are transformed with matrices

M
−1/2
L and M

−1/2
R .

center point is fixed) can further be reduced to a one-

dimensional problem by exploiting the nearby edges

geometry. In practice, we start from a Harris corner

point p (Harris and Stephens, 1988) and a nearby edge,

extracted with the Canny edge detector (Canny, 1986).

To increase the robustness to scale changes, these basic

features are extracted at multiple scales. Two points p1

and p2 move away from the corner in both directions

along the edge, as shown in Fig. 8(a). Their relative

speed is coupled through the equality of relative affine

invariant parameters l1 and l2:

li =

∫

abs
(
∣

∣pi
(1)(si ) p − pi(si )

∣

∣

)

dsi (3)

with si an arbitrary curve parameter (in both direc-

tions), pi
(1)(si ) the first derivative of pi(si ) with respect

to si , abs() the absolute value and | . . . | the determi-

nant. This condition prescribes that the areas between

the joint 〈p, p1〉 and the edge and between the joint

〈p, p2〉 and the edge remain identical. This is an affine

invariant criterion indeed. From now on, we simply use

l when referring to l1 = l2.

For each value l, the two points p1(1) and p2(1)

together with the corner p define a parallelogram �(l):

the parallelogram spanned by the vectors p1(l) − p

and p2(l) − p. This yields a one dimensional family of

parallelogram-shaped regions as a function of l. From

this 1D family we select one (or a few) parallelogram

for which the following photometric quantities of the

texture go through an extremum.

Inv1 = abs

(

|p1−pg p2−pg|

|p−p1 p − p2|

)

M1
00

√

M2
00 M0

00 − (M1
00)2

Inv2 = abs

(

|p − pg q − pg|

|p − p1 p − p2|

)

M1
00

√

M2
00 M0

00 − (M1
00)2

Figure 8. Construction methods for EBR and IBR. (a) The edge-based region detector starts from a corner point p and exploits nearby edge

information; (b) The intensity extrema-based region detector starts from an intensity extremum and studies the intensity pattern along rays

emanating from this point.
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with

Mn
pq =

∫

�

I n(x, y)x p yq dxdy (4)

pg =

(

M1
10

M1
00

,
M1

01

M1
00

)

with Mn
pq the nth order, (p + q)th degree moment

computed over the region �(l), pg the center of gravity

of the region, weighted with intensity I (x, y), and q the

corner of the parallelogram opposite to the corner point

p (see Fig. 8(a)). The second factor in these formula

has been added to ensure invariance under an intensity

offset.

In the case of straight edges, the method described

above cannot be applied, since l = 0 along the entire

edge. Since intersections of two straight edges occur

quite often, we cannot simply neglect this case. To cir-

cumvent this problem, the two photometric quantities

given in Eq. (4) are combined and locations where

both functions reach a minimum value are taken to

fix the parameters s1 and s2 along the straight edges.

Moreover, instead of relying on the correct detection of

the Harris corner point, we can simply use the straight

lines intersection point instead. A more detailed expla-

nation of this method can be found in Tuytelaars and

Van Gool (1999, 2004). Examples of detected regions

are displayed in Fig. 5(b).

For easy comparison in the context of this paper, the

parallelograms representing the invariant regions are

replaced by the enclosed ellipses, as shown in Fig. 4(b).

However, in this way the orientation-information is

lost, so it should be avoided in a practical application,

as discussed in the beginning of Section 2.

2.3. Intensity Extrema-Based Region Detector

Here we describe a method to detect affine covariant

regions that starts from intensity extrema (detected at

multiple scales), and explores the image around them

in a radial way, delineating regions of arbitrary shape,

which are then replaced by ellipses.

More precisely, given a local extremum in inten-

sity, the intensity function along rays emanating from

the extremum is studied, as shown in Fig. 8(b). The

following function is evaluated along each ray:

f I (t) =
abs(I (t) − I0)

max
(

∫ t

0
abs(I (t)−I0)dt

t
, d

)

with t an arbitrary parameter along the ray, I (t) the

intensity at position t, I0 the intensity value at the ex-

tremum and d a small number which has been added

to prevent a division by zero. The point for which

this function reaches an extremum is invariant under

affine geometric and linear photometric transforma-

tions (given the ray). Typically, a maximum is reached

at positions where the intensity suddenly increases or

decreases. The function f I (t) is in itself already in-

variant. Nevertheless, we select the points where this

function reaches an extremum to make a robust selec-

tion. Next, all points corresponding to maxima of f I (t)

along rays originating from the same local extremum

are linked to enclose an affine covariant region (see

Fig. 8(b)). This often irregularly-shaped region is re-

placed by an ellipse having the same shape moments

up to the second order. This ellipse-fitting is again an

affine covariant construction. Examples of detected re-

gions are displayed in Fig. 4(a). More details about

this method can be found in Tuytelaars and Van Gool

(2000, 2004).

2.4. Maximally Stable Extremal Region Detector

A Maximally Stable Extremal Region (MSER) is a

connected component of an appropriately thresholded

image. The word ‘extremal’ refers to the property

that all pixels inside the MSER have either higher

(bright extremal regions) or lower (dark extremal

regions) intensity than all the pixels on its outer

boundary. The ‘maximally stable’ in MSER describes

the property optimized in the threshold selection

process.

The set of extremal regions E , i.e., the set of all

connected components obtained by thresholding, has

a number of desirable properties. Firstly, a mono-

tonic change of image intensities leaves E unchanged,

since it depends only on the ordering of pixel intensi-

ties which is preserved under monotonic transforma-

tion. This ensures that common photometric changes

modelled locally as linear or affine leave E unaffected,

even if the camera is non-linear (gamma-corrected).

Secondly, continuous geometric transformations pre-

serve topology–pixels from a single connected compo-

nent are transformed to a single connected component.

Thus after a geometric change locally approximated by

an affine transform, homography or even continuous

non-linear warping, a matching extremal region will

be in the transformed set E ′. Finally, there are no more

extremal regions than there are pixels in the image. So
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a set of regions was defined that is preserved under a

broad class of geometric and photometric changes and

yet has the same cardinality as e.g. the set of fixed-sized

square windows commonly used in narrow-baseline

matching.

Implementation Details. The enumeration of the set

of extremal regions E is very efficient, almost linear

in the number of image pixels. The enumeration pro-

ceeds as follows. First, pixels are sorted by intensity.

After sorting, pixels are marked in the image (either in

decreasing or increasing order) and the list of growing

and merging connected components and their areas is

maintained using the union-find algorithm (Sedgewick,

1988). During the enumeration process, the area of

each connected component as a function of intensity

is stored. Among the extremal regions, the ‘maximally

stable’ ones are those corresponding to thresholds were

the relative area change as a function of relative change

of threshold is at a local minimum. In other words,

the MSER are the parts of the image where local bi-

narization is stable over a large range of thresholds.

The definition of MSER stability based on relative

area change is only affine invariant (both photomet-

rically and geometrically). Consequently, the process

of MSER detection is affine covariant.

Detection of MSER is related to thresholding, since

every extremal region is a connected component of a

thresholded image. However, no global or ‘optimal’

threshold is sought, all thresholds are tested and the

stability of the connected components evaluated. The

output of the MSER detector is not a binarized image.

For some parts of the image, multiple stable thresholds

exist and a system of nested subsets is output in this

case.

Finally we remark that the different sets of extremal

regions can be defined just by changing the ordering

function. The MSER described in this section and used

in the experiments should be more precisely called

intensity induced MSERs.

2.5. Salient Region Detector

This detector is based on the pdf of intensity values

computed over an elliptical region. Detection proceeds

in two steps: first, at each pixel the entropy of the

pdf is evaluated over the three parameter family of el-

lipses centred on that pixel. The set of entropy extrema

over scale and the corresponding ellipse parameters are

recorded. These are candidate salient regions. Second,

the candidate salient regions over the entire image are

ranked using the magnitude of the derivative of the

pdf with respect to scale. The top P ranked regions are

retained.

In more detail, the elliptical region E centred on a

pixel x is parameterized by its scale s (which specifies

the major axis), its orientation θ (of the major axis),

and the ratio of major to minor axes λ. The pdf of

intensities p(I ) is computed over E . The entropy H is

then given by

H = −
∑

I

p(I ) log p(I )

The set of extrema over scale in H is computed for the

parameters s, θ, λ for each pixel of the image. For each

extrema the derivative of the pdf p(I ; s, θ, λ) with s is

computed as

W =
s2

2s − 1

∑

I

∣

∣

∣

∣

∂p(I ; s, θ, λ)

∂s

∣

∣

∣

∣

,

and the saliency Y of the elliptical region is com-

puted as Y = HW . The regions are ranked by their

saliencyY . Examples of detected regions are displayed

in Fig. 4(c). More details about this method can be

found in Kadir et al. (2004).

3. The Image Data Set

Figure 9 shows examples from the image sets used to

evaluate the detectors. Five different changes in imag-

ing conditions are evaluated: viewpoint changes (a)

& (b); scale changes (c) & (d); image blur (e) & (f);

JPEG compression (g); and illumination (h). In the

cases of viewpoint change, scale change and blur, the

same change in imaging conditions is applied to two

different scene types. This means that the effect of

changing the image conditions can be separated from

the effect of changing the scene type. One scene type

contains homogeneous regions with distinctive edge

boundaries (e.g. graffiti, buildings), and the other con-

tains repeated textures of different forms. These will

be referred to as structured versus textured scenes re-

spectively.

In the viewpoint change test the camera varies from

a fronto-parallel view to one with significant fore-

shortening at approximately 60 degrees to the camera.

The scale change and blur sequences are acquired

by varying the camera zoom and focus respectively.
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Figure 9. Data set. (a), (b) Viewpoint change, (c), (d) Zoom+rotation, (e), (f) Image blur, (g) JPEG compression, (h) Light change. In the

case of viewpoint change, scale change and blur, the same change in imaging conditions is applied to two different scene types: structured and

textured scenes. In the experimental comparisons, the left most image of each set is used as the reference image.

The scale changes by about a factor of four. The

light changes are introduced by varying the camera

aperture. The JPEG sequence is generated using a

standard xv image browser with the image quality

parameter varying from 40 to 2%. Each of the test

sequences contains 6 images with a gradual geometric

or photometric transformation. All images are of

medium resolution (approximately 800 × 640 pixels).
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The images are either of planar scenes or the cam-

era position is fixed during acquisition, so that in all

cases the images are related by homographies (plane

projective transformations). This means that the map-

ping relating images is known (or can be computed),

and this mapping is used to determine ground truth

matches for the affine covariant detectors.

The homographies between the reference (left most)

image and the other images in a particular dataset are

computed in two steps. First, a small number of point

correspondences are selected manually between the

reference and other image. These correspondences are

used to compute an approximate homography between

the images, and the other image is warped by this ho-

mography so that it is roughly aligned with the refer-

ence image. Second, a standard small-baseline robust

homography estimation algorithm is used to compute

an accurate residual homography between the refer-

ence and warped image (using hundreds of automat-

ically detected and matched interest points) (Hartley

and Zisserman, 2004). The composition of these two

homographies (approximate and residual) gives an ac-

curate homography between the reference and other

image. The root-mean-square error is less than 1 pixel

for every image pair.

Of course, the homography could be computed di-

rectly and automatically using correspondences of the

affine covariant regions detected by any of the meth-

ods of Section 2. The reason for adopting this two step

approach is to have an estimation method independent

of all the detectors that are being evaluated.

All the images as well as the computed homogra-

phies are available on the website.

3.1. Discussion

Before we compare the performance of the different

detectors in more detail in the next section, a few more

general observations can already be made, simply by

examining the output of the different detectors for the

images shown in Figs. 3 and 4. For all our experiments

(unless explicitly mentioned), the same set of param-

eters are used for each detector. These parameters are

the default parameters given by the authors.

First of all, note that the ellipses in the left and right

images of Figs. 3 and 4 do indeed cover more or less

the same scene regions. This is the key requirement

for covariant operators, and seems to be fulfilled for at

least a subset of the detected regions for all detectors.

Some other key observations are summarized below.

Complexity and Required Computation Time. The

computational complexity of the algorithm finding ini-

tial points in the Harris-Affine and Hessian-Affine de-

tectors is O(n), where n is the number of pixels. The

complexity of the automatic scale selection and shape

adaptation algorithm is O((m + k)p), where p is the

number of initial points, m is a number of investigated

scales in the automatic scale selection and k is a number

of iterations in the shape adaptation algorithm.

For the intensity extrema-based region detector, the

algorithm finding intensity extrema is O(n), where n

is again the number of pixels. The complexity of con-

structing the actual region around the intensity extrema

is O(p), where p is the number of intensity extrema.

For the edge-based region detector, the algorithm

finding initial corner points and the algorithm finding

edges in the image are both O(n), where n is again

the number of pixels. The complexity of constructing

the actual region starting from the corners and edges is

O(pd), where p is the number of corners and d is the

average number of edges nearby a corner.

For the salient region detector, the complexity of

the first step of the algorithm is O(nl), where l is the

number of ellipses investigated at each pixel (the three

discretized parameters of the ellipse shape). The com-

plexity of the second step isO(e), where e is the number

of extrema detected in the first step.

For the MSER detector, the computational complex-

ity of the sorting step is O(n) if the range of image

values is small, e.g. the typical {0, . . . , 255}, since the

sort can be implemented as BINSORT. The complexity

of the union-find algorithm is O(n log log n), i.e., fast.

Computation times vary widely, as can be seen in

Table 1. The computation times mentioned in this table

have all been measured on a Pentium 4 2 GHz Linux

PC, for the leftmost image shown in Fig. 9(a), which is

800 × 640 pixels. Even though the timings are for not

heavily optimized code and may change depending on

the implementation as well as on the image content,

we believe the table gives a reasonable indication of

typical computation times.

Region Density. The various detectors generate very

different numbers of regions, c.f. Table 1. The number

of regions also strongly depends on the scene type, e.g.

for the MSER detector there are about 2600 regions for

the textured blur scene (Fig. 9(f)) and only 230 for the

light change scene (Fig. 9(h)). Similar behaviour can

be observed for other detectors.

The variation in numbers between detector type is

to be expected since the detectors respond to different
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Table 1. Computation times for the different detectors for the

leftmost image of Fig. 9(a) (size 800 × 640).

Detector Run time (min:sec) Number of regions

Harris-Affine 0:01.43 1791

Hessian-Affine 0:02.73 1649

MSER 0:00.66 533

IBR 0:10.82 679

EBR 2:44.59 1265

Salient Regions 33:33.89 513

features and the images contain different numbers for a

given feature type. For example, the edge-based region

detector requires curves, and if none of sufficient length

occur in a particular image, then no regions of this type

can be detected.

However, this variety is also a virtue: the differ-

ent detectors are complementary. Some respond well

to structured scenes (e.g. MSER and the edge-based

regions), others to more textured scenes (e.g. Harris-

Affine and Hessian-Affine). We will return to this point

in Section 4.2.

Region Size. Also the size of the detected regions

significantly varies depending on the detector. Typi-

cally, Harris-Affine, Hessian-Affine and MSER detect

many very small regions, whereas the other detectors

only yield larger ones. This can also be seen in the

examples shown in Figs. 3 and 4. Figure 10 shows his-

tograms of region size for the different region detectors.

The size of the regions is measured as the geometric

average of the half-length of both axes of the ellipses,

which corresponds to the radius of a circular region

with the same area. Larger regions typically have a

higher discriminative power, as they contain more in-

formation, which makes them easier to match, at the

cost of a higher risk of being occluded or not covering

a planar part of the scene. Also, as will be shown in the

next section (cf. Fig. 11), large regions automatically

have better chances of overlapping other regions.

Distinguished Regions Versus Measurement Re-

gions. As a final note, we would like to draw the

attention of the reader to the fact that given a detected

affine covariant region, it is possible to associate with

it any number of new affine regions that are obtained
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Figure 10. Histograms of region size for the different detectors for the reference image of Fig. 9(a). Note that the y axes do not have the same

scalings in all cases.
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Figure 11. Rescaling regions has an effect on their overlap.

by affine covariant constructions, such as scaling,

taking the convex hull or fitting an ellipse based on

second order moments. In this respect, one should

make a distinction between a distinguished region and

a measurement region, as first pointed out in Matas et

al. (2002), where the former refers to the set of pixels

that have effectively contributed to the affine detector

response while the latter can be any region obtained by

an affine covariant construction. Here, we focus on the

original distinguished regions (except for the ellipse

fitting for edge-based and MSER regions, to obtain

the same shape for all detectors), as they determine the

intrinsic quality of a detector. In a practical matching

setup however, it may be advantageous to use a

different measurement region (see also Section 5 and

the discussion on scale in next section).

4. Overlap Comparison Using Homographies

The objective of this experiment is to measure the re-

peatability and accuracy of the detectors: to what extent

do the detected regions overlap exactly the same scene

area (i.e., are the pre-images identical)? How often are

regions detected in one image without the correspond-

ing region being detected in another? Quantitative re-

sults are obtained by making these questions precise

(see below). The ground truth in all cases is provided

by mapping the regions detected on the images in a set

to a reference image using homographies. The basic

measure of accuracy and repeatability we use is the

relative amount of overlap between the detected region

in the reference image and the region detected in the

other image, projected onto the reference image using

the homography relating the images. This gives a good

indication of the chance that the region can be matched

correctly. In the tests the reference image is always the

image of highest quality and is shown as the leftmost

image of each set in Fig. 9.

Two important parameters characterize the perfor-

mance of a region detector:

1. the repeatability, i.e., the average number of corre-

sponding regions detected in images under different

geometric and photometric transformations, both in

absolute and relative terms (i.e., percentage-wise),

and

2. the accuracy of localization and region estimation.

However, before describing the overlap test in more

detail, it is necessary to discuss the effect of region size

and region density, since these affect the outcome of

the overlap comparison.

A Note on the Effect of Region Size. Larger regions

automatically have a better chance of yielding good

overlap scores. Simply rescaling the regions, i.e., us-

ing a different measurement region (e.g. doubling the

size of all regions) suffices to boost the overlap perfor-

mance of a region detector. This can be understood as

follows. Suppose the distinguished region is an ellipse,

and the measurement region is also an ellipse centered

on the distinguished region but with an arbitrary scal-

ing s. Then from a geometrical point of view, varying

the scaling defines a cone out of the image plane (with

elliptical cross-section), and with s a distance on the

cone axis. In the reference image there are two such

cones–one from the distinguished region in that image,

and the other from the mapped distinguished region

from the other image, as illustrated in Fig. 11. Clearly

as the scaling goes to zero there is no intersection of

the cones, and as the scaling goes to infinity the relative

amount of overlap, defined as the ratio of the intersec-

tion to the union of the ellipses approaches unity.

To measure the intrinsic quality of a region detec-

tor, we need to define an overlap criterion that is in-

sensitive to such rescaling. Focusing on the original

distinguished regions would unproportionally favour

detectors with large distinguished regions. Instead, the

solution adopted here is to apply a scaling s that nor-

malizes the reference region to a fixed region size prior

to computing the overlap measure. It should be noted

though that this is only for reason of comparison of dif-

ferent detectors. It may result in increased or decreased

repeatability scores compared to what one might get
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in a typical matching experiment, where such normal-

ization typically is not performed (and is not desirable

either).

A Note on the Effect of Region Density. Also the

region density, i.e., the number of detected regions

per fixed amount of pixel area, may have an effect on

the repeatability score of a detector. Indeed, if only

a few regions are detected, the thresholds can be set

very sharply, resulting in very stable regions, which

typically perform better than average. At the other ex-

treme, if the number of regions becomes really huge,

the image might get so cluttered with regions that some

of them may be matched by accident rather than by

design. In the limit, one would get an (affine) scale

space approach rather than an affine covariant region

detector.

One way out would be to tune the parameters of the

detectors such that they all output a similar number of

regions. However, this is difficult to achieve in prac-

tice, since the number of detected regions also depends

on the scene type. Moreover, it is not straightforward

for all detectors to come up with a single parameter

that can be varied to obtain the desired number of

regions in a meaningful way, i.e., representing some

kind of ‘quality measure’ for the regions. So we use

the default parameters supplied by the authors. To give

an idea of the number of regions, both absolute and

relative repeatability scores are given. In addition, for

several detectors, the repeatability is computed versus

the number of detected regions, which is reported in

Section 4.3.

4.1. Repeatability Measure

Two regions are deemed to correspond if the overlap

error, defined as the error in the image area covered by

the regions, is sufficiently small:

1 −
Rµa

∩ R(H T µb H )

(Rµa
∪ RH T µb H )

< ǫO

where Rµ represents the elliptic region defined by

xT µx = 1. H is the homography relating the two im-

ages. The union of the regions is Rµa
∪ R(H T µb H ), and

Rµa
∩ R(H T µb H ) is their intersection. The area of the

union and the intersection of the regions are computed

numerically.

The repeatability score for a given pair of images is

computed as the ratio between the number of region-to-

region correspondences and the smaller of the number

of regions in the pair of images. We take into account

only the regions located in the part of the scene present

in both images.

To compensate for the effect of regions of differ-

ent sizes, as mentioned in the previous section, we

first rescale the regions as follows. Based on the re-

gion detected in the reference image, we determine

the scale factor that transforms it into a region of

normalized size (corresponding to a radius 30, in

our experiments). Then, we apply this scale factor

to both the region in the reference image and the

region detected in the other image which has been

mapped onto the reference image, before comput-

ing the actual overlap error as described above. The

precise procedure is given in the Matlab code on

http://www.robots.ox.ac.uk/∼vgg/research/affine.

Examples of the overlap errors are displayed in

Fig. 12. Note that an overlap error of 20% is very small

as it corresponds to only 10% difference between

the regions’ radius. Regions with 50% overlap error

can still be matched successfully with a robust

descriptor.

4.2. Repeatability Under Various Transformations

In a first set of experiments, we fix the overlap error

threshold to 40% and the normalized region size to

a radius of 30 pixels, and check the repeatability of

the different region detectors for gradually increasing

transformations, according to the image sets shown in

Fig. 9. In other words, we measure how the number

of correspondences depends on the transformation be-

tween the reference and other images in the set. Both

the relative and actual number of corresponding re-

gions is recorded. In general we would like a detector

to have a high repeatability score and a large number

of correspondences. This test allows to measure the

robustness of the detectors to changes in viewpoint,

scale, illumination, etc.

The results of these tests are shown in Figs. 13–20

(a) and (b). Figures 13–20(c) and (d) show matching

results, which are discussed in Section 4.4. A detailed

discussion is given below, but we first make some gen-

eral comments. The ideal plot for repeatability would

be a horizontal line at 100%. As can be seen in all cases,

neither a horizontal line nor 100% are achieved. Indeed

the performance generally decreases with the severity

of the transformation, and the best performance

achieved is 95% for JPEG compression (Fig. 19).

The reasons for this lack of 100% performance are
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Figure 12. Overlap error ǫO . Examples of ellipses projected on the corresponding ellipse with the ground truth transformation. (bottom)

Overlap error for above displayed ellipses. Note that the overlap error comes from different size, orientation and position of the ellipses.

sometimes specific to detectors and scene types

(discussed below), and sometimes general—the trans-

formation is outside the range for which the detector is

designed, e.g. discretization errors, noise, non-linear

illumination changes, projective deformations etc.

Also the limited ‘range’ of the regions shape (size,

skewness, . . . ) can partially explain this effect. For

instance, in case of a zoomed out test image, only the

large regions in the reference image will survive the

transformation, as the small regions will have become

too small for accurate detection. The same holds for

other types of transformations: very elongated regions

in the reference image may become undetectable if

the inferred affine transformation stretches them even

further but, on the other hand, allow for very large

viewpoint changes if the inferred affine transformation

makes them rounder.

The left side of each figure typically represents small

transformations. The repeatability score obtained in

this range indicates how well a given detector per-

forms for the given scene type and to what extent the

detector is affected by a small transformation of this

scene. The invariance of the detector under the studied

transformation, on the other hand, is reflected in the

slope of the curves, i.e., how much does a given curve

degrade with increasing transformations.

The absolute number of correspondences typically

drops faster than the relative number. This can be un-

derstood by the fact that in most cases larger transfor-

mations result in lower quality images and/or smaller

commonly visible parts between the reference image

and the other image, and hence a smaller number of

regions are detected.

Viewpoint Change. The effect of changing view-

point for the structured graffiti scene from Fig. 9(a)

are displayed in Fig. 13. Figure 13(a) shows the re-

peatability score and Fig. 13(b) the absolute number

of correspondences. The results for images contain-

ing repeated texture motifs (Fig. 9(b)) are displayed

in Fig. 14. The best results are obtained with the

MSER detector for both scene types. This is due to

the high detection accuracy especially on the homo-

geneous regions with distinctive boundaries. The re-

peatability score for a viewpoint change of 20 degrees

varies between 40% and 78% and decreases for large

viewpoint angles to 10% − 46%. The largest number

of corresponding regions is given by Hessian-Affine

(1300) detector followed by Harris-Affine (900) detec-

tor for the structured scene, and given by Harris-Affine

(1200), MSER (1200) and EBR (1300) detectors for

the textured scene. These numbers decrease to less

than 200/400 for the structured/textured scene for large

viewpoint angle.

Scale Change. Figure 15 shows the results for the

structured scene from Fig. 9(c), while Fig. 16 shows the

results for the textured scene from Fig. 9(d). The main

image transformation is a scale change and in-plane

rotation. The Hessian-Affine detector performs best,

followed by MSER and Harris-Affine detectors. This

confirms the high performance of the automatic scale

selection applied in both Hessian-Affine and Harris-

Affine detectors. These plots clearly show the sensi-

tivity of the detectors to the scene type. For the tex-

tured scene, the edge-based region detector gives very

low repeatability scores (below 20%), whereas for the

structured scene, its results are similar to the other de-

tectors, with score going from 60% down to 28%. The

unstable repeatability score of the salient region detec-

tor for the textured scene is due to the small number of

detected regions in this type of images.

Blur. Figures 17 and 18 show the results for the

structured scene from Fig. 9(e) and the textured one

from Fig. 9(f), both undergoing increasing amounts of
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Figure 13. Viewpoint change for the structured scene (Graffiti sequence Fig. 9(a)). (a) Repeatability score for viewpoint change (default

settings-overlap 40%, normalized size = 30 pixels). (b) Number of corresponding regions. (c) Matching score. (d) Number of correct nearest

neighbour matches.

image blur. The results are better than for viewpoint

and scale changes, especially for the structured scene.

All detectors have nearly horizontal repeatability

curves, showing a high level of invariance to image

blur, except for the MSER detector, which is clearly

more sensitive to this type of transformation. This is

because the region boundaries become smooth, and the

segmentation process is less accurate. The number of

corresponding regions detected on structured scene is

much lower than for the textured scene and it changes

by a different factor for different detectors. This clearly

shows that the detectors respond to different features.

The repeatability for the EBR detector is very low

for the textured scene. This can be explained by the

lack of stable edges, on which the region extraction is

based.

JPEG Artifacts. Figure 19 shows the score for the

JPEG compression sequence from Fig. 9(g). For this

type of structured scene (buildings), with large homo-

geneous areas and distinctive corners, Hessian-Affine

and Harris-Affine are clearly best suited. The degrada-

tion under increasing compression artefacts is similar

for all detectors.

Light Change. Figure 20 shows the results for light

changes for the images on Fig. 9(h). All curves

are nearly horizontal, showing good robustness to
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Figure 14. Viewpoint change for the textured scene (Wall sequence Fig. 9(b)). (a) Repeatability score for viewpoint change (default settings).

(b) Number of corresponding regions. (c) Matching score. (d) Number of correct nearest neighbour matches.

illumination changes, although the MSER obtains the

highest repeatability score for this type of scene. The

absolute score shows how a small transformation of this

type of a scene can affect the repeatability of different

detectors.

General Conclusions. For most experiments the

MSER regions or Hessian-Affine obtain the best re-

peatability score and are followed by Harris-Affine.

Salient regions give relatively low repeatability. For

the edge-based region detector, it largely depends on

the scene content, i.e., whether the image contains sta-

ble curves or not. The intensity extrema-based region

detector gives average scores. Results largely depend

on the type of scene used for the experiments. Again,

this illustrates the complementarity of the various de-

tectors. Depending on the application, a combination

of detectors is probably prudent.

Viewpoint changes are the most difficult type

of transformation to cope with, followed by scale

changes. All detectors behave similarly under the dif-

ferent types of transformations, except for the blur se-

quence of Fig. 17, where MSER performs significantly

worse than the others.

In the majority of the examples Hessian-Affine

and Harris-Affine detector provide several times more

corresponding regions than the other detectors. The

Hessian-Affine detector almost systematically outper-

forms the Harris-Affine detector, and the same holds

for MSER with respect to IBR.
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Figure 15. Scale change for the structured scene (Boat sequence Fig. 9(c)). (a) Repeatability score for scale change (default settings).

(b) Number of corresponding regions. (c) Matching score. (d) Number of correct nearest neighbour matches.

4.3. More Detailed Tests

To further validate our experimental setup and to obtain

a deeper insight in what is actually going on, a more

detailed analysis is performed on one image pair with

a viewpoint change of 40 degrees, namely the first and

third column of the graffiti sequence shown in Fig. 9(a).

Accuracy of the Detectors. First, we test the effect

of our choice for the overlap error threshold. This was

fixed to 40% in all the previous experiments. Choosing

a lower threshold results in more accurate regions, (see

Fig. 12). Figure 21(a) shows the repeatability score

as a function of the overlap error. Clearly, as the re-

quired overlap is relaxed, more regions are qualified

as corresponding, and the repeatability scores go up.

The relative ordering of the various detectors remains

virtually the same, except for the Harris-Affine and

Hessian region detectors. They improve their ranking

with increasing overlap error, which means that these

detectors are less accurate than the others–at least for

this type of scene.

Choice of Normalized Region Size. Next, we test the

effect of our choice of the normalized region size. This

was fixed to a radius of 30 pixels in all the previous

experiments. Figure 21(b) shows how the repeatability

scores vary as a function of the normalized region size,

with the overlap error threshold fixed to 40%. The

relative ordering of the different detectors stays the
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Figure 16. Scale change for the textured scene (Bark sequence Fig. 9(d)). (a) Repeatability score for scale change (default settings).

(b) Number of corresponding regions. (c) Matching score. (d) Number of correct nearest neighbour matches.

same, which indicates that our experimental setup is

not very sensitive to the choice of the normalized region

size. With a larger normalized region size, we obtain

lower overlap errors and the curves increase slightly

(see also Fig. 11).

Varying the Region Density. For some detectors, it

is possible to vary the number of detected regions, sim-

ply by changing the value of one significant parameter.

This makes it possible to compensate for the effect that

different region densities might have on the repeatabil-

ity scores and compare different detectors when they

output similar number of regions. Figure 21(c) shows

that the repeatability of MSER (92%) and IBR (63%) is

high for a small number of regions (70) and decreases

to 68% and 50% respectively for 350 detected regions,

unlike the repeatability for Hessian-Laplace, Harris-

Laplace and salient regions which is low for a small

number of regions and increases for more than 300

regions. However, the rank of the detectors remains

the same in the range of available threshold settings,

therefore the order of the detectors in the experiments

in the previous section is not affected by the density

of regions. Depending on the application and the re-

quired number of regions one can set the appropriate

threshold to optimize the performance.

Repeatability Score as a Function of Region Size.

Rather than normalizing all regions to a fixed region

size prior to computing the overlap error, an alternative
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Figure 17. Blur for the structured scene (Bikes sequence Fig. 9(e)). (a) Repeatability score for blur change (default settings). (b) Number of

corresponding regions. (c) Matching score. (d) Number of correct nearest neighbour matches.

approach would be to only compare regions of similar

sizes. This results in a plot showing the repeatability

scores for different detectors as a function of region

size. Large regions typically yield higher repeatabil-

ity scores, not only because of their intrinsic stability,

but also because they automatically yield lower over-

lap errors. Figure 21(d) shows the repeatability with

respect to detected region size. MSER detector has the

highest repeatability score and it is nearly the same

for different size of the detected regions. The results

for Hessian-Affine, Harris-Affine and IBR are similar.

The repeatability is low for small regions, then it in-

creases for medium size regions and slightly decreases

for larger regions except that the score for Harris-Affine

decreases more rapidly. The repeatability for EBR and

salient regions is small for small and medium size re-

gions and increases for large regions. Note, that the

repeatability for different region size depends also on

the type of image transformation i.e., for large scale

changes only the small regions from one image will

match with the large regions from the other one.

5. Matching Experiments

In the previous section, the performance of the different

region detectors is evaluated from a rather theoretical

point of view, focusing on the overlap error and re-

peatability. In this section, we follow a more practical

approach. In a practical application, regions need to be
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Figure 18. Blur for the textured scene (Trees sequence Fig. 9(f)). (a) Repeatability score for blur change (default settings). (b) Number of

corresponding regions. (c) Matching score. (d) Number of correct nearest neighbour matches.

matched or clustered, and apart from the accuracy and

repeatability of the detection, also the distinctiveness of

the region is important. We test how well the regions

can be matched, looking at the number of matches

found as well as the ratio between correct matches and

mismatches.

To this end, we compute a descriptor for the regions,

and then check to what extent matching with the de-

scriptor gives the correct region match. Here we use the

SIFT descriptor of Lowe (1999). This descriptor gave

the best matching results in an evaluation of differ-

ent descriptors computed on scale and affine invariant

regions (Mikolajczyk and Schmid, 2003, 2005). The

descriptor is a 128 dimensional vector computed from

the spatial distribution of image gradients over a cir-

cular region. To this end, each elliptical region is first

mapped to a circular region of 30 × 30 pixels, and

rotated based on the dominant gradient orientation, to

compensate for the affine geometric deformations, as

shown in Fig. 2(e). Note that unlike in Section 4, this

mapping concerns descriptors; the region size is coin-

cidentally the same (30 Pixels).

5.1. Matching Score

Again the measure is computed between a reference

image and the other images in a set. The matching

score is computed in two steps.
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Figure 19. JPEG compression (UBC sequence Fig. 9(g)). (a) Repeatability score for different JPEG compression (default settings).

(b) Number of corresponding regions. (c) Matching score. (d) Number of correct nearest neighbour matches.

1. A region match is deemed correct if the overlap

error defined in the previous section is minimal

and less than 40%, i.e., ǫO ≤ 0.4. This provides

the ground truth for correct matches. Only a single

match is allowed for each region.

2. The matching score is computed as the ratio be-

tween the number of correct matches and the

smaller number of detected regions in the pair of

images. A match is the nearest neighbour in the de-

scriptor space. The descriptors are compared with

the Euclidean distance.

This test gives an idea on the distinctiveness of fea-

tures. The results are rather indicative than quantitative.

If the matching results do not follow those of the re-

peatability test for a particular feature type that means

that the distinctiveness of these features differs from

the distinctiveness of other detectors.

The Effect of Rescaling the Regions. Here, the issue

arises on what scale to compute the descriptor for a

given region. Indeed, rather than taking the original

distinguished region, one might also rescale the region

first, which typically leads to more discriminative

power–certainly for the small regions. Figure 22(c)

shows how the matching score for the different de-

tectors varies for different scale factors. Typically, the

curves go slightly up for larger measurement regions,

except for EBR and salient regions which attain their

maximum score for scale factor of 2 and 3 respectively.
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Figure 20. Illumination change (Leuven sequence Fig. 9(h)). (a) Repeatability score for different illumination (default settings). (b) Number

of corresponding regions. (c) Matching score. (d) Number of correct nearest neighbour matches.

However, except for EBR the relative ordering of

the different detectors remains unaltered. For all our

matching experiments, we selected a scale factor

of 3.

It should be noted though that in a practical ap-

plication a large scale factor can be more detri-

mental, due to the higher risk of occlusions or

non-planarities. Since in our experimental setup all

images are related by homographies, these effects do

not occur.

5.2. Matching Under Various Transformations

Figures 13 –20(c) and (d) give the results of the match-

ing experiment for the different types of transforma-

tions. These are basically the same plots as given in

Figs. 13–20(a) and (b) but now focusing on regions

that have actually been matched, rather than just cor-

responding regions.

For most transformations, the plots look indeed very

similar to (albeit a bit lower than) the results obtained

with the overlap error test. This indicates that the re-

gions typically have sufficient distinctiveness to be

matched automatically. One should be careful though

to generalize these results because these might be sta-

tistically unreliable, e.g. for much larger numbers of

features in database retrieval.

Sometimes, the score or relative ordering of the de-

tectors differs significantly from the overlap error tests

of the previous section (e.g. Figs. 17 and 20). This

means that the regions found by some detectors are not

distinctive and many mismatches occur.
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The ranking of the detectors changes in Fig. 20(c)

comparing to Fig. 20(a) which means the Harris-Affine

and Hessian-Affine are less distinctive. These detectors

find several slightly different regions containing the

same local structure all of which have a small overlap

error. Thus, the matched regions might have the overlap

smaller than 40% but the minimum overlap error is for

a slightly different region. In this way the matched

regions are counted as incorrect. The same change

in ranking for Harris-Affine and Hessian-Affine can

be observed on the results for other transformations.

However the rank of the fig. (d) showing the number

of matched regions do not change with respect to the

number of corresponding regions on figures (b).

The curves for Fig. 18(c) and (d) give the results for

the textured scene shown in Fig. 9(f). For this case,

the matching scores are significantly lower than the

repeatability scores obtained earlier. This can be ex-

plained by the fact that the scene contains many similar

local structures, that can hardly be distinguished.

Ratio Between Correct and False Matches. So

far, we investigated the matching capability of corre-

sponding regions. In a typical matching application,

what matters is the ratio between correct matches and

false matches, i.e., are the regions within a correct

match more similar to each other than two regions that

do not correspond but accidentally look more or less

Figure 21. Viewpoint change (Graffiti image pair - 1st and 3rd column in Fig. 9(a)). (a) Repeatability score for different overlap error for one

pair (normalized size = 30 pixels). (b) Repeatability score for different normalized region size (overlap error <40%). (c) Repeatability score for

different number of detected regions (overlap error = 40%, normalized size = 30 pixels). (d) Repeatability score as a function of region size.
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Figure 22. Viewpoint change (Graffiti image pair - 1st and 3rd column in Fig. 9(a)). (a) Percentage of correct matches versus total number of

nearest neighbour matches. (b) Number of correct matches versus total number of nearest neighbour matches. (c) Matching score for different

size of measurement region. Region size factor is the ratio measurement/detected region size.

similar ? Here, the accuracy of the region detection

plays a role, as does the variability of the intensity

patterns for all regions found by a detector, i.e., the

distinctiveness. Figure 22(a) shows the percentage

of correct matches as a function of the number of

matches. A match is the nearest neighbour in the SIFT

feature space. These curves were obtained by ranking

the matches based on the distance between the nearest

neighbours. To obtain the same number of matches

for different detectors the threshold was individually

changed for each region type.

As the threshold, therefore the number of matches

increases (Fig. 22(a)), the number of correct as

well as false matches also increases, but the num-

ber of false matches increases faster, hence the

percentage of correct matches drops. For a good

detector, a small threshold results in almost ex-

clusively correct matches. Figure 22(b) shows the

absolute number of correct matches with respect

to the total number of matches. We observe that

MSER and IBR provide a large number of correct

matches for a small descriptor threshold. Up to 100

matches more than 90% are correct. This means

one does not have to rely so heavily on semi-local

or global consistency checks to remove the false

matches afterwords. Harris-Affine and Hessian-Affine

obtain low score but improve when the distance is

larger.
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Depending on the application, the number of

matches a user is interested in may vary. If only a

very small number of matches is needed (e.g. for com-

puting epipolar geometry), the MSER or IBR detector

is the best choice for this type of scene. Above 200

matches, Hessian-Affine and Harris-Affine perform

better–albeit at the cost of a large false positive rate.

6. Conclusions

In this paper we have presented the state of the art on

affine covariant region detectors and have compared

their performance. The comparison has shown that the

performance of all presented detectors declines slowly,

with similar rates, as the change of viewpoint increases.

There does not exist one detector which outperforms

the other detectors for all scene types and all types

of transformations. In many cases the highest score is

obtained by the MSER detector, followed by Hessian-

Affine. MSER performs well on images containing ho-

mogeneous regions with distinctive boundaries. This

also holds for IBR since both methods are designed for

similar region types. Hessian-Affine and Harris-Affine

provide more regions than the other detectors, which

is useful in matching scenes with occlusion and clut-

ter. EBR is suitable for scenes containing intersections

of edges. Salient regions obtained low scores in this

evaluation but performed well in the context of object

class recognition (Kadir et al., 2004).

The detectors are complementary, i.e., they extract

regions with different properties and the overlap of

these regions is small if not empty. Several detectors

should be used simultaneously to obtain the best per-

formance. The output of different detectors can be

combined by concatenating the respective matches.

This increases the number of matches and therefore

the robustness to occlusion, at the expense of process-

ing time. The choice of the optimal subset depends

on the context, for example on the required number

of extracted regions and processing time. In general,

matching on descriptors alone is not sufficient (as some

are mismatched), and further steps are required to dis-

ambiguate matches (Ferrari et al., 2004; Rothganger et

al., 2003; Schaffalitzky and Zisserman, 2002; Sivic and

Zisserman, 2003). These steps depend on the applica-

tion, but generally use methods of geometric filtering

based on the local spatial arrangement of the regions,

or on multiple view geometric relations.

Another contribution of the paper is the carefully de-

signed test protocol which is available on the Internet

together with the test data. This allows the evaluation of

future detectors and their comparison with those stud-

ied in the paper. Note that the criteria, as defined here,

are only valid for planar scenes or in the case of camera

rotation or zoom. Only in these cases is the geometric

relation between two images defined by a homography.

However, many 3D objects are composed of smooth

surfaces, which are planar in the small–that is, suffi-

ciently small patches can be treated as being comprised

of coplanar points. Naturally, regions are also detected

at depth and surface orientation discontinuities of 3D

scenes. Evaluating the repeatability of such regions is

beyond the scope of this paper.

Research on covariant regions and their description

is now well advanced–they are the building blocks for

general recognition systems–but more remains to be

done. One direct generalization is to apply the detec-

tors to representations of the image other than inten-

sity, for example ordering functions such as ‘satura-

tion’ or ‘projection on the red-blue direction in RGB

space’ could be used. Furthermore, affine detectors for

shape (object boundaries) or completely unstructured

textures should be developed. Finally, an important is-

sue is how to design detectors for images of an object

class, where there is within-class variation in addition

to affine viewpoint changes, and how to measure their

repeatability (Kadir et al., 2004).
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