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PREFACE

This report evaluates alternative statistical models of the
demand for medical care. The work was undertaken as a part of the
Rand Health Insurance Study, a large-scale social experiment designed
to investigate the effects of alternative health insurance plans on
the utilization of health services and on health status. Four other
Rand reports also deal with statistical problems in estimating the
demand for medical services: J. P. Newhouse, C. E. Phelps, and
M. S. Marquis, On Having Your Cake and Eating It Too: Econometric
Problems in Estimating the Demand for Health Services, R-1149-1-NC,
October 1979 (also published in the Journal of Econometrics, Vol. 13,
1980, pp. 365-390); W. G. Manning, J. P, Newhouse, and J. E. Ware,
Jr., The Status of Health in Demand Estimation: Beyond Excellent,
Good, Fair, and Poor, R-2696-HHS, December 1980 (also to be published
in Economic Aspects of Health, edited by Victor R. Fuchs, University
of Chicago Press, in press); and W. G, Manning, C. N. Morris, J. P,
Newhouse, et al., 4 Two-Part Model of the Demand for Medical Care:
Preliminary Results from the Health Insurance Study, R-2705-HHS,
forthcoming (also in Health, Economics, and Health Economics, edited
by J. van der Gaag and M. Perlman, North Holland Publishing Company,
1981).

The present report is a companion study to J. P. Newhouse,

W. G. Manning, C. N. Morris, et al., Some Interim Results from a
Controlled Trial in Health Insurance, R-2847-HHS, January 1982.
That report describes the design of the experiment and presents

the initial results from the model that was finally selected. The
present report discusses the estimation problems, the alternative
models considered, and the choice of a final model. A Rand paper
by J. P. Newhouse and R. W. Archibald, Overview of Health Insurance
Study Publications (P-6221, November 1978), lists other Health In-
surance Study reports.

The present report should be of interest to persons studying
the demand for medical services as well as to specialists in applied

econometrics and statistics.
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SUMMARY

In analyzing the demand for medical care, one wants to develop
models that not only permit reliable inferences about behavior, but
also yield reliable forecasts about future demand. In both cases,
"reliable" means either minimum mean-squared error or consistent and
efficient. Reliability is a prerequisite to informed decisions about
alternative national health insurance packages, whether public or
private. The stakes in these decisions are substantial. The nature
of health insurance has a major effect on the size and character of
the 10 percent of GNP spent on personal medical care services,

The distribution of annual medical expenditures by person has
at least three characteristics that impede reliable inferences and
predictions, First, about 20 percent of the population have no ex-
penses for medical care during any given year. Second, the remaining
80 percent have positive expenses highly skewed to the right. Through
much of their range, the positive expenditures are approximately log-
normal. Third, the right tail of the distribution is longer than the
lognormal distribution, because of the 10 percent of the population
that have hospital utilizations.

In this report, we examine how several alternative estimation
techniques perform on such data. The results indicate that complex
models, which more accurately reflect the character of the distri-
butions of medical services, perform better than simple ones. The
models examined include analysis of variance (ANOVA) and analysis of
covariance (ANOCOVA) on untransformed expenses; one-part models that
use two-parameter Box-Cox transformations of expenses; two—part models
that use separate equations to estimate the probability of positive
expenses and the level of (log) nonzero expenses; and finally, a
four-part model with separate equations to estimate the probability
of positive expenses, the probability of inpatient expenses condi-
tional on positive medical expenses, the (log) level of positive ex-
penses for people with only ambulatory expenses, and the (log) level

of positive expenses for those who have some hospital utilization.
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The three simpler models can lead to less reliable results. The
results of ANOVA and ANOCOVA on untransformed expenses are unbiased
but imprecise (even with over a thousand observations) because the
distribution of expenses is so highly skewed. Although the Box-Cox
transformations increase the precision of the estimates substantially
by reducing the effect of the skewness in the data, the predictions
are statistically inconsistent because of the large number of non-
spenders and the deviation from lognormality in the right tail. The
two=-part model corrects the difficulty associated with the probability
of a zero expenditure but still produces inconsistent predictions as
a result of the departure from lognormality in the right tail. The
four-part model improves on the one- and two-part models by estimat-
ing the cases with inpatient expenses separately. The four-part model
is more robust than ANOVA and ANOCOVA on untransformed expenditures.

Because the alternative models make different predictions of ex-
penses for different health insurance plans, it is important to dis-
tinguish among them. A split-sample analysis leads us to reject the
ANOVA and ANOCOVA on untransformed expenditures, and the one-part
model. However, the analysis fails to distinguish between the two-
and four-part models. Nevertheless, we believe that the four-part
model is the better model because it more accurately reflects the
complexity of the distribution of medical expenses. Thus, its esti-
mates are consistent, whereas those of the one- and two-part models
are inconsistent. The estimates of the four-part model are more pre-—
cise and robpst than those of ANOVA and ANOCOVA on untransformed
data. As additional data become available, we expect the superiority
of the four-part model to become more apparent.

The analysis reported here was performed on preliminary data
from the Rand Health Insurance Study, & randomized social experiment
designed to assess the effect of alternative health insurance plans

on health services utilization and health status.
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Chapter 1
-INTRODUCTION

Americans have been debating the merits of cost sharing for
medical services for decades. Central to that debate have been ques-
tions about the effect of cost sharing on the demand for medical
services and on the level of health status. Some have argued that
cost sharing does not affect demand, bﬁt is merely a tax on the
sick; others have argued that cost sharing deters necessary care.
Still others believe that cost sharing prevents abuse of the system
for trivial problems. The debate has persisted because the data
available to address these questions are meager and flawed by prob-
lems such as selection effects and lack of information about health
status. To remedy these data problems, the federal government spon-
sored a social experiment or controlled trial in health insurance,
the Rand Health Insurance Study (HIS), which started in 1974 and
will conclude in 1982, Data from the earlier years of the study are
now available to the HIS staff for analysis.

Once experimental data were available, the first analytic prob-
lem was to find reliable point estimates of the impact of cost shar-
ing on the use of health services.1 In particular, we want to fore-
cast the cost of alternative insurance packages, whether public or
private. Reliability is important because our forecasts have major
policy implications. Some models lead to grossly imprecise results.
Such results could lead us to conclude that cost sharing does not
reduce use, because random error obscures the true response. If
demand does not respond to cost sharing, the optimal insurance
policy has little or no cost sharing; but such a conclusion does
not necessarily hold if demand responds. Thus, failing to detect

a true response could lead to excessively generous insurance.

1 . . . . -
By reliable we mean either consistent and efficient or minimum
mean squared error.



By contrast, other models are inconsistent and lead to an over-
estimate of response. Such estimators could cause us to reject a
more generous insurance package because it appears more costly than
it is. Because the budgets of large public programs, such as Med-
icaid, are in the tens of billions of dollars, more reliable esti-
mates will have substantial payoff in terms of better decisions.
Even large private plans, such as those covering General Motors em~
ployees, pay health insurance premiums in the hundreds of millions
of dollars. With budgets and premiums of these magnitudes, unreli-
able results could lead to policy errors with major financial impact.

In modelling the use of medical services, we faced a tradeoff
between precision and bias. Some models that we used early in the
analysis produced results that were consistent but very imprecise.
When we developed more precise models, they produced inconsistent
predictions. We then developed more elaborate models that would
eliminate inconsistency without a substantial loss of precision.
However, these more elaborate models run the risk of overfitting the
observed data. If we were fitting random error rather than true re-
sponse, our forecasts for the other populations would be unreliable.
Our analytical problem then is to make the appropriate choice among
the competing models. |

The source of the estimation problems is the distribution of
medical expenses. At least three characteristics make this distri-
bution difficult to model, First, about 20 percent of the popula-
tion have no expenses for medical care during any given year. Sec-
ond, the remaining 80 percent have positive expenses that are highly
skewed. Through much of their range, the positive expenditures are
approximately lognormally distributed. Third, the far-right tail of
the distribution is too long even for a lognormal distribution,
because about 10 percent of all cases have hospital utilizations.

We have not found any simple parametric distribution to represent
that 10 percent.

In this report, we examine how several alternative estimation

techniques perform om our data. Not surprisingly, the better models
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explicitly account for the characteristics of the distribution of
medical services. The models we examine include analysis of vari-
ance (ANOVA) and analysis of covariance (ANOCOVA) with untransformed
expenses as a dependent variable; the one-part model, which uses a
two-parameter Box~Cox transformation of expenses; the two-part model,
which uses two separate equations to estimate the probability of
positive expenses and the level of (log) positive expenses; and a
four-part model with separate equations to estimate the probability
of positive expenses, the probability of inpatient expenses condi-
tional on having positive medical expenses, the (log) level of posi-~
tive expenses for those individuals with only ambulatory expenses,
and the (log) level of positive expenses for persons who have posi-
tive inpatient utilization. More detailed specifications of the
models are given in Chapter 3.

All the models except the four-part one have unsatisfactory
aspects. The results of ANOVA and ANOCOVA on untransformed expenses
are unbiased but imprecise (even with over a thousand observations)
because expenses are so highly skewed. Although the Box-Cox trans-
formation.in the one-part model, by reducing the effect of the skew-
ness in the data, substantially increases the precision of the esti-
mates, the forecasts from this model are inconsistent because of the
large number of zero expenses and the lack of lognormality in the
right tail. Two-part models correct the inconsistency due to zero
expenses but still produce inconsistent forecasts as a result of the
departure from lognormality in the right tail, The one- and two-part
models do estimate the median expense reasonably well, but they under-
estimate the impact of hospitalization. Such underestimation can
have disastrous effects on forecasts cf mean expenditure for medical
services, because the top 10 percent of the distribution accounts
for more than half of the total medical expenses.

In comparing the models, we have used two criteria: statistical
consistency and minimum mean squared error. With fairly large sample
sizes (e.g., on the order of several thousand), it is reasonable to

expect that a model should produce statistically consistent estimates.



The consistency criterion motivated our development of the more re-
fined transformed models, On the other hand, with fixed (finite)
sample sizes, there is a tradeoff between bias and variance to be
considered. That is, a model that produces results that are slightly
biased (or inconsistent) but more precise (having smaller variance)
might be preferable to one free from bias at the expense of lower
precision. We therefore also consider the mean squared error as a
compromise between bias and variance. For this purpose, we have

used a split-sample analysis to evaluate the various models in terms
of mean squared (forecast) error. The split-sample analysis based
on mean squared forecast error, and also on mean forecast bias, leads
us to reject the ANOVA and ANOCOVA on untransformed expenditure, as
well as the one-part model, but it fails to distinguish between the
two- and four-part models. Nevertheless, we believe that the four-
part model is the better ome for analyzing our data because its esti-
mates are consistent and more data will become available. By con-
trast, the two-part model is inconsistent, because departures from

normality when using it are systematically related to the covariates.

Chapter 2 briefly describes the design of the Health Insurance
Study, which is the source of our data, and the sample. Chapter 3
provides a rationale for and description of each of the models con-
sidered, and Chapter 4 indicates the sensitivity of the empirical
results to the estimation model. Chapter 5 compares the models
empirically in terms of forecast bias and mean squared forecast
error, using a split-sample technique. Chapter 6 summarizes the

findings of this study.



Chapter 2
THE DESIGN OF THE HEALTH INSURANCE STUDY,
THE SAMPLE, AND THE DATA

The Health Insurance Study (HIS) is a social experiment designed
to study how different health insurance policies affect the demand
for health services and thus the health status of individuals. Among
other goals, it seeks to determine the responsiveness of demand to
varying degrees of cost sharing. Past studies of this subject have
typically used nonexperimental data that suffer from several flaws:
insurance is potentially endogenous; existing policies are difficult
to describe parametrically; utilization data are frequently based on
recall and are subject to reporting biases; and coinsurance rates
and deductibles often vary little for a given service, such as hos-

pitalization.1 The HIS was designed to avoid these problems.

THE DESIGN

Because our intent in this report is to find reliable estimates
of the effect of health insurance on‘demand, we will limit the des-
cription of the HIS design to the experimental insurance plans.
The families participating in the experiment were assigned to 14
different insurance plans.3 About one~third of the sample were
assigned to a plan with a zero coinsurance rate (they received free
care). Nearly one-fifth faced a 25-percent coinsurance rate, sub-

ject to an upper limit on annual out-of-pocket family expenditures

1Newhouse (1978, 1981) provides a critical review of past
studies and their methodological problems.

2Newhouse (1974) and Brook et al. (1979) provide fuller des-
criptions of the design. Newhouse et al, (1979) discuss the meas-
urement issues for the second generation of social experiments,
to which the HIS belongs.

3In addition, the HIS has two groups enrolled in a prepaid
group practice or health maintenance organization. Results for
these two groups will be discussed in subsequent reports.



of 5, 10, or 15 percent of the previous year's income, or $1000,
whichever was less.4 This 1limit was called the Maximum Dollar Ex-
penditure (MDE). For some of this group, the coinsurance rate was
50 percent for dental and outpatient mental health services. Just
under one-twelfth of the sampled families were enrolled in a plan
having a 50-percent coinsurance rate for all services, subject to
the MDE (in Dayton one-fifth of the sample has this plan). One-
fifth of the sample were assigned to a plan with a 95-percent co-
insurance rate, subject to the MDE. In effect, this last group of
families had an income-related family deductible. Finally, about
one-fifth of the families faced a 95-percent coinsurance rate for
outpatient services, subject to $150 limit on out-of-pocket expenses
per person ($450 per family). In this plan, all inpatient services
were free, so that, in effect, this plan had an individual out-
patient deductible.5

All plans covered a wide variety of services. The only sig-
nificant exclusions were outpatient mental health services in
excess of 52 visits per year, nonpreventive orthodontia, and cos-
metic surgery unrelated to accidents occurring after the start of
the experiment.6 Dental services and outpatient mental health
services were, however, treated somewhat differently in the first
year in Dayton, and so analysis of those services will not be con-
sidered here.7 The same coinsurance rate applied to all medical

services, with the exceptions noted above.

AThe limit was $750 for the 25-percent coinsurance plans in the
Massachusetts and South Carolina sites,

5The coinsurance rate for the family and individual deductible
plans was 100 percent in Dayton Year 1. The rate was changed to
95 percent to increase the incentive to file in all other site-years,
although there was no statistical evidence of underfiling.

6In the case of each exclusion, it is questionable whether any-
thing could have been learned about steady-state demand during the
3- to 5-year lifetime of the experiment.

7 . . .

Dental services for adults were only covered in the plan with
a zero coinsurance rate; expenditures on outpatient mental health
services did not count toward the MDE. After Year 1 in Dayton and



-7-

The families were assigned to plans using the Finite Selection
Model (Morris, 1979). This model is designed to achieve as much
balance across plans as possible while retaining randomization; i.e.,
it makes the experimental plans orthogonal to the demographic co~
variates. The expected gain in precision from using this model

- rather than simple random assignment in this experiment is about
25 percent (Morris, 1979). (Random refusals of the enrollment
offer, which were about 15 percent in this experiment, degrade the
25-percent gain in proportion to the refusal rate (Morris, Newhouse,
and Archibald, 1979).) We have found no unintended differences be-
tween the enrolled group and the Dayton population, the only site
for which this analysis is complete. _

The sample is a random sample of each site's population, but
the following groups were not eligible: (1) those 62 years of age
and older; (2) those with incomes in excess of $25,000 (in 1973
dollars); (3) those eligible for the disability Medicare program;
(4) those in jails; (5) those in the military or their dependents;

and (6) those with service-connected disabilities.

THE SAMPLE

The sample used in this report consists of those enrollees who
participated for a full year in the first 3 years of Dayton and for
2 years in Seattle and Massachusetts, plus those who died during any
year. Excluded are other individuals with partial years of partici-
pation: newborns, adoptees, suspended participants (e.g., those
who joined the military), participants who voluntarily attritéd, and
individuals who were involuntarily terminated for noncompliance dur-

ing the year.8 But a person who, say, attrited in Year 2 was included

all other sites, dental services for adults and outpatient mental
health services (up to 52 visits per person annually) were covered
like any other service in all planms.

8We expected these cases to behave differently from the full-
year population. With the data available, there are not enough
cases to analyze the differences with precision. Inclusion of an
indicator variable for the condition would essentially dummy out the
cases. Instead, we delay their analysis until we have enough data



in Year 1 if he participated for all of that year. Moreover, the
inpatient expenditures on newborns were entirely allocated to the
mother for the purposes of this analysis. The exclusions account
for about 5 percent of the total sample. Table 2.1 contains the
number of observations per site year. The decrease from year to
year reflects death, attrition, termination, or suspension, net of

births and adoptions.

THE DATA

Dependent Variables

We have confined our analysis to covered medical expenditures
other than dental or outpatient mental health care. Thus, total med-
ical expenses (MED) include all inpatient care, medical outpatient
care, including services provided by nonphysicians such as chiro-
practors and optometrists, and (largely prescription) drugs and
supplies. Claims filed by participants, including those for unre-
imbursed expenses, provide data on the amount and type of expenses.
For some analysis we do distinguish inpatient users from ambulatory
users. A user of inpatient services is anyone who has been admitted

to or born in a hospital at any time during the year.

Insurance Plan Variables

We have employed an analysis of covariance (ANOCOVA) specifica-
tion of the insurance plans, with four dummy variables, one each for
a family medical coinsurance rate of 25 percent (P25); a family med-
ical coinsurance rate of 50 percent (P50); a family medical coin-

surance rate of 95 percent (behaviorally, approximately a family

to analyze them properly. We also excluded four cases who partici-
pated in the disability Medicare program. They were enrolled because
the HIS expected to receive a waiver from the Social Security Admin-
istration (SSA) permitting participation. When SSA denied the
waiver, individuals eligible for such benefits became ineligible

for the HIS. The experiment enrolled no more such cases. We have
excluded these four cases in order to maintain a defined population
to which we can generalize.



Table 2.1

SAMPLE BY SITE-YEAR®

Number
Site-Year in Sample
Dayton 1 . & & ¢ o ¢ o s ¢ o o s o « 1110

Dayton 2 & v v o ¢ ¢ o 4 o o o s o o 1103
Dayton 3 v o 4 ¢ ¢ o s s o 0 0 s o o 1092
Seattle 1> , . .. ... ...... 1171
Seattle 2> . . . . . . . . .. ... 1146
Fitchburg 1 « « o ¢ ¢ o o o o ¢ o o o 704
Fitchburg 2 . 4+ ¢ ¢ v o ¢ o o ¢ o o 693
Franklin 1 . 4 o o ¢ o o o o o s o & 875
Franklin 2 . & o v ¢ ¢ ¢ s o o o o @ 871

aFull—year participants plus deaths; ex-
cludes newborns, adoptees, attritions, termi-
nations, suspensions, and four SSI recipients
(who were enrolled in anticipation of a
waiver that was never granted).

bThe Seattle sample includes only those
individuals in the fee-for-service experi-
ment, Results on participants enrolled in
a health maintenance organization will be
reported separately.

deductible) (PFD);9 and the individual deductible of $150 per person
or $450 per family for outpatient care (IDP). The free care plan is
the omitted group.

In the four-part model, we have noticed a rather large inter-
action between age and plan. Adults respond to plan in their (con-
ditional) probability of utilizing inpatient services, whereas chil-
dren do not. Therefore, we have an interaction specification in
that equation, with dummy variables for an adult on the 25-percent
plan (AP25), an adult on the 50-percent plan (AP50), an adult on the
family deductible plan (APFD), and an adult on the individual de-
ductible plan (AIDP).

9A 100-percent coinsurance rate would be exactly a family
deductible.
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Other Covariates

The model specification includes covariates for other experi-
mental treatments, age, sex, race, family income and size, prior
contact with the medical system, self-reported health, pain, and
worry. These and other covariates are given in Table 2.2 and are
described more fully in Manning et al., (1981).

Except the interactions noted above or in Table 2.2, we have
used no interactions. Although we have not tested for all possible
interactions, we did examine some that are important for policy
purposes (e.g., between income and plan) and found them statisti-
cally insignificant. In subsequent analysis we expect to test the
linearity of the models using Pregibon's (1980) goodness-of-1link

test.
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Table 2.2

INDEPENDENT VARIABLES

TREATMENT VARIABLES - INDICATOR (0,1) VARIABLES

POO =1 if free plan
P25 =1 if medical coinsurance rate = 25 percent
P50 = 1 if medical coinsurance rate = 50 percent
PFD = 1 if medical coinsurance rate = 95 percent
IDP = 1 if individual deductible plan a
EXAM = 1 if received physical exam at enrollment
YR3 = 1  if enrolled for 3|years

WEEKLY = 1 if filed health diary weekly®
NOHR = 1 if did not file health diary®

SOCIODEMOGRAPHIC VARIABLES

Indicator (0,1) Variables

BLACK = 1 if the family is black
FEMALE = 1 if female
CHILD = 1 if age < 18
FCHILD = FEMALE - CHILD
AFDC = 1 if someone in family received Aid to Families with
Dependent Children )
NOMD = 1  if no regular physician for any family member
NOMDVIS = 1 if no visits to physician in past year
HLTHG = 1 if self-rated health is goodd
HLTHFP = 1 if self-rated health is fair or poor
PAINGS = 1 if in great pain or in some pain€
PAINL = 1 if in little pain® £
WORRGS = 1 if health is of great worry or of some worry
WORRL = 1 if health is of little worry
NEWMEM = 1 if added to family after pre-entollment interviews®
FAD = 1 if female adult

Continuous Variables

LINC = 1n (average family income in 1972 dollars)h
LFAM = 1In (family size) -1
INMDVIS [max (1, number of baseline year physician visits)]
MAGE, FAGE = a function relating outpatient utilization to age and
sex (MAGE for males and FAGE for females), based on
National Center for Health Statistics data on physician
visits

No exam is the omitted category.

o

Five years is the omitted category.

cFiling biweekly is the omitted category.

(=8

Excellent health is the omitted category.
e

No pain is the omitted category.
fNo worry about health is the omitted category.
EAl1 other unknown individual (not family) variables set to zero.

hIncome is set equal to $1000, if reported to be less. The
vears averaged are 1972, 1973 in Dayton, and 1973, 1974 in Seattle,
Fitchburg, and Franklin.
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Chapter 3
THE ALTERNATIVE MODELS

Each of the models was developed as an alternative to correct
the shortcomings in the preceding ones, Included among the short-
comings are a lack of precision in the untransformed ANOVA and
ANOCOVA models and bias in the predictions made by the transformed
models. The one-part model is an attempt to correct the precision
problems with direct analysis of untransformed medical expenditures.
The two-part model is an attempt to correct the inconsistency due
to nonspenders in the one-part model. The four-part model is an
attempt to correct the two-part model's inconsistency due to the
characteristics of inpatient utilization. Thus, we expect the four-
part model to be better than the two-part model, which, in turn,
should be better than the one~part model. All three should be more
precisé than the direct analysis of untransférmed expenses, Later,
in Chapter 5, we will provide a formal evaluation of the models in
terms of mean squared forecast error and mean forecast bias.

Let us examine each of these models, their rationales, and

their liabilities.

ANALYSIS OF VARIANCE (ANOVA) ON UNTRANSFORMED EXPENSES
The simplest model for expenses by plan is the ANOVA model,

with plans entered as indicators:

YEMED,=u+ai+ei, i=1, eeuy, N, (3.1)

where y is the grand mean, o is the plan effect, and € is the error.
The sample mean for each plan is the estimate of the mean of the
expenses on that plan.

. ANOVA has the advantage that it yields unbiased forecasts.
Whether the error term ¢ is normally distributed or not, the sample

average is an unbiased estimate of the plan mean as long as the plan
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assignment is independent of the error €5 which the design of the
experiment attempts to ensure. In contrast, the transformed anal-
yses discussed later yield biased and statistically inconsistent
forecasts if the error distribution is misspecified.

On the other hand, if the error is not normally distributed,
the ANOVA estimate can be very sensitive to extreme values, i.e.,
to large expenses. (Medical expenses are obviously bounded from
below.) The distribution of the HIS medical expenses is highly
skewed toward the positive side, as indicated by Fig. 3.1, a normal
plotl of medical expenses for the free plan from Dayton Year 1.
Because of the skewness, the sample average does not provide an
efficient estimate of the plan mean.

Clearly, we cannot estimate the effects of covariates on medi-
cal expenses by using the ANOVA model, but there are many reasons
to do so. Accounting for the effects of relevant covariates can
improve the precision of the estimated plan effects, and can also
remove possible (presumably small) bias due to any imbalance in the
plan assignment., Moreover, the effects of certain covariates (e.g.,

income) are relevant to policy (e.g., distributional questions).

ANALYSIS OF COVARTANCE (ANOCOVA) ON UNTRANSFORMED EXPENDITURES

The ANOVA model can be improved by including covariates known
to affect medical expenses. A plausible model is the analysis of

covariance (ANOCOVA) model

Y, = x.B, + ¢, , (3.2)

l'I'he normal plot is sometimes called a Q-Q (Q for quantiles)

plot. These figures plot the quantiles F_l(p) of the empirical dis-
tribution against the quantiles of a normal distribution with the
same mean and variance. If the empirical distribution is normal,
the quantiles will have the same values, and a plot of the quantiles
will fall on a 45-degree line., In these plots, the axes are meas-
ured in lo units as deviations from the mean.
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where xg is a row vector of explanatory variables, including plan
indicators and other covariates, and Bl is a columm vector of co-
efficients to be estimated. The ordinary least squares (OLS) esti-
mate of the regression coefficients Bl is

By = X'

X'y .

ANOCOVA has the advantage of yielding unbiased forecasts if
the true model is linear [E (Y) = XB], and if the error term is in-
dependent of X. The disadvantage with ANOCOVA is that, like ANOVA,
it is sensitive to extreme values, The distribution of the resid-
uals after fitting the ANOCOVA model is highly skewed, as indicated
by Fig. 3.2, a normal plot of the residuals for Dayton Year 1.

Therefore the ANOCOVA estimate is not efficient.

ONE-PART MODEL

In the third model, we take a logarithmic transformation of

medical expenses to diminish the influence of the extreme values,

and analyze the linear model on the log scale:

log (MEDi + 85) = X By + €3, .« (3.3a)

After taking the logarithmic transformation, most of the distribu-
tion, including the right tail, looks roughly normal. A constant,
namely $5, is added so that we are not taking the log of $0 for the
nonspenders. The value $5 is chosen because it minimizes the skew-
ness of residuals, This transformation is (nearly) the best in the
family of power transformations:

fly) = (y + )P ifp#0,

f(y) =In (y+c) 1ifp=0.
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The objective here is to make the dependent variable y = f(y) close
to normal; see Box and Cox (1962), Figure 3.3 is a normal plot of
the transformed dependent variable 1ln (MED + 5) for the free plan
in the first year of Dayton. The distribution of the transformed
variable is much closer to being normal than the raw expenditures
in Fig. 3.1.2 Reducing the departures from normality makes the
estimates more robust. In addition, the estimated coefficients will
be more precise with the log transform because the coefficient of
variation is decreased under the assumption of log normality.3

Under this model, the expected medical expense for an indi-

vidual with characteristics x; is

E (MEDilxi) = ¢ + exp (xi83) -85, (3.3b)
where

6= E [exp (e5)] = exp (02/2) (3.30)

i1f the error is normally distributed. Substituting appropriate esti-

mates of 83 and Oi provides an estimate of the expected expense.
While the log expenses are closer to being normally distributed

than the untransformed expenses, estimates based on this model yield

inconsistent estimates of Eqs. (3.3b) and (3.3c). The existence of

2If the matrix of explanatory variables is well conditioned and
the explanatory power of the equation is low, we would then expect
the error term €34 in Eq. (3.3a) to be more normal than that in
Eqs. (3.1) and (3.2). Figure 3.4 is a normal plot of the OLS resid-
vals after fitting Eq. (3.3a).

31f the variance is known, then the relative efficiency of the

log model to the raw mean is [exp (02) - 1]/02, which is appreciably

greater than 1 for the values encountered in the HIS data. If the
variance is unknown, the efficiency gain is
2
[exp (6%) - 1]/(o” + o*/2K) ,

k being the ratio of the degrees of freedom for estimating 02 to the
sample size for the group being predicted. Again for our data, there
is an efficiency gain from the log model over untransformed analysis.
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a large number of nonspenders makes it impossible for the data to be
log normal. Moreover, the decision to spend or not (and hence the
departure from normality) is systematically related to the covari-
ates. As a result, Eq. (3.3c) does not hold. Instead, the expected
value of the exponentiated error is a function of x. Thus, the
forecasts based on Egs. (3.3b) and (3.3c) are statistically incon-

sistent.

TWO-PART MODEL

The two-part model is an attempt to correct the problem with
nonspenders in the one-part model by separating behavior into two
stages, first a decision to have positive expenses, and then a
decision about the level of expenses, conditional on its being
positive. More formally, the model has two equations. The first
is a probit equation for the dichotomous event of having zero or

positive expenses:

Ii = xiSl + Ny s Ny N(O,1) , (3.4a)

where MED > 0 if I > 0, and MED = 0 otherwise. The second equation

is a linear model on the log scale for positive expenses:

log (MZEDi|Ii >0) = x;6, +n,. , (3.4b)

where

2
Nys v N(0,07) .

4A reasonable alternative is a logistic regression. For the
range of probabilities in the HIS data, the probit and logistic are
very similar. The probit has the advantage that we can examine
correlations, both cross-sectionally and intertemporally. These
issues are discussed under "Intrafamily Correlation," below.
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The expected medical expenditure for an individual with character-

istics X; is

E (MEDilxi) P, * E (MEDiIMEDi > 0,x,)

2
P;oexp (8, +07/2) , (3.4¢)

where

P, = Pr (MEDi > 0) = Pr (Ii > 0) = @(Xiél) .

The expected expense in Eq. (3.4c) can be estimated by substi-
tuting appropriate estimates of 61, 62, and 02. The estimate of the
expected expense provided by Eg. (3.4c) can be statistically incon~
sistent if the error term ”21 in Eq, (3.4b) is not normally distri-
buted.

This model should provide more accurate estimates than the one-
part model because it fits the distribution more closely. Compare
Figs. 3.4 and 3.5, which are normal plots for the residuals for
the two models for the first year of Dayton.

The likelihood function for this model is

2 n 2
L(81,8,,07) = _nl L, (8,8,,07) ,
1=

where Li is the likelihood function for the Zth observation. For
simplicity, assume that the observations have been sorted in such a
way that the first N observations have positive expenses, and the
last n - N observations have zero expenses.

For each of the first N observations, we can compute the likeli-

hood function as
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[
[

Pr (MEDi > 0|xi) * density (MEDilMEDi > O,xi)

vy, = X,6
1 i i72 .
= @(xiél) * s ¢( 5 ), i=1, ..., N,
N2 N2
where ¢ = standard normal p.d.f.,
y, = log (MEDi).

For each of the last n - N observations, the likelihood function is

Li = Pr (MEDi = lei) =1- Q(xiél) R i=N+1, ..., n.

Therefore the likelihood function is

2 N n
L(S,,8,,0° ) = I o(x,86.) - Il [1 - &(x.6.)]
1’72 i=1 il {=N+1 il l

N vy, - x.6
. [ I 01 ¢( 1 — 2)] ; (3.4d)
i=1 "n, Ny =

The important point about L in Eq. (3.4d) is that it factors

into two multiplicative terms. The first term,

N n
L.(6,) = T &(x,6.) » T [1-9a(x,8)], (3. 4e)
SR T T ot | 11

depends exclusively on parameters in Eq. (3.4a); the second term,

N vy, - x.6
Ly(8y,00 ) = 1 - o[ 212} (3.46)
n .

2 i=1 n,
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depends exclusively on parameters in Eq. (3.4b).5

Because of the separability, maximizing the likelihood function
(3.4d) is equivalent to maximizing the likelihood functions (3.4e)
and (3.4f) separately. Therefore, the maximum likelihood estimate
for the one-part model can be obtained by joining the maximum like-

lihood estimate for 61 in Eq. (3.%4a) and the maximum likelihood esti-

mate for 52 and 02 in Eq. (3.4b).
N2
Three alternative models--the Tobit, self-selection, and the

adjusted Tobit models--have been proposed in the econometric liter-
ature for related problems. Appendix A compares the two-part model
with these alternatives and explains our preference for the two-part

model specification.

FOUR-PART MODEL

The four-part model is an attempt to model the distribution of

medical expenses more closely than the one- and two-part models. As
our sample size increased after pooling several site-years of data,
a departure from log normality in the far-right tail (the very larg-
est expenditures) became evident. The logarithm of positive expenses
is too long-tailed (individuals in the right tail spend too much) to
be log normal, as indicated in Fig. 3.6. Because such nonnormality
occurs more in total medical expenses and far less in ambulatory
expenses (see Fig. 3.7), the problem is due to inpatient utilization
having both different probabilities and different conditional (log)
means and variances.

The four-part model separates the population into three groups:
nonspenders, ambulatory-only spenders, and spenders with inpatient

(INP) utilization., The four equations are

5The separability of the likelihood functions is a consequence
of the way conditional densities are calculated., It does nmot depend
on any independence assumption between Eqs. (3.4a) and (3.4b).
Actually, the error terms N and n,, in Egs. (3.4a) and (3.4b)

might very well be correlated; the correlation does not affect the
separability of the likelihood function in any way.
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Pr (MEDi >0) = @(xiyl) . (3.5a)
Pr (INP, > OIMEDi > 0) = elxv,) (3.5b)
log (MEDilMEDi >0, INP, = 0) = x,74 + v, , (3.5¢)

log (MEDillNPi > 0) Xy, toog . (3.54d)

As in the two-part model, the likelihood function for this
model is multiplicatively separable in the parameters because of
the way conditional densities are calculated.6 Therefore the maxi-
mum likelihood analysis of Eqs. (3.5a) through (3.5d) is to estimate
the four equations separately.

The distribution of log medical expenses in Eq. (3.5d) (the
subsample with positive inpatient expenses) is appreciably long-
tailed, as Fig. 3.8 indicates. To reduce the influence of extreme
values, we estimated this equation with Tukey's biweight method,
computed by the following iterated weighted least squares method,
(Mosteller and Tukey, 1977, Chapter.lé.) The OLS estimate is used as

starting value, For each iteration, the new weights are derived by

3]
]

- /e, frl <,

=0, |ril>c’

where T, is the standardized residual, standardized by a robust esti-

mate of scale (.6745 ‘ median abolute deviation). The parameter

6A plausible alternative model is to use two two-part models;
one for ambulatory care and one for inpatient care., Unfortunately,
the likelihood function for this model does not have the separability
property because of the correlation between ambulatory and inpatient
use, In particular, standard errors of the estimates of expected
expenses are difficult to calculate.
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¢ is taken to be 5.7
If the error terms v and w in Eqs. (3.5¢) and (3.5d) were both

normal, then the expected medical expense would be
P.[(1 - w,) exp (x.v, + 02/2) + 7, exp (x,v, + 02/2)]
i i’/ SFP Ei¥3 T i 174 7 Py ’

where Pi = Pr (MEDi >0) ,
Pr (INP, > O|MED, > 0) .
1 1

i
However, the normal assumptions are not satisfied. The distribution
of log (MED) for the sample with inpatient expenses [Eq. (3.5d)] is
appreciably long-tailed. The distribution of log (MED) for the sub-
sample with ambulatory expenses only [Eq. (3.5c)] is slightly short-
tailed, as indicated by Fig. 3.9. As a result of the nonnormality,
the normal correction [exp (62/2)] for the retransformation from the
logarithmic scale to the untransformed dollar scale would lead to
estimates for the mean expenditure that are statistically inconsist-
ent. In the next section we propose a statistically consistent

method to retransform the four-part model's estimates.

SMEARING ESTIMATE

In our discussion of the one-part, two-part, and four-part

models above, we have raised the retransformation issue, where in-
appropriate use of the normal assumption can yield statistically
inconsistent predictions of expected expenses, While the develop-
ment of the transformed models is motivated by approximating the
normal assumption as closely as possible, the error distributioms,
even in the four-part model, still exhibit deviations from the

normal assumption.

7We also explored the use of other values of ¢, which produced
very similar results,



-30-

s1e94-231Fs auru ‘yopow jied-inoy 3yj jo (9suadxo juapiedur

013z yjim sasuadxs aarirsod) uorienbs paFya syl woaj syenpysaz jo jord

slenpisa) pazipiepuerg

TBWION—-6"¢ "3Td

ey

L°e s°1 €0 6°0- 12~ €'e—. G-
+ - -—— + + + —e—— -
1
+
t
|
pO'L=0 ‘00 =1 (2) |
‘N2 'SY0 Z = g ‘sqo L = ¥ (L) +_
v |
t
vv |
vy v |
V9 +
ag vv I
39284V |
HA9H !
GYANY !
ANOO M
TIMYY }
2720 |
1174 |
1113 |
17212 4
112A |
12217 |
111717 . |
nrzz |
112 +
AZ22 |
122 |
177 |
1213 1
111 )
9127 |
122 !
117 ]
42 |
311 +
WSO )
9940 ]
891 |
g 23 ]
v 492 +
I
|
I
|
+

2100s [PWION



-31-

Without making the normal assumption, the general form of the

retransformation bias for a log linear model

log Y = xR + ¢ (3.6a)
is given by
E (D) = o) ,
$(x) = E [exp (e)]x] . (3.6b)

If the error distribution does not depend on the characteristics x,

the retransformation bias is a constant
¢ = E exp (g) . (3.6c)

If the error distribution is further assumed to be normal, the re-

transformation bias is given by
2
¢ =E exp (g) = exp (c7/2) , (3.64d)
where
02 = Var (e) .
In Appendix B, we develop and discuss a nonparametric estimate, the
smearing estimate, of the retransformation factor ¢. The smearing

estimate is the sample average of the exponentiated least squares

residuals:

exp (;i) . (3.6e)

< >

l
=
n~Mg

1
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where n = sample size ,

A A

log Yi - xiB s

m
]

w -
]

OLS estimate of B .

The smearing estimate is statistically consistent for the retrans-
formation problem if the error distribution does not depend on the
characteristics x. Moreover, when the normal assumption indeed
holds, the nonparametric smearing estimate has high efficiency
relative to the parametric normal retransformation (3.6d) for a
wide range of parameter values.

Unfortunately, the smearing estimate cannot be applied to the
one- and two-part models for these data. For both models, the
error distribution depends on the characteristics. In the one-part
model, the probability of having zero expense depends on most of
the observed characteristics. In the two-part model, the proba-
bility of having inpatient expense, and therefore large expense,
depends on plan, sex, and age. Thus, for both models and our
data, the retransformation bias ¢ will not be a constant, but will
instead depend on the covariates. The smearing estimate applied
to the entire sample is inappropriate in these cases. In principle,
we could apply the smearing estimate on subsamples in which the re-
transformation bias is constant., TFor example, we could apply the
smearing estimate to each plan, sex, and age group separately for
the two-part model. However, apart from being cumbersome, the
sample size in each cohort is so small that the resulting predic-
tions would be very noisy.

Although neither the smearing estimate nor the normal retrans-
formation [Eq. (3.6d)] is appropriate for the one- and two-part
models for these data, the empirical findings presented in Chap-
ter 4 for these models are based on the normal retransformation
(3.,6d). However, we also estimated the smearing retransformations
for these models, and compared the results with those based on the
normal retransformation. As Chapter 5 indicates, the normal re-

transformation results in better predictions than the smearing
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method for the one- and two-part models,

For the four-part model, the error distribution's only depend-
ence on the covariates is that the error term v in Eq. (3.5c), the
ambulatory-only expenses, is heteroscedastic by plan. Such hetero-
scedasticity is to be expected because in the zero coinsurance plan,
all participants face zero coinsurance; but in other plans, those
participants who exceeded the Maximum Dollar Expenditure face zero
coinsurance at the margin, whereas the other participants face the
nominal coinsurance rate. As a result, the residual variation
should be greatest in the family deductible plan (PFD). Table 3.1
shows the result of an analysis of variance on the residual varia-
tion by plan and site-year. As can be seen, the 50-percent (P50)
and family deductible (PFD) plans have larger variatioms than the
lower coinsurance plans.

Because of the dependence of the error distribution on plan,
the smearing estimate is applied to each plan separately in

Eq. (3.5¢).

INTRAFAMILY CORRELATION

The errors in our models exhibit a substantial amount of corre-

lation among family members., First, there is a positive correla-
tion among the decisions to receive care [Eqs. (3.4a), (3.5a), and
(3.5b)]. Second, there is a positive correlation among the expenses
incurred by nonzero spenders in the same family [Eqs. (3.3), (3.4b),
(3.5¢), and (3.5d)]. ]

Failure to account for these correlations yields inefficient
estimates of the coefficients and incorrect estimates of the standard
errors, In particular, if the positive correlation is not accounted
for, we would underestimate the standard errors for family level
(constant within family) variables, such as coinsurance and income
effects.

The intrafamily correlations among decisions to have positive
expenses are found to be positive and nearly constant across family

roles and sizes, The same is true for the intrafamily correlation
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Table 3.1

ANOVA OF RESIDUAL VARTATION ON PLAN AND SITE-YEAR®

Variableb Coefficient Standard Error
Intercept -.955 .062
P25 .080 .057
P50 .257 .056
PFD . 300 .054
IDP .219 . .057
DAY2 .107 .075
DAY3 .132 .067
SEA1 .020 .076
SEA2 154 077
FIT1 .139 .094
FIT2 ,238 .090
FRAL .121 .080
FRA2 ..094 .083

%The dependent variable is log [log (¢)] for a given plan and
site-year, where ¢ is the smearing estimate in Eq. (3.5c) for
each plan and site-year. In other words,

1
¢ = E-Z exp (vi) ,

where n = sample size for this plan and site-year, vy = least

squares residuals, and the summation extends over individuals in
this plan and site-year. The log log transformation is analogous

to using log (02/2) in the normal case, which produces a location-
shift specification:

o = 02x2/d.f., log 02 = log o + log XZ/d.f.
Other specifications lead to very similar results.

bThe free plan in Dayton Year 1 is the omitted group. The
site abbreviations DAY, SEA, FIT, and FRA stand for Dayton,
Seattle, Fitchburg, and Franklin,
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among positive expenses.8 Thus, the correlations approximate those
of a variance-—components model with a family specific error com—
ponent.9 For nonzero medical expenses in the two-part model, the

equation would be

log (tvtEDfilszfi > 0) = xp, B+ U+ e, (3.7a)
where Xgy = @ row vector of independent variables for person i in
family f,
B = a column vector of coefficients to be estimated,
Mg = unmeasured family (£f) effect,
€eq = unmeasured individual (i) effect.

Further, we assume that

e N(O,oi) i.i.d. across families,lO (3.7b)
e N N(O,cz) i.i.d., across persons, (3.7¢)
E (u(X) = E (eX) =E (ue) =0 . (3.7d)

The covariance matrix of the error vector u + € is

Cov (p + ¢) = 02(1 - p)In + czpD s

8The one major exception is that the father-child correlation is
smaller than the other correlations.

9See Balestra and Nerlove (1966), Maddala (1971), Searle (1971,
Chapters 9-11), and Mundlak (1978) for a discussion of this model in
a regression context.

OWe cannot estimate the equation with a fixed-effects model
because we would be unable to estimate the effects of insurance plan
and other family variables. TFor example, there would be no variation
in insurance plan variables because insurance coverage is constant
within families.
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where o = ci/(cﬁ + og) is the intrafamily correlation, 02 = oﬁ + oz,
and D is a block diagonal matrix with a block of 1's for each family,
with blocks im-ié_, where i is a column vector of 1's and mj is the

J 1]
size of the jth family.

The regression coefficients and standard errors for expenditure
Eqs. (3.3), (3.4b), (3.5c), and (3.5d) are estimated from this model
by maximum likelihood.ll For each presumed value of intrafamily
correlation, the regression coefficients are estimated by generalized
least squares. The optimal (maximum likelihood) value of intrafamily
correlation is then found by using the Newton-Raphson algorithm.

A similar estimation model was considered for probit Egs. (3.4a),
(3.5a), and (3.5b). However, with the unbalanced design (e.g., un-
equal family sizes), the computation for the multivariate probit
model is prohibitively expensive. Instead, we estimated those equa-
tions with univariate probit eqﬁations, treating individuals as if
they were stochastically independent; we then estimated an upper
bound for the standard error. Because the precision associated with
the decision to seek care contributes only a small fraction to the
overall variance of the prediction for total medical expenditure, we
lose little by bounding this standard error. Appendix C contains
further details.

In this discussion, we have only addressed the intrafamily
correlation within the same equation. There is also the possibility
of cross—equation correlation, e.g., between one person's decision
to seek care and another family member's decision about the level of
care. The models do not include the possibility of such a correla-
tion at this point because these "cross''-correlations are not sig-
nificantly different from zero in our data.

In the four-part model, we have pooled our observations from
different sites and years to estimate inpatient Eqs. (3.5c¢) and

(3.5d). The observations from the same person in different years

1lWe are indebted to Dan Relles at Rand, and his statistical
package STATLIB, for providing an inexpensive method for handling
our unbalanced (e.g., unequal family sizes) design.
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are correlated intertemporally. We have estimated an upper bound
for the standard errors similar to the adjustment for the intra-
family correlation, with the result that the bias in the standard

errors due to the intertemporal correlation is at most 10 percent.
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Chapter 4
EMPIRICAL FINDINGS

The size and precision of the estimates of the demand response
for medical services can be quite sensitive to the estimation model
used. Regression with untransformed expenses yields very imprecise
results. The use of the logarithmic transformation reduces the im—
precision caused by a few large expenditures, but the results vary
greatly among the transformed models. We will use the first 2 years
in the Dayton, Ohio site to explain the results of our analysis;
other sites and years exhibit the same pattern. Because our pri-
mary concern is the effect of insurance on demand, we will focus

on the differences among the experimental insurance plans.

INFERENCES

ANOVA with untransformed expenses as the dependent variable
yields highly imprecise results, even with sample sizes around
1000 for a single site-year., The "ANOVA" column in Tables 4.5
through 4.8 give the results for the first 2 years of Dayton.
The plan differences are mostly insignificant and show no mean-
ingful pattern.

ANOCOVA with untransformed expenses also yields highly
imprecise estimates, as can be seen in Table 4.1. Very few of
the covariates show a statistically significant effect. Many of
the coefficients are contrary to intuition (e.g., we would an-
ticipate lower utilization for plans with higher coinsurance
rates). Many (12 out of 26) of the coefficients have different
signs in the 2 years. Obviously, if we were restricted to the use
of ANOCOVA on untransformed expenditures, we would need a much
larger sample size to detect any meaningful differences among the
insurance plans.

Compared with the untransformed ANOVA and ANOCOVA models, all

the transformed models show more significant plan effects that follow
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Table 4,1

" REGRESSION RESULT FOR UNTRANSFORMED EXPENSES?

Dayton Year 1 Dayton Year 2

Variableb Coefficient Standard Error Coefficient Standard Error

Bo 1298 895 ~445 621
P25 28 125 -41 86
P50 117 140 ~195 95
. PFD =137 125 -79 85
IDP 24 174 -185 119
EXAM 109 89 -12 62
WEEKLY 100 89 -46 61
YR3 =137 89 46 61
LINC =115 89 48 59
LFAM =15 101 108 66
BLACK 22 160 78 109
AFDC =562 284 ' -109 190
NOMD =40 224 =230 164
NOMDVIS 115 151 63 104
INMDVIS =298 162 -269 o111
HLTHG 193 100 63 69
HLTHFP 508 206 44 143
PAINL 116 101 -23 70
PAINSG 212 206 76 144
WORRL =97 132 231 91
WORRSG =48 135 133 94
CHILD =33 142 -357 97
FEMALE =275 620 -487 455
FCHILD 183 219 300 164
NEWMEM 242 505 -139 270
MAGE 8 272 337 208
FAGE 192 300 523 247

NOTE: Sample size for Dayton Year 1 is 1110 and for Dayton Year 2
is 1103.

3Estimated by ordinary least squares.

bSee Table 2.2 for definitions.



—40-~

the expected inverse relationships1 to coinsurance; they also show
greater consistency between Year 1 and Year 2. Moreover, all the
transformed models yield similar inferences about other covariate
effects. The use of the logarithmic transformation reduces the
sensitivity of the results to a few large expenditures both in the
ANOVA and the ANOCOVA model for untransformed expenditures.

The estimated regression coefficients for Dayton Years 1 and 2,
using the one-part model, are shown in Table 4.2. Most of the
important covariates for this model have a significant and meaning-
ful effect on log expenditures. The signs of the estimated coeffi-
cients for the covariates are more stable than for ANOCOVA; only
six have different signs in the 2 years. The insurance plans
exhibit a roughly monotonic pattern., The coefficients for the two-
part and four-part models are qualitatively similar to those for
the one-part model, as Tables 4.3 and 4.4 indicate.2 Thus, if we
were interested only in qualitative inference, we could accept the

results for the one-part model as a satisfactory analysis.

PREDICTIONS

In addition to making inferences about behavior, we have en-
deavored to predict the cost of alternative health insurance pack-
ages. The predictions for medical expenditures based on each of
these models are given in Tables 4,5 and 4.6 for Dayton 1 and 2.3
For each plan, the first column gives the ANOVA prediction, namely,

the simple mean, followed by predictions based on ANOCOVA, one-,

two-, and four-part models. The prediction standard errors4 are

1We expect that as coinsurance increases, expenditure will
decrease.

2Equation (3.4a) in the four-part model is identical with the
probit equation in the two-part model; therefore, it is not repeated.

3Results for other sites and years are given in Appendix D.

4The standard errors for the ANOVA model are plan-specific. 1In
other words, we have a heteroscedastic ANOVA model, These standard
errors are not adjusted for intrafamily correlations. The standard
errors for the transformed models are computed by the delta method:
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Table 4.2

REGRESSION RESULT FOR THE ONE-PART MODEL?

Dayton Year 1 Dayton Year 2

Variableb Coefficient Standard Error Coefficient Standard Error

80 0.266 1.036 -.262 1.090
P25 -.411 .167 -.455 .170
P50 -.734 .183 -1,002 .186
PFD -.826 .166 -.711 .169
IDP -.487 .225 -,821 .230
EXAM .077 .116 -.065 .119
WEEKLY .156 117 -.054 .120
YR3 -.075 117 .037 .120
LINC L417 .108 464 .109
LFAM -.219 .120 ~-.187 .120
BLACK -.375 .208 -.053 .211
AFDC ~.881 .356 -.804 .365
NOMD -.439 .297 -.843 .322
NOMDVIS .008 .143 -.183 .161
INMDVIS -.893 .156 -.812 .175
HLTHG .175 .110 .266 .119
HLTHFP .473 .210 .060 .232
PAINL .110 .107 -.133 117
PAINSG .291 .203 .023 .231
WORRL -.030 136 . 224 .150
WORRSG .230 .134 .365 .150
CHILD -.133 127 -.283 .143
FEMALE -.075 .569 -.700 .693
FCHILD -.278 .200 .085 .248
NEWMEM .981 467 .277 .413
MAGE .691 .254 .913 .318
FAGE .942 .277 1.421 .379

®Estimated with a random—effects variance-components model.

bSee Table 2,2 for definitions.
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Table 4.3a

REGRESSION RESULT FOR THE TWO-PART MODEL: ©PROBIT EQUATION

Dayton Year 1 Dayton Year 2

Variable? Coefficient Standard Errorb Coefficient Standard Errorb

Bo -2,387 .987 -3.647 .998
P25 -.646 .164 -.410 .153
P50 -.749 177 -.740 .162
PFD -.816 .159 -.648 . 146
IDP -.582 .213 -.789 .195
EXAM .099 .105 -.058 .100
WEEKLY 142 .105 .036 .100
YR3 -.112 .104 -.021 .100
LINC .436 .099 474 .0%94
LFAM -.212 .121 -.327 111
BLACK -.534 .169 -.309 .169
AFDC -.711 277 -.608 .278
NOMD -.582 .211 -.666 .229
NOMDVIS -.155 .151 -.332 147
INMDVIS -.809 .186 -.790 .176
HLTHG -,088 115 -.027 112
HLTHFP . 227 .259 -.358 .233
PAINL .097 .118 -.160 113
PAINSG -.091 .252 . 045 .253
WORRL .053 .157 ' .039 .149
WORRSG -.059 .163 .111 .162
CHILD .196 <157 .192 .151
FEMALE .943 713 467 .751
FCHILD -.593 .252 -.159 .270
NEWMEM .336 «570 -.143 <453
MAGE .351 .340 1.137 .388
FAGE 117 .337 .856 L4111

25ee Table 2.2 for definitions.

bThese are the estimates of the standard error based on the uni-
variate probit model. They need to be adjusted for intrafamily
correlation. For experimental variables (P25, P50, PFD, IDP, EXAM,
WEEKLY, and YR3) and the intercept, the appropriate adjustment is
to multiply the estimated standard errors by 1.36. See Appendix C
for more detail.
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Table 4.3b

REGRESSION RESULT FOR THE TWO-PART MODEL: EXPENDITURE EQUATIONa

Dayton Year 1 Dayton Year 2

Variableb Coefficient Standard Error Coefficient Standard Error

Bo 2.305 944 3.086 1.037
P25 -.197 142 -.289 143
P50 -.430 .156 -.648 .160
PFD -.582 142 -.380 .143
IDP -.341 .195 -.472 .205
EXAM .047 .101 .009 .105
WEEKLY .086 .102 -.135 .104
YR3 -.033 .101 .096 .103
LINC .216 .097 .150 .102
LFAM -.148 .107 -.044 .109
BLACK -.099 .191 .160 .191
AFDC .135 .422 ~-.044 . 440
NOMD .288 .307 -.355 . 349
NOMDVIS .062 .154 .109 .179
INMDVIS -.555 .156 -.460 .175
HLTHG .191 .104 .285 112
HLTHFP .391 .202 .299 .226
PAINL .052 .102 -.021 112
PAINSG .533 .198 .095 .220
WORRL -.021 130 .271 .145
WORRSG .287 .131 .335 144
CHILD -.353 .130 -.582 .148
FEMALE -.505 .581 -1.312 .695
FCHILD ~-.033 .202 .359 .249
NEWMEM .612 . 487 .076 L417
MAGE .600 .249 .535 .308
FAGE .950 .286 1.308 .377

®Estimated with a random—effects variance-components model.

See Table 2.2 for definitionms.
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Table 4.4a

RESULTS FOR FOUR-PART MODEL EQ. (3.5b): PROBABILITY
OF POSITIVE INPATIENT EXPENSES GIVEN
POSITIVE MEDICAL EXPENSES

Variable? Coefficient Standard Errorb
Bo -1,175 .049
AP25 -.116 : .067
AP50 o -.235 .096
APFD -.117 .069
AIDP -.079 .068
FAD® .218 .049
CHILD -.334 . .061

NOTE: The data used to estimate the model were
pooled from 9 site-years. The estimates for single
site-years were very imprecise.

8\s noted in Chapter 2, the data exhibit a dif-
ferential response to plan for adults, but not for
children. Other covariates were deleted because
the data did not exhibit a linear response in the
main-effects-only specification., The data were
too thin to estimate the necessary interactions.

bT‘ne intrafamily correlation for Eq. (3.5b) is
negligible. However, the measurements are subject
to intertemporal correlation: the same individual
is observed repeatedly in different years. Using
the methods described in Appendix C, the adjust-
ment for such correlation will increase the
standard error by less than 10 percent.

CpAD = Female adult.
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Table 4.4b

RESULTS FOR FOUR-PART MbDEL EQ. (3.5¢): LOG MEDICAL EXPENSES
FOR POSITIVE-MEDICAL, NO-INPATIENT-EXPENSES SAMPLE3

Dayton Year 1 Dayton Year 2

Variable Coefficient Standard Error Coefficient Standard Error

Bo 2,179 .796 2.609 .885
P25 -.282 121 -.220 .122
P50 -.426 .131 -.564 .135
PFD -.541 .119 -.406 .123
IDP -.492 .165 -.333 171
EXAM .028 .085 -.005 .089
WEEKLY .104 .085 -.102 .088
YR3 .032 .085 .068 .087
LINC .200 .082 .220 .087
LFAM -.126 .091 -.249 .092
BLACK -,220 .163 -.018 .168
AFDC .122 371 -.171 .385
NOMD -.026 «265 -.086 .283
NOMDVIS .004 ,130 .063 .149
INMDVIS ~. 474 .130 -.394 .148
HLTHG .090 .086 .212 .095
HLTHFP .097 .180 .286 .192
PAINL 073 .086 .095 .095
PAINSG .506 177 .287 .183
WORRL .064 .108 .050 .123
WORRSG .190 .113 .149 .123
CHILD -.435 .110 -.278 122
FEMALE .038 .505 -.981 578
FCHILD .063 .172 .066 . 206
NEWMEM .202 .433 .291 . 345
MAGE .673 .209 .291 .253
FAGE .638 .245 .951 .313

a . , .
Estimated with a random-effects variance-components model.
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Table 4.4c

RESULTS FOR FOUR-PART MODEL EQ. (3.5d):
LOG MEDICAL EXPENSES FOR POSITIVE-
INPATIENT-EXPENSE SAMPLE

Variablea Coefficient Standard Errorb
Bo 7.444 .081
pAY2€ .223 .097
DAY 3 .209 ‘ .097
SEAl -.075 .092
SEA2 .157 097
FIT1 -.024 . 106
FIT2 .295 .106
FRAL .007 .105
FRA2 .138 . 109
FADC -.014 .058

CHILD -.545 .069

NOTE: The model was estimated with a biweight
robust regression using all 9 site-years of data.
The site-years were pooled because the estimates
for single site-years were very imprecise.

8The plan variables were deleted from this
specification because they had statistically
insignificant coefficients F(4,735) = 2.03, and
exhibited an erratic pattern. Other covariates
were deleted because the data did not exhibit a
linear response in the main-effects-only speci-
fication. The data were too thin to estimate
the necessary interactions.

bThe standard errors are not corrected for
either intrafamily or intertemporal correlation.

Cpay2 = Dayton Year 2, etc.
FAD = Female adult,
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Table 4.5

DAYTON YEAR 1: AVERAGE PREDICTION AND STANDARD ERROR

One-Part Two-Part Four-Part

Plan ANOVA ANOCOVA Model Model Model
Free 312,97 314,50 478,30 371.99 414,00
(35.22) (86.04) (62.14) (40.07) (32.47)

P25 340,49 342,37 315.52 280.10 311.21
(67.02) (90,90) (42.78) (32.81) (28.58)

P50 445,12 431,55 226.99 217.20 265.33
(236.05) (109.30) (35.25) (29.67) (30.14)

PFD 179.92 177.65 206.52 183.84 285.73
(27.24) (89.25) (28.01) (22,01) (27.22)

IDP 316.22 338.12 291.94 245,46 314.40
(69,.51) (149.25) (59.21) (43.90) (36.97)

Table 4.6

DAYTON YEAR 2: AVERAGE PREDICTION AND STANDARD ERROR

One-Part ‘ Two-Part Four-Part
Plan ANOVA ANOCOVA Model Model Model
Free 416.96 417,90 584,10 442,78 471.85
(61.91) (58.07) (78.05) (48.43) (38.74)
P25 383.87 376.64 368.69 309.88 - 371.31
(74.82) (62.93) (52.34) (37.56) (35.08)
P50 218,67 222.44 211.35 199,69 285.52
(42,36) (74.81) (34.14) (28.99) (35.21)
PFD 338,18 339,12 284,30 267.57 345.21
(66.85) (61.28) (40.11) (33.30) (33.77)
1pP 227,02 233,32 254,12 234,74 332.56

(62.89) (103,02) (53.72) (46.52) (41.41)
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given in parentheses. Following the predictions, the plan relatives,
i.e., the mean predicted expenditure expressed as percentages of free
plan mean predicted expenditures, are given as Tables 4.7 and 4.8 for
Dayton 1 and 2. The absolute t-values given in parentheses are based
on differences from the free plan as measured on the dollar scale,
not in proportional terms.5

Plan predictions in the various models can depend on the distri-
bution of noninsurance variables, as well as on plan response, because
the plans are not perfectly balanced. For a meaningful comparison
among the plans, we should correct for any possible differences among
the noninsurance characteristics of each plan's enrollees.6 There-
fore, we estimated predicted values for all the participants in the
specific site-year, assuming that all of them were assigned to the
plan being predicted, and then averaged them.7 (ANOVA can be done

only on actual enrollees.)

Var (predictiom) = Var f(Bl, 82, ves)

'
af - of
— Cov ( B ) —_—
361 1 (881
' f
of . - 3
+ BE;- Cov (82) 56;— + tee

In the multipart models, the separability of the likelihood function
discussed in Chapter 3 implies that the estimated coefficients in
different equations are asymptotically uncorrelated.

5It should be noted that the predictions on different plans are
correlated. The standard error for plan differences cannot be com-
puted as if the predictions were independent, because the different
predictions are based on other shared covariates as well as plan.
The correlation has been accounted for in Tables 4.7 and 4.8, and in
Appendix E, which has the results for other site-years.

6Although the experiment was designed to be reasonably balanced,
perfect balance is unachievable,

7 e -

The average predictions for actual enrollees are very similar
to the predictions for all participants, confirming that the plan
assignments were nearly balanced.
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Table 4.7

PLAN RELATIVES FOR DAYTON YEAR 1: EXPENDITURES
EXPRESSED AS A PERCENTAGE OF THE FREE PLAN?

One-Part Two-Part Four-Part
Plan ANOVA ANOCOVA Model Model Model
Free 100 100 100 100 100
) =) (=) 1G] C))
P25 109 109 66 75 75
(0.36) (0.22) (2.37) (1.93) (3.36)
P50 142 137 47 58 64
(0.55) (0.84) (3.77) (3.34) (4.32)
PFD 57 56 43 49 69
(2,99) (1.09) (4.30) (4.46) (4.30)
1DP 101 108 . 61 66 76
(0.04) (0.14) (2.30) (2.24) (2.63)

a . . .

Absolute t-values given in parentheses are based on the difference
between that plan and the free plan as measured on the dollar scale,
not in proportions.

MODEL COMPARISONS

The predictions by plan vary greatly according to the model used.
The simple ANOVA and ANOCOVA on untransformed expenditures yield very
noisy results that do not have the monotonic response to insurance
that one would expect. The one-part model produces monotonic and
more precise results. It also exhibits a more pronounced response
to insurance plan than do any of the other approaches. The two-part
model yields smaller estimates of plan differences than the one-part
model. However, the plan relatives of the two-part model are lower
for the pay plans than one would expect from the unbiased ANOVA and
ANOCOVA on untransformed expenditures. Among a total of 34 site-
year-plan specific predicted plan relatives in Tables 4.7 and 4.8
and in Appendix E, the one-part model "underestimates' 28 of them
and the two-part model "underestimates'" 21, both compared with the

unbiased ANOVA results.
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Table 4.8

PLAN RELATIVES FOR DAYTON YEAR 2: EXPENDITURES
EXPRESSED AS A PERCENTAGE OF THE FREE PLAN?

One-Part Two—-Part Four-Part
Plan ANOVA ANOCOVA Model Model Model
Free 100 100 100 100 100
) ) =) =) -
P25 92 90 63 70 79
(0.34) (0.48) (2.57) (2.40) (2.77)
P50 52 53 36 45 61
(2.64) (2.04) (4.71) (4.65) (4.59)
PFD 81 81 49 60 73
(0.86) (0.93) (3.78) (3.30) (3.50)
IDP 54 56 : 44 53 70
(2,15) (1.55) (3.74) (3.28) (3.20)

a . . ,

Absolute t-values given in parentheses are based on the differ-
ence between that plan and the free plan as measured on a dollar
scale, not in proportions.

The four-part model adjusts explicitly for the nonnormality in
the right tail and the heteroscedasticity in log positive ambulatory
expenses. This model also corrects for the fact that the inpatient
utilization (both probability and level) is less responsive to insur-
ance plan than is the ambulatory utilization. (Without separating
the differential responsiveness in the inpatient and ambulatory
utilization, the one~ and two-part models actually concentrate on
the median expenses, which are largely determined by ambulatory
utilization. Therefore, the plan relatives predicted from these
models are really plan relatives for the more responsive ambulatory
utilization.) As a result, its predicted plan relatives are smaller
in magnitude than those for the one- and two-part models. Among the
34 plan relatives, the four-part model "underestimates' 14 of the

plan relatives compared with the ANOVA results,
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Chapter 5
SPLIT-SAMPLE ANALYSIS

With several plausible models as candidates, we must choose the
most appropriate model., The task is especially important because the
various models produce very different predictions. The development
of the transformed models described in Chapter 3 was mainly based on
consistency considerations. For very large sample sizes, when the
asymptotic bias dominates other components of error, the four-part
model will be better than the other transformed models because it is
free from the inconsistency in the one- and two-part models. How-
ever, for a fixed finite sample size, a model that admits a small
amount of bias to achieve higher precision (smaller variance) can
outperform a model free from bias at the expense of lower precisiom.
The models should therefore be evaluated based on a compromise be-
tween bias and precision.

By using more complicated models to fit the HIS data, we run a
substantial risk of overfitting the data: these additional compli-
cations in the models may be simply fitting noise in the data. To
ensure that the criteria can detect overfitting, we use a split-
sample technique, i.e., we estimate the parameters of the model on
one-half of the sample and then make forecasts to the other half,

The models are evaluated in terms of mean squared forecast error and
mean forecast bias on the forecast sample. A model can perform poorly
on the forecast sample if it is imprecise, or incemnsistent (e}g., due
to overfitting the estimation sample).

The more complicated models perform significantly better than
the simpler ones in terms of mean squared forecast error and some-
what better in terms of mean forecast bias. Given our present sample
size, we cannot reject the hypothesis that the two- and four-part
models are equally good. When the models are compared for overfitting,
the four-part model behaves better than the other models, and the un-

transformed models behave worse than the transformed models.
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At the end of this chapter, we compare empirically the retrans-
formation methods. The data support the choice of the normal re-
transformation for the one- and two-part models, and smearing for
the four-part model. The choice between homoscedastic and hetero-

scedastic retransformations is inconclusive.

METHODOLOGY

In choosing between the models, we cannot rely on conventional
likelihood ratio tests because our models are not nested in the usual
sense. Instead, we have adopted a split-sample approach to evaluate
them. The method can be viewed as an application of the classical
cross-validation technique, such as McCarthy (1976). Each site-year
of data is randomly split into two subsamples--an estimation sub-
sample and a forecast subsample.l From the estimation subsample, we
derive estimates of the parameters (regression coefficients, vari-
ances, and smearing coefficients) for each of the models., We then
forecast the expenditures for each person in the forecast subsample,
using the models fitted on the estimation subsample. The forecasts
are then compared with the actual medical expenditures observed,

One advantage of this approach is that it guards against over-
fitting the data, Some models are more complex than others. The
additional features of the more complicated models might be merely
fitting noise in the data used for estimation. If overfitting
occurs, the forecasts to a new data set will perform poorly.

The specific criteria that we use to evaluate the forecasts are
based on the mean forecast bias (MFB) and the mean squared forecast

error (MSFE)

MFB = (MEDi - MEDi) s (5.1)

g |~
W~ s

1

i

lIn fact we have done this twice, producing two independent ran-
dom splits, labeled A and B in Tables 5.1, 5.3, and 5.4. With the
second split, we can check our results from the first to reduce the
chance that they were due to the luck-of-the-draw.
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MSFE =

8=
nemg

A 2
(MEDi - MEDi) . (5.2)
1

i
where the summation extends over the m individuals in the forecast
sample, MﬁDi is the forecast for the 7th individual, and MEDi is his
actual expense. Table 5.1 gives the forecast sample values for each
model. As their names imply, the MFB is a measure of the incon-
sistency in the forecasts, whereas the MSFE is a measure of the in-

accuracy in the forecast. The two measures can be reexpressed as

1 m A 1 m
MFB == I |[MED, - E (MED,)] - = ® ([MED, - E (MED.)],
m . 1 i m . 1 1
i=1 i=1
(5.3a)
1 - ' 2 1 ¢ 2
MSFE == I |[MED., - E (MED,)]” += I |[MED, - E (MED.)]
m . 1 1 m . 1 1
i=1 i=1
2 T -
- = iil [MEDi - E (MEDi)] . [MEDi - E (MEDi)] . (5.3b)

As Eqs. (5.3a) and (5.3b) indicate, each measure can be expressed as
a sum of deficiency in the fitted model (the first term on the right-
hand side), and of measurement error (the second term on the right-
hand side). 1In the case of MSFE, there is an additional term, which
is the cross~product of the deficiency in the fitted model and meas-
urement error. Given the estimation sample, the conditional expecta-

tions of the two measures are

E (MFB)

g |
™

L [MEDi - E (MEDi)] , (5.4a)

[MED, - E (MED,)]% +
1 i m ,
1 i=1

gim

E (MSFE)

Var (MEDi) .

M8
| I

(5.4b)
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Table 5.1

FORECAST SAMPLE VALUES: MEAN FORECAST BIAS
AND MEAN SQUARED FORECAST ERROR
FOR TWO SPLIT-SAMPLES?

(In dollars)

MFB VMSFE Modified

Model A B A ‘ B VMSFEb
Four-part  =14,40 (-6.67) 1524.68 (1455.36)  1385.79
Two-part -52,19  (~45.22) 1520.59 (1453.11)  1386.71
One-part +12.27  (18.40) 1515.37 (1455.63)  1400.69
ANOCOVA -27.36  (=16.17) 1539.24 (1485.10) 1401.20
ANOVA -33.15  (~6.42) = 1543.10 (1475.45)  1398.21

%The two sets of results are based on two independently drawn
replicate split-samples from the same population.

bThe modified MSFE is computed after deleting two individuals in
the first (A) forecast sample who had large expenditures and hence
have a very large influence on MSFE.

Thus, the MFB is an unbiased estimate of the deficiency (bias) in the
fitted model, However, the MSFE is a biased estimate of the deficiency
(MSE) in the fitted model because of measurement error variance-—the
second term on the right-hand side.

The actual measures that we use to compare the models are the
differences in the MFB and the MSFE., For two competing models--say,

Models 1 and 2--the conditional expectations of the differences are

E [MFB(1) - MFB(2)] =

=R
W~

[MEDi(l) - E (MEDi)]

i=1

[MEDi(Z) - E (MEDi)] , (5.5a)

'
=R
R
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=1

E [MSFE(1) - MSFE(2)] =

z [MﬁDi(l) - E (MEDi)]2
1=

1

]
=R

L [Mﬁnim _E (MEDi)]Z i
i

1
(5.5b)

In contrast tco the measures for each model separately, both the MFB
difference and the MSFE difference are unbiased estimates of the
corresponding differences in the deficiency in the fitted models,
Taking the differences removes the measurement error variance term
from the MSFE.

Conditioned on the estimation sample, the MFB difference is a
constant, whereas the MSFE difference is a random variable. A normal
score test for the difference éan be developed for the MSFE differ-
ence, conditioned on the estimation sample. However, we rejected
the normal score test approach because it is extremely unstable. The
inclusion or exclusion of a few extreme values, such as catastrophic
expenses, can alter the variance of MSFE(l) - MSFE(2) by as much as
an order of magnitude.2 A comparisoh of MSFE for sample A and the
modified MSFE in Table 5.1 also shows how sensitive the MSFE measures
are.

Rather than a normal score test, we have decided to use a sub-
population sign test to detect comsistent patterns in MSFE.3 If one
model forecasts expenditures appreciably better than another, we

expect the pattern to hold consistently across the subpopulations.

2The conditional variance of the MSFE difference is
m ~ A 2
Var [MSFE(1) - MSFE(2)] = [MEDi(l) - MEDi(Z)] + Var (MEDi) R

Bwrb

i=1

3The subpopulation sign tests for MFB are also presented in the
tables. However, such a test does not have the same distributional
properties. Conditioned on the estimation sample, MFB is constant.
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Therefore, the subpopulation sign test counts the number of subpopu-
lations for which one model performs better than the other in terms
of MSFE. Conditioned on the estimation sample (and therefore con-
ditioned on the fitted models), the count follows a binomial distri-
bution, with probability 0.5 and sample size equal to the number of
subpopulations under the null hypothesis of no difference between
the two fitted models. (Conditioned on the estimation sample, the
counts in distinct subpopulations are stochastically independent.)
Significantly high or low counts indicate the existence of a con-
sistent pattern, which we take as evidence that one model is sig-
nificantly better or worse than the other.4

For this analysis, the data can be naturally grouped into 43
subpopulations, one for each site, year, and plan combination,
Table 5.2 contains the P-values for the null hypothesis with proba~

bility 0.5 and sample size 43.

RESULTS: MODEL COMPARISON

The more complicated models perform significantly better than

the simpler ones in terms of MSFE. As Table 5.3 indicates, the
models are significantly ordered as follows: the four-part model
and the two-part model are better than the one-part model and ANOVA,
which are better than ANOCOVA. The difference between the four-part
model and the two-part model, as well as the difference between the
one-part model and ANOVA, is insignificant.
The results for the MFB follow a similar pattern as for MSFE,
but on the whole they are less "significant,"5 as Table 5.4 indicates.
Based on this analysis, we cannot reject the null hypothesis
that the two- and four-part models are equally good. On the one

hand, the incomsistency in the two-part model is not large enough to

4The subpopulation sign test tests the null hypothesis median
[MSFE(1) ~ MSFE(2)] = 0, instead of the hypothesis E [MSFE(1) -
MSFE(2)] = 0. However, under the stronger null hypothesis that
MSFE(1) and MSFE(2) follow the same distribution, the difference is
symmetrically distributed, and the median coincides with the expecta-
tion.

5The binomial distribution does not anply for MFB.
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Table 5.2

BINOMIAL TABLE?
(n = 43, p = 0.5)

k Prob (count > k)
22 . 500
23 .380
24 271
25 .180
26 <111
27 .063
28 .033
29 .016
30 .007
31 .003
32 .001

8rable of Binomial Distribution, Na-
tional Bureau of Standards Applied
Mathematics Series 6, 1950, (Reprinted
with correction 1952,)

make the model significantly worse than the four-part model in terms
of our criteria. On the other hand, there is not significant evi-
dence that the more complex four—-part model overfits the estimation
subsample,

However, the split-sample evaluation in terms of MSFE is in-
herently more favorable to the two-part model than to the four-part
model, The size of the estimation subsample is only half that of
the actual sample, Therefore the comparison is based on the com-
promise between bias and precision for the half-sample size instead
of the total sample size. With a larger sample size, such as the
total sample size, the bias will be more important than it is in the
smaller half-sample size, to the disadvantage of the two-part model

relative to the four-part model.

RESULTS: OVERFITTING

One of the main reasons for conducting this split-sample anal-

ysis was to determine whether certain models overfitted the data.
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Table 5.3

SUBPOPULATION SIGN TESTS FOR MEAN SQUARED FORECAST ERROR
ON TWO FORECAST SAMPLES2

Number Where Model 1
Has Lower MSFED

Than Model 2
Model 1 Model 2 A€ Bd
Two-part 21 24
* *
One-part 28 29
- * *
Four-part ANOCOVA 32 35
* *
ANOVA 31 31
*
One-part 31 27
* *
Two-part ANOCOVA 31 37
*
ANOVA 25 28
* *
ANOCOVA 28 29
One-part ANOVA 23 23
*
ANOCOVA ANOVA 16 15

30ut of a possible total of 43 site-year plans. The two counts
are based on two independently drawn replicate split-samples from
the same population.

bThe subpopulation sign test is not necessarily transitive.
CBased on the first randomly drawn split-sample "A."
dBased on the second randomly drawn split-sample "B."

*
Significant at the 0,05 level (one-sided).
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Table 5.4

SUBPOPULATION SICN TESTS FOR MEAN FORECAST BIAS
ON TWO FORECAST SAMPLES@

Number Where Model 1
Has Lower MFBD
Than Model 2

Model 1 Model 2 A® pd
Two-part 21 26
*

One-part 28 27

Four-part *
ANOCOVA 25 29

ANOVA 25 25

One-part 23 17
*

Two-part ANOCOVA 26 30
: *

ANOVA 22 29
*

ANOCOVA 21 28

One-part ANOVA 18 23
* *

ANOCOVA ANOVA 15 15

%0ut of a possible total of 43 site-year plans. The two counts
are based on two independently drawn replicate split-samples from
the same population.

bThe subpopulation sign test is not necessarily transitive.
“Based on the first randomly drawn split—sample "A."
dBased on the second randomly drawn split-sample "B."

*
Significant at 0.05 level (one-sided) under the binomial distri-
bution. (Does not actually apply to MFB.)
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One way to detect overfitting is to see whether a model fits the
estimation subsample appreciably better than the forecast subsample.
A model wins in Table 5.5 if it performs better than another model
on the estimation sample. Holding as fixed the comparison of the
two models on the forecast sample (Table 5.3), if one model performs
appreciably better than another on the estimation sample than on the
forecast sample, then this model overfits the estimation sample more
than the other.

A comparison of the subpopulation sign tests in Tables 5.3 and
5.5 indicates that the ANOVA and four-part models exhibit less over-
fitting than the others. ANOCOVA exhibits the most overfitting. On
the estimation sample, ANOCOVA is appreciably better than ANOVA and
the one-part model, and somewhat better than the four-part model.

In contrast, on the forecast sample, ANOCOVA is significantly worse
than all the other models. The one-part ﬁodel exhibits possible
overfitting when compared with the four-part model. The two-part
model also overfits the estimation sample when compared with ANOVA
and the four-part model.

Our original concern that the four-part model would overfit the
data more than the less-complicated models appears to be unfounded.
It appears that it is the form of the model rather than the 7number
of parameters that is crucial. The model that more accurately de-
scribes the distribution of medical expenses (the four-part model)
exhibits the least overfitting. The model that ignores the distri-
bution of medical expenses (the ANOCOVA model) exhibits the most

overfitting,

RETRANSFORMATION METHODS

As a part of the model comparison, we must also validate the

choice of the retransformation method. The discussion in Chapter 3

and the preceding discussion in this chapter assume that each of the

6 , . e .

ANOVA is also relatively free of overfitting, However, this
accomplishment comes at the cost of all the information on use by
age, sex, race, income, and other covariates.
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Table 5.5

SUBPOPULATION SIGN TESTS FOR MEAN SQUARED FORECAST ERROR

ON ES

TIMATION SAMPLE?2

Number Where Model 1
Has Lower MSFEDP
Than Model 2

Model 1 Model 2 AS pd
* *

Two-part 10 12

One-part 20 23

Four-part ANOCOVA 18 21
* *

ANOVA 29 31
*

One-part 27 30

Two-part ANOCOVA 22 26
* *

ANOVA 35 31

*

ANOCOVA 15 19

One-part ANOVA 22 24
ANOCOVA ANOVA 27 25

%0ut of a possible total of 43 site-year plans. The two counts
are based on two independently drawn replicate split-samples from

the same population.

b : . . . s ps
The subpopulation sign test is not necessarily transitive.

®Based on the first randomly drawn split-sample "A."

dBased on the second randomly drawn split-sample "B."

*
Significant at the 0.05 level (one-sided) under the binomial

distribution.

(Does not actually apply to the estimation sample.)
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transformed models will have a specific retransformation method--
normal homoscedastic for the one-part and two-part models, and
homoscedastic smearing for the inpatient and heteroscedastic7
smearing for the ambulatory-only expenses for the four-part model.
In this section, we provide an empirical evaluation of alternative
retransformation methods for the one-part, two-part, and four-part
models, using the same estimation and forecast subsamples as those
used in the previous sections. We report the results for the first
(A) replicate; the second (B) replicate yields qualitatively similar
results,

We consider four altermative retransformation methods:

1. Normal with homoscedastic error within a site-year (NHOM).

2. Normal with heteroscedastic error by plan within a site-
year (NHET).

3. Smearing with homoscedastic error within a site-year (SHOM).

4, Smearing with heteroscedastic error by plan within a site-

year (SHET).

In the four-part model, the retransformation for the positive in-
patient subsample is always a smearing estimate that is homoscedastic
across site-year plans;8 the four alternative methods apply just to
the ambulatory-only expenses, As an illustration, Table 5.6 gives
these coefficients for the ambulatory-only equation (3.5c) in the

four-part model,

7We are using the terms "homoscedastic" and "heteroscedastic" in
the strong sense when referring to the smearing estimator. The error
distributions are treated as heteroscedastic if they are not the same
in any sense, which can be either a difference in scale or in shape.
In particular, they are heteroscedastic if the retransformation

biases E e€ are different., Even when the error distributions are
homoscedastic in the weaker sense (Var e = constant), they can still

be heteroscedastic in the strong sense if they have different shapes.

8 . . . . . , , . .

The inpatient error distribution in the inpatient expenses is
clearly not normal (see Fig. 3.8); the positive inpatient sample is
too small to allow precise estimation of heteroscedasticity.
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Table 5.6

LOG NORMAL AND SMEARING RETRANSFORMATION
FOR EQ. (3.5c) IN THE FOUR-PART MODELa

m

Site-Year Plan NHOM XRLTC sHox© SHET
Davton 1 Free 1.76 1.:53 1.60 1.43
Davton 1 PZ5 1.76 1.62 1.60 1.47
Davton 1 P50 1.76 1.74 1.60 1.52
Davton 1 FD 1.76 2,15 1.60 1.84
Davton 1 ID 1.76 2.16 1.60 2.04
Davton 2 Free 1.82 1.66 1.62 1.49
Davton 2 P25 1.82 1.65 1.62 1.52
Davton 2 P50 1.82 1.98 1.62 1.77
Dayton 2 FD 1.82 2,35 1.62 1.87
Davton 2 ID 1.82 1.68 1.62 1,49
Davton 3 Free 1.88 1.76 1.73 1.60
Davton 3 P25 1.88 1.83 1.73 1.71
Davton 3 P50 1.88 1.81 1.73 1.65
Davton 3 FD 1.88 2,22 1.73 1.98
Davton 3 ID 1.88 1.79 1.73 1.70
Seattle 1 Free 1.65 1,52 1.48 1.31
Seattle 1 P25 1.65 1.62 1.48 1.50
Seattle 1 P50 1.65 (£) 1.48 (£)
Seattle 1 FD 1.65 1.68 1.48 1.52
Seattle 1 ID 1.65 1.88 1.48 1.65
Seattle 2 Free 1.85 1.74 1.64 1.53
Seattle 2 P25 1.85 1.65 1.64 1.50
Seattle 2 P50 - 1,85 (£) 1.64 (£)
Seattle 2 FD 1.85 2,07 1.64 1.71
Seattle 2 ID 1.85 2,16 1.64 1.95
Fitchburg 1 Free 1.87 1.76 1.81 1.63
Fitchburg 1 P25 1.87 1,70 1.81 1,61
Fitchburg 1 P50 1.87 2,02 1.81 1.61
Fitchburg 1 FD 1.87 ’ 2.33 1.81 2.12
Fitchburg 1 ID 1.87 1.99 1.81 2.20
Fitchburg 2 Free 1.96 1.96 1.69 1.54
Fitchburg 2 P25 1.96 1.82 1.69 1.60
Fitchburg 2 P50 1.96 1.40 1.69 1.33
Fitchburg 2 FD 1.96 2.36 1.69 2,29
Fitchburg 2 ID 1.96 2.09 1.69 1.80
Franklin 1 Free 1.64 1.49 1,57 1.45
Franklin 1 P25 1.64 1,73 1.57 1.67
Franklin 1 P50 1.64 2.26 1.57 2.21
Franklin 1 FD 1.64 1.72 1.57 1.53
Franklin 1 Ip 1.64 1.68 1.57 1.56
Franklin 2 Free 1.80 1.79 1.67 1.64
Franklin 2 P25 1.80 1.81 1.67 1.64
Franklin 2 P50 1.80 1.94 1.67 1.97
Franklin 2 FD 1.80 2.09 1.67 1.85
Franklin 2 1D 1.80 1.66 1.67 1.51

a.. . s . .
The subsample with positive ambulatory expense and no inpatient
expense from the B replicate estimation subsample described earlier.

bHomoscedastic lognormal retransformation exp (02/2).

2
a plan/z)'
Homoscedastic smearing retransformation ¢ = average of exp (ci).

“Heteroscedastic (by plan) lognormal retransformation exp (o

e . . .
Heteroscedastic smearing retransformation ¢ = average of

exp (ei) within plan,
f

plan

P50 does not exist in Seattle.
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In the one-part model, the subpopulation sign test provides
support for the choice of normal over the smearing estimates. As
Fig. 5.1 indicates, NHOM is significantly better than SHOM in terms
of both MSFE and MFB., NHET is "significantly" better than SHET in
terms of MFB and weakly better in terms of MSFE., The choice of
homoscedastic over heteroscedastic method is inconclusive. Hence,
we should choose either NHOM or NHET, but we cannot distinguish
between them.

For the two-part model, the split-sample analysis provides
similar evidence in the choice of retransformation method. As
Fig. 5.2 indicates, the normal retransformation methods dominate
the smearing methods. NHET is significantly better than SHET and
NHOM is weakly better than SHOM for both criteria, MSFE and MFB.
Again, the homoscedastic versus heteroscedastic choice is unclear.
However, NHOM weakly dominates SHET and NHET dominates SHOM in terms
of both MSFE and MFB. Hence, we should choose either NHOM or NHET,
but we cannot distinguish between them.

When the four-part model is considered, the split-sample anal-
ysis supports the choice of a smearing method (Fig. 5.3). SHOM is
"significantly" better than NHOM in terms of MFB and weakly better
in terms of MSFE., SHET is significantly better than NHET in terms
of both MFB and MSFE, As in the case of the one-part and two-part
models, the evidence for the choice of homoscedastic versus hetero-
scedastic methods is mixed. However, SHET dominates NHOM and SHOM
weakly dominates NHET in terms of both MFB and MSFE. Hence, we
should choose either SHOM or SHET, but cannot distinguish between
them,

Three major conclusions come from this retransformation anal-
ysis. First, the analysis indicates the correct choice of either
smearing or normal retransformation methods for each model. Second,
within that choice, we are unable to distinguish between the homo-
scedastic and heteroscedastic versions. Third, the comparisons made
earlier in this chapter have not been stacked against any particular
model. In each case, we have been comparing the best version of

each model,
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In each binary comparison in the diagram, the arrow points from the method with the higher number of
site-year plans (with lower MSFE or MFB) to the one with the lower number. . The number next to the
arrow is the count for the former method. Solid lines are statistically significant at the 95-percent levei;
dashed lines are insignificant.

Fig. 5.1--One~part model: comparison of alternative
retransformation methods
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In each binary comparison in the diagram, the arrow points from the method with the higher number of
site-year plans (with lower MSFE or MFB) to the one with the lower number. . The number next to the
arrow is the count for the former method. Solid lines are statistically significant at the 95-percent level;
dashed lines are insignificant.

Fig. 5.2--Two-part model: comparison of alternative
retransformation methods
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In each binary comparison in the diagram, the arrow points from the method with the higher number of
site~year plans (wit.h lower MSFE or MFB) to the one with the lower number. . The number next to the
arrow is the count for the former method. Solid lines are statistically significant at the 95-percent fevei:
dashed lines are insignificant.

Fig. 5.3-~Four-part model: comparison of alternative
retransformation methods
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Chapter 6
CONCLUSION

The highly skewed distribution of medical expenditures, with a
large number of nonspenders, makes reliable estimation and prediction
difficult. Several alternative, plausible models provide different
estimates of the response of demand for medical services to insurance
coverage. Analyses of variance and covariance yield imprecise re-
sults, even for samples of over a thousand cases. The use of one-
part and two-part transformed models improves the precision of the
estimates and yields reasonably monotonic plan comparisons., How-
ever, the one-part model produces inconsistent results because it
mishandles both the large number of nonspenders and the 10 percent
of the sample with inpatient utilization. The two-part model corrects
the former error but still produces inconsistent estimates because of
the inpatient cases., The four-part model more accurately reéflects
the distribution of medical expenses than does either the one~ or
two-part model, and yields more precise estimates than ANOVA and
ANOCOVA on untransformed expenditures.

Our split-sample analysis indicates that the two- and four-part
models are more reliable for making forecasts than the other models.
They are significantly better in terms of mean squared forecast error
and weakly better in terms of mean forecast bias. However, we are
unable to distinguish between the two- and four-part models, We
prefer the four-part model over the two~part model because the latter
is inconsistent. The split-sample analysis does not lead us to con-
clude that the four-part model is the better model in terms of fore-
casting to a future sample. But this should change as additional data
become available. With larger data sets, the inconsistency in the
two-part model will not decrease, but the degree of imprecision in
the four-part model will.

The choice of the four-part model should not be considered final
in any sense. Our experience has been that new data permit us to

find problems that we could not see with smaller data sets, because
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we can better evaluate the distributional assumptions in the analysis.

In particular, more data will provide additional observations on the

far-right tail of the distribution. Although relatively rare, these

cases are very important because they contribute substantially to the
overall average expense.
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Appendix A
TOBIT AND SELECTION MODEL ALTERNATIVES
TO THE TWO-PART MODEL

The econometric literature has several models for data with con-
tinuous but limited dependent variables, such as medical expenses.
Those models are the Tobit model proposed by Tobin (1958),l the two-
part model discussed by Cragg (1971) and by Poirier and Ruud (1981),
the selection model discussed by Heckman, and the adjusted Tobit
model discussed by van de Ven and van Praag (1981)., In this appendix,
we describe each alternative model briefly and the reasons why we
prefer the two-part model to the alternative models for analyzing
the HIS data. This preference is specific to the HIS application
and should not be construed to be a global pronouncement of the

relative value of the alternative models.

THE TOBIT MODEL
The oldest of these models is the Tobit model. The limited

dependent variable is modeled as a censored distribution. The model
assumes that the unobserved uncensored error distribution is normal,
whereas the observed error follows a censored normal distribution.

More specifically,

Y.=1I,, if I,>0, (A.1)

where Yi is the dependent wvariable, Ii is the unobserved index based

on individual characteristics, and x; 1s a row vector.

1References are cited at the end of the appendix.
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The expected expenditure is given by

E Yi = @(xiélo) = xiG + 0¢(xiG/c) , (A.2)

which can be estimated by substituting appropriate estimates of §
and o.

We rejected the Tobit model because the HIS data clearly do not
fit the basic assumption of this model. As Fig. 3.5 indicates, the
error distribution does not appear to be a censored normal distri-
bution. The lower tail of the empirical distribution of positive
expenses is quite smooth and approaches zero as the size approaches

Zero.

THE SELECTION MODEL

The second alternative to the two-part model is a two-equation
self-selection model, as described by Heckman (1974, 1976, 1979).2
The first equation specifies a probit censoring function that deter-

mines whether the positive expenditures are observed:

o+ vy,

l 11 L] (Ao 33)

POSEXP, = x.a
i i

If POSEXP is positive for an individual, then his expense EXPD is
observed; otherwise 0 is observed. This equation is identical to
Eq. (3.4a) in the two-part model. The second equation is an uncon-

ditional (uncensored) linear model of expenses:

EXPD, = x.0
i

1% (A.3b)

+\)21 2

where

2The econometric literature began with Amemiya (1973), Gronau
(1974), and Heckman (1974).
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and

a o)

11 12

%22

912
The expected expenditure is given by the unconditional (uncen-

sored) expectation

E (EXPDi) = x;0, ,

which can be estimated by substituting appropriate estimates of .
If the errors in the two equations are correlated, then least
squares on the observed positive expenditures will lead to biased
estimates of o,, the unconditional (incensored) coefficient vector.
The self-selection model and the two-part model differ in their
distributional assumptions. In the two-part model, we assume that
positive expenses are (log) normally distributed.3 The normal
assumption is important only for retransforming the log dollars
back to dollars. Any distribution would permit retransformations
as long as E [exp (nz)] is finite. In contrast, the self-selection
model assumes that the error terms in (A.3a) and (A.3b) follow a
bivariate normal distribution. It uses departures from normality

and heteroscedasticity in the conditional distribution to estimate

019> O35 and Uoe

3In our discussion of the two-part model in Chapter 3, we
assumed that some power transformation of nonzero expenses would
yield a normal error distribution. The best power transformation
turned out to be very close to the log.
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We rejected the self-selection model for three reasons. The
first reason is that it assumes that the functional form is known
a priori and that the functional form must be such as to yield a
bivariate normal error. Hence, the functional form cannot be esti-
mated or evaluated from the data. The assumption in the self-
selection model is untestable because the uncensored data are
unobservable.

The second reason for not adopting the self-selection model is
that its interpretation is inappropriate for modeling our expendi-
ture data. The similarity between the self-selection problem and
health expenditure data is not as real as it might appear. The
self-selection model is an attempt to estimate the unconditional
(uncensored) expenditure equation (A.3b), which describes the ex-
penses that all individuals (including nonspenders) would have had
if they were all spenders. However, for the study of health ex-
penditure, we are not interested in this equation because we know
that these individuals had zero expenses; unlike the self-selection
problem, the zero spenders are not cases with missing expenses.
Therefore, the conditional equation (3.4b), instead of (A.3b), is
the equation of interest to us.

The third reason for rejecting the selection model is its poor
numerical and statistical properties., The likelihood function of
the selection model is known to have nonunique local maxima (Olsen,
1975). 1In contrast, the two-part model has a unique global maximum.
Further, in the selection model, it is difficult to separate selec-
tion effects from heteroscedasticity and nonlinearity.4 However,

analytically we need to distinguish among these so that we can obtain

4The censored (positive) expenses are heteroscedastic and non-
linear in x. The variance of the positive expense is 022[1 +
2 , .
e} ki(zi - Ai)], where z; = —XZiaz and Ai is the reciprocal of the

Mills' ratio. Equation A.6 indicates that the observed expenses
are nonlinear in x.
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. 5 .
a consistent estimate of the expected expense. In contrast, in the
two-part model, at least in Eq. (3.3b), we can use standard residual
analyses to evaluate the appropriateness of our linear and additive

specification.

THE ADJUSTED TOBIT MODEL

The third alternative model is the adjusted Tobit model, which

specifies equations similar to (A.3a) and (A.3b), but calculates the

expected expenditure by

E (expense) = Pr (expense > 0) * E (expense|expense > 0) .

(A.4)

This model is preferable to the self-selection model because the
expected expenditure (A.4) refers to the actual expenditure instead
of the expenditures that would be observed if everyone had positive
expenditures.

The adjusted Tobit model and the two-part model are different
specifications of the same problem, Both models specify a probit
equation for the decision to have positive (nonzero) expenses. For

log positive expense, the two-part model has a linear specification,
Erpm (log expense|expense > 0) = xdz , (A.5)
whereas the adjusted Tobit model (with a logarithmic scale) has

EATM (log expense|expense > 0) = xa, + chA(xal) , (A.6)

5Heteroscedasticity in 959 has no effect on the expected value
of Oge However heteroscedasticity in the observed expenses may be

interpreted as selection effects, which will alter the estimate of
aye Similarly, significant coefficients for the reciprocal Mills'

ratio have different interpretations, depending on whether they are
selection effects or omitted nonlinearities in the underlying model.
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where A is the reciprocal of the Mills' ratio function.

We prefer the two-part model to the adjusted Tobit model because
of its numerical simplicity and the absence of any strong theoretical
justification for the additional complexity of the adjusted Tobit
model. The adjusted Tobit model shares with the selection model the
estimation and evaluation problems discussed at the end of the last

section.

OMITTED VARIABLES

One misconception about the two-part model has been voiced by

several colleagues on a prelimimary version of this report. The mis-—
conception is that we have to assume independence between Eqs. (3.3a)
and (3.3b). The misconception'implies that the model contains no
omitted variables that affect both the decision to seek care and the
decision on the intensity of care.

Such an assumption of independence is not necessary for the two-
part model., As we pointed out in our discussion of the two-part model
in Chapter 3, the separability of the likelihood function of the two-
part model is a result of the way the conditional densities are cal-
culated. It does not depend on any independence assumption., The two
equations can very well be correlated, say, because of omitted vari-

ables, and the separability will still hold,
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Appendix B

SMEARING ESTIMATE: A NONPARAMETRIC
RETRANSFORMATION METHOD

by Naihua Duan

B.1. INTRODUCTION

A monotonic transformation is often applied to observations

recorded on a "matural" scale to achieve desirable statistical prop-
erties such as additivity, homoscedasticity, and normality. Certain
analyses (e.g., fitting a least squares regression model) are carried
out on the transformed scale, possibly combined with certain infer-
ences, such as significance tests on comparisons of experimental
treatments. However, it is very often desirable also to carry out
certain procedures on the "natural" scale, e.g., prediction and
forecasting. 1In doing so, one will be confronted with the problem
of retransformation bias, namely, that unbiased and consistent quan-
tities on the transformed scale usually do not retransform into un-
biased or consistent quantities on the "natural" scale.

In this appendix, we propose a nonparametric method, the smear-
ing estimate,l as an estimate of an individual's expected response
on the "natural" scale. The essence of the procedure is to estimate
the unknown error distribution by the empirical c.d.f. of the esti-
mated regression residuals and then take the desired expectation with
respect to the estimated error distribution. The estimate is weakly
consistent under mild regularity conditions. In the case of loga-
rithmic transformation, the efficiency of the smearing estimate rela-
tive to the corresponding parametric estimate, when the parametric
model holds, is high over a wide range of parameter values.

In Section B.2, we present the retransformation problem and use
an example to demonstrate the possible bias due to inappropriate use

of the normal assumption. In Section B.3, we derive the smearing

lThe terminology "smearing estimate" was originally coined by
Professor Carl Morris for a related but different procedure.
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estimate as an estimate of the '"natural" scale expectation free from
distributional assumptions on the error distribution F. The con-
sistency property of the smearing estimate is established in Sec-
tion B.4, and in Section B.5, we examine the efficiency of the smear-
ing estimate compared with that of a parametric estimate when the
parametric assumption is satisfied. In Section B.6, we discuss the
prediction of group average. Our conclusions are briefly discussed

in Section B.7.

B.2, THE RETRANSFORMATION PROBLEM

We denote the observations on the "natural" scale by Y

i’

i=1, ..., n, and the transformed observations by nys i=1, ..., n,
which are related by

n, = g(¥), Y, =hm), h=g’

i gi’ i i’ g
where g and h are assumed to be monotonic and continuously differen-
tiable. To avoid the trivial cases, we also assume g and h to be
nonlinear. We refer to g as the ftransformation and h as the re-
. 2

trans formation.

We consider a linear regression model on the transformed scale:

n; =xBte;,

e, VF, (i.i.d.) ,
E €; = 0.,

Var €; < 02 ’

where the xi's are given row vectors of explanatory variables, B is

a column vector of unknown parameters to be estimated, and the Ei's

2We assume g and h to be known a priori.
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are the residual errors. Although the error distribution F is
usually assumed to be normal, we do not make this assumption. It
is shown later in this section that inappropriate use of the normal
assumption can lead to inconsistent prediction results.

For the assumed model, the minimum variance linear unbiased
estimate of B is the least squares regression estimate on the trans-~

formed scale:

8= (XN X,
where X = (x!, ..., ')’ is the design matrix, assumed to have full
1 n

rank, and n = (nl, cens nn)' is the transformed data vector. More-

over, for an individual with explanatory variables X» the prediction

~ -1
= v '
xOB xo(X X) X'n

is the minimum variance linear unbiased estimate of the expectation

of his response

on the transformed scale. Moreover, the regression coefficients é,
as well as the prediction xoé for fixed X, are consistent if the
design matrix is asymptotically nondegenerate.

In terms of the '"natural" scale, it may seem 'matural" to re-

transform the transformed scale prediction XOB by h = g_l and use
h(x _B)
to estimate the expectation of the individual's response
EY =Eh(n) =Eh(x}pB+e)

on the "natural" scale. However, the retransformed "natural" scale
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prediction h(xoB) will no longer be unbiased, nor comsistent, unless
the transformation is linear, which we have assumed not to be the
case, Actually, even if we know the true parameters.f8, still h(XOB)

is not the correct "estimate" of E YO:
E Yo = E h(XOB + ) # h(XoB) .

There is an extensive literature (e.g., Neyman and Scott, 1960)3
devoted to the problem of estimating the "natural' scale expectation
under the assumption that the errer distribution is normal. We will
refer to their results categorically as normal theory estimates.

It should be noted that the normality assumption plays very
different roles in estimating the "natural" scale expectations and
in estimating the regression coefficiehts._ For estimating the re-
gression coefficients, whether the true error distribution is ﬁormal
or not, the least squares estimate, which is the maximum likelihood
estimate under the normal assumption, is consistent and minimum vari-
ance linear unbiased. When the true error distribution is not normal,
the normality assumption will only affect the efficiency of our esti-
mate (Cox and Hinkley, 1968). If we know the form of the true error
distribution, we can sometimes derive alternative estimates that will
be more efficient than the least squares estimate, However, for
estimating the ''matural" scale expectation, an incorrect normality
assumption can lead to inconsistent estimates.

For example, in the case of a logarithmic transformation with

normally distributed error, the "natural” scale expectation is
2
exp (XOB +07/2) ,
where

02 = Var ¢ .

3References are cited at the end of the appendix.
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The expectation can be estimated conmsistently by the normal theory

estimate
~ A2
exp (XOB + 0°/2) ,

~

where é denotes the least squares regression coefficients and ¢
denotes the mean squared error.

Whether the true error distribution is normal or not, the above
estimate is consistent for exp (XOB + 02/2). However, it might not
be consistent for E Yo' For example, if the true error distribution

is actually a mixture of two normal distributions,
e % N(O, .95 o2) with probability .995
(Var € = %) s
n~ N0, 10.95 62) with probability .005

then the "natural scale expectation is

EY = .995 exp (x8+ .475 %)

+.005 exp (x B + 5.475 0°) .
2
For ¢° = 1, we have
EY = 2.79 exp (xoB) .
The normal theory estimate will converge almost surely to
2
exp (xoB + 0%/2) = 1.65 exp (XOB) ,
which has a 4l-percent asymptotic bias.

B.3. THE SMEARING ESTIMATE

Our goal is to estimate the "natural" scale expectation
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E YO = E h(xoB +e) =17 h(xoB + €) dF(e) .

Without knowing the error distribution function F or a reliable
parametric form for it, we will estimate F by the empirical c.d.f.

of the estimated residuals

n -
g I{e, <el},
= 1=

A

where e, =Ny - xiB denotes the least squares residual and I{-}
denotes the indicator function of the event ".". Duan (1980) proved
under mild regularity conditions that the nonparametric estimate Fn

is strongly consistent in the uniform norm:

sup l%n(e) - Fle)| >0 (a.s.) .
e

As is usual in nonparametric analyses, a population quantity
with an expression in terms of the true c.d.f. can be estimated by
the corresponding expression in terms of the empirical c.d.f. For

example, thg population mean
=/ x dF(x)
can be estimated nonparametrically by the sample mean
x=/x dﬁn(x) .

Similarly, we estimate E Yo by substituting the unknown c.d.f. F by

its empirical estimate Fn:

n
. - 1 "
E YO = f h(xOB + ¢€) an(e) = E-iil h(xOB + ei) .
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Further substituting the regression parameters B by their least

squares estimates B, we have the estimate

E YO = f h(xoB + €) an(e) =5 iil h(xOB + ei) s (B.3.1)

which will be referred to as the smearing estimate.
As will be shown in Section B.4, the smearing estimate derived
in this way is consistent under mild regularity assumptions on the

error distribution F and the design matrix X.

B.4. CONSISTENCY OF THE SMEARING ESTIMATE

Assuming that h is continuously differentiable, we take the

first~order Taylor's expansion:

~ A L
h(xoﬁ + ei) = h(xoB + gi) + Gi h (XOB + €; + eisi) s

where

0 <8, <1
5 =

8= (B He) - (xB+e) = (x - x) @R xre .

The smearing estimate can be decomposed as follows:

n -~ o~
E YO = .z h(XOB + ei)
i=1

>
=R

1
h(XOB + ei) + =

. 1
. Gi h (xoB + € + eiai) .
1 i

1

=R
h~g
[ (S = ]

(B.4.1)
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By the strong law of large numbers, the first term on the right-
hand side of (B.4.1) is strongly consistent for the "natural" scale
expectation E Yo. It remains to show that the second term is sto-
chastically small in some sense.

It follows from the Cauchy-Schwarz inequality that the square

- of the second term in (B.4.1) is bounded from above by the product

1 2
y [h'(XOB +te; + Sidi)] . (B.4.2)

N e
O
.
3=
-]

i=1 i=1

The proof of the following lemma is given in Addendum I.

Lemma 1. Assume that (1) the retransformation h is continuously
differentiable, (2) X contains the intercept, and (3) X'X/n > I pos-

itive definite; then

[ =]
(o2}
1

[ I =1

=z [(x, - xi)(X'X)_lX'E]z =0 (1) . |

It follows immediately from Lemma 1 that the first factor in
(B.4.2) has order Op(lln); in particular, it converges to zero in
probability. _

It also follows from Lemma 1 that we can choose M large enough

such that, for n large enough, the inequality

T 65 <M (B.4.3)

will hold with probability arbitrarily close to one. When (B.4.3)

holds, we have
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lh'(xoB +e, + eidi)l < sup |h'(x08 teg t)]
t|<M

thus

sup [h'(xos + e, + t)]2 .
1 It[fM *

Bl
=Bl
s

2

)

' [h (XOB e, ¥ Giéi)] L=
i=1 i

g

(B.4.,4)

By the strong law of large numbers, the right~-hand side of (B.4.4)

converges almost surely to

E sup [h'(x 8 + ¢ + t)]°2 (B.4.5)
| £] <M °

if the expectation is finite,

To summarize, if the expectation (B.4.5) is finite for all M > 0,
the second factor in (B.4.2) is bounded from above, with probability
arbitrarily close to one, by a sequence of random variables that con-
verge almost surely to a finite constant. In other words, the second
factor in (B.4.2) is stochastically bounded. Thus, we have proved

Theorem 2. Assume that (1) the retransformation h is continu-
ously differentiable, (2) X contains the intercept, (3) X'X/n - i
positive definite, and (4) the expectation (B.4.5) is finite for all
M > 0; then the smearing estimate (B.3.1) is weakly consistent. H

For most popular transformations, the supremum in (B.4.5) can be
evaluated at the end points. For example, if |h'] is monotonic, we

have

E oswp [0'(xf+c+0)]° <E M (x8+c+m)>
lt]<m

+E ' (xB+e-m° .
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The moment condition (4) in Theorem 2 can be replaced by
4" E [h'(c +e)]? <+  for all c ,

which is usually easy to check under hypothesized true error distri-

bution. For example, for power transformations

g(y) = Y%, o #0,

=
]

1/a

h(n) n s

<
[l

the desired moment condition is that

20(1/-1] _

E (e + ¢€)

for all c, which will be satisfied for normal error distribution if

0 <o < 1. For the logarithmic transformation
n = log (Y) , - Y = exp (m) .

The desired moment condition reduces to

which is satisfied for the normal error distribution.

B.5. [EFFICIENCY OF THE SMEARING ESTIMATE

If the error distribution is indeed normal, the normal theory

estimate and the smearing estimate are both consistent, but the nor-
mal theory estimate can be more efficient. In this section we
examine the loss of efficiency of the smearing estimate relative

to the normal theory estimate when the error distribution is indeed

normal.
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For simplicity, we consider only the logarithmic transformation
in this section. The normal theory estimate (NE) and the smearing

estimate (SE) are

xos+82/2
NE = e
X B n €,
SE=¢e ° . %— 5oe T,

where é are the least squares regression coefficients, 82 is the
residual variance, and ;i is the least squares residual., It follows
from the normal assumption that the regression coefficients é are
stochastically independent of the residuals ;; in particular, we

have

X B ~2
e ® independent of e’ /2 .

~ -

%68 1 21
e independent of =y

Mg

e .
i=1

Therefore, we can evaluate the variances as follows:

X é ~2 X é ~2
Var (NE) = E2 (e °) - var (° /2) + var (e ° ) - E2 (e’ /2)
X é ~2
+Var (e ©) » var (° /% | (B.5.1)
x B n €, X B n €.
Var (SE) = E2 (e ° ) « Var Gl I e 1) + Var (e ° Y . E2 Gl I e 1)
n n .
i=1 i=1
Ny . 2,
+ Var (e ° ) + Var (E- I e) . (B.5.2)
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The proof of the following lemma is given in Addendum II.
Lemma 3. Assume that (1) X'X/n + I positive definite, (2) X
contains the intercept, and (3) e ~ N(O,cz); then

2
° |

Substituting the limits in Lemma 3 into the previous variance for-
mulae, (B.5.1) and (B.5.2), we have
Theorem 4. Assume that (1) X'X/n = i positive definite, (2) X

contains the intercept, and (3) e ~ N(O,cz); then

2
2x B+ag
n Var (NE) - [(xoi—lxé)cz + %04]6 © ’

2x B+02
n Var (SE) - [(xoi-lxé)cz + (% -1 - 02)]e ° .

The relative efficiency of the smearing estimate to the normal

theory estimate is
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“l,y 2 4
rel ff, = Var (NE) = (Xoi XO)U T ”
© &t = Yar (sE) .

2
(xoi—lxé)oz + (e0 -1 - 02)
(B.5.3)

(Note that %04 is the leading term in the Taylor's series expansion
2

9 _1- 02})

The relative efficiency depends on both 02 and xoi_lxé. If x

of e

: 0
is sampled randomly from the same population as xi's, we have

E xoi-lxé = tri-lE xc"xo

tri_li (t=E x'x)

rank(X) ;

thus xot_lxé is of the same order as rank(X). Table B.l contains
the relative efficiency for several values of 02 and xoi-lxé. For
02 near or less than 1.5, the relative efficiency is quite high.
For large 02, the relative efficiency drops drastically. Under the
assumed model, the "natural" scale responses follow a lognormal dis-
tribution, with 02 being the shape parameter: large 02 indicates
large skewness.

For large 02, while the normal theory estimate is more efficient
than the smearing estimate when the normal assumption is true, it can
also be more sensitive to departures from normality. As an illustra-

tion, we will consider again the example used in the introduction:

e v N(O, .9502) with probability .995
2
(Var e = ao7) ,

N N(O, 10.9502) with probability .005

Table B.2 provides the relative bias of the normal theory esti-

. . . . 2 2
mate. The relative bias increases with ¢ ; for ¢° near or larger
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Table B.1

RELATIVE EFFICIENCY OF THE SMEARING ESTIMATE
TO THE NORMAL THEORY ESTIMATE WHEN THE
NORMALITY ASSUMPTION IS SATISFIED

‘11 ~
xot e (= rank X)

o? 1 2 3 5 10 20
0.50 0.96 0.98 0.99 0.99 1.00 1.00
0.75 0.92 0.95 0.97 0.98 0.99 0.99
1.00 0.87 0.92 0.94 0.96 0.98 0.99
1.50 0.75 0.83 0.87 0.91 0.95 0.97
2.00 0.63 0.72 0.77 0.83 0.90 0.95
3.00 0.39 0.48 0.54 0.63 0.75 0.85
5.00 0.12 0.15 0.17 0.22 0.32 0.46

10.00 0.00 0.00 0.00 0.00 0.01 0.01
Table B.2

RELATIVE BIAS OF THE NORMAL THEORY ESTIMATE
UNDER THE MIXTURE MODEL

02 Relative Bias® (%)
.50 =4
.75 ~16
1.00 =41
1.50 =90
2.00 -99
3.00 =100
%Under the assumed model, the relative
bias is
E (NE) - E Yo
EY
o
2
exos + .50
T Tx B 2 7 1.
e © (.995e*729" 4 op5e4:97397
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than one, the normal theory estimate is severely biased.

B.6. PREDICTION FOR GROUP AVERAGE

Up until now, our discussion has been restricted to the pre-

diction of one fixed individual with explanatory variables X e One
might also be interested in the prediction for the average of a
group of individuals, with explanatory variables Ej, i=1 ..., J.

For simplicity we will consider J and Ej's as fixed. We have the

estimates
J £.8 n €.
*
SE =%z e J -(%z e ),
j=1 i=1
J E.B 2
*
N R
J
j=1

The consistency of the smearing estimate for the group average
follows immediately from the consistency for individual predictiomns,

The proof of the following lemma is given in Addendum ITI.

Lemma 5, Assume that (1) X'X/n + I positive definite, (2) X

contains the intercept, and (3) ¢ " N(O,oz); then

J E.B J E.B
E'(% r e d) —>% I e
31 3=1
J £ JoE8 J  £.8
n Var (%- T ed) > 02 . (%- T ed £.)% lq% T oed g, [
j=1 i=1 J j=1 .

Substituting the limits in Lemmas 3 and 5 into the appropriate vari-
ance formulae, we have the following theorem:

Theorem 6. Under the same assumptions as in Lemma 3,
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£.B 2
*
n Var (NE ) »—(%-Z e,J )2 . %OZ'e0
h|
£.B _ .B 2
rGredenitdred ey - %,
h| J k|
3 J
£.8 2 2
n Var (SE*) - (%—Z e J )2 . (e0 -1 - 02)eO
j
£.B £.B 2
_]; J -1.1 J v . 20
+(GIe gj)i FTe gj) oe” .
The relative efficiency is
* 2 4
P
rel. eff, = Jar (NE*) = wo +22° ,
Var (SE ) moz + (eo -1 - 02)
where
£.B £.8 !
] |
=1
=] = )i ] 2=t ] . |l
- EjB ] - E.B 7]
J Ze J I e J
j

If we further assume that the Ej's are sampled from a normal distri-
bution with mean £ and covariance matrix T,4 we have the following
lemma, which is proved in Addendum IV,

Lemma 7. Assume that & ~ N(£,T); we have the almost sure con-

vergence for w as J > 4«3

“ =g + 1.
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£8 g8, \ "
EeEyy=-1]|Ee”"¢ = (F+ a'mi-1F Ty
| 3 . E+eDiE+eDn .
(a.s.)

Corollary 8. Under the assumptions in Lemmas 3 and 7, the rela-

tive efficiency is

*
_ Var (NE ) _ w*02 + %04

(SE™) 2 2 2.
Var wkg” + (eo -1-207)

rel., eff.

where
wk = T+ 8 DITET+eD . |

B.7. CONCLUSION

In this appendix, we propose the smearing estimate as a non-
parametric estimate of expected response on the untransformed scale.
The estimate is consistent under mild regularity conditions and
usually attains high efficiency relative to parametric estimates.

It can be viewed as a low~premium insurance policy against departures

from parametric distributional assumptions.
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Addendum I
PROOF OF LEMMA 1

The sum in the lemma can be expressed as follows:

n
I [(xo - xi)(x'x)’lx'ej2
i=1

[/n xo(X'X)_lX's]z

- 2[vn xo(X'X)—lX'E]

n
Lo xi(x'x)'lx'e
Yo i=1
o -1 2
+ I [xi(X'X) X'e]l® . . (B.4.3)
i=1

We prove in three segments that the sum is asymptotically bounded.

0,

(1) E [Va xO(X'X)-lX's]

Var [v/n xo(X'X)_lX'e] czxo(X'X/n)-lxé .
Assuming that X'X/n converges to a positive definite matrix i,s we

have
Var [v/n x (X’X)-lx'e] +—02x i_lx' .
o o o
5The assumption is much stronger than we need; what really needs

to be asserted is that xO(X'X/n)—lxé will remain bounded. Neverthe-

less, the present assumption will be satisfied for many important
problems, such as when the covariate xi's are sampled randomly from
a fixed parent population.
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By the Chebyschev inequality, we have

-1 Var [/n xo(X'X)-lX'e] czxoi-lx‘
P {[/E xo(X'X) X'e| > ¢ } < > 5 0

2
c c

for any ¢ > 0. For ¢ large enough, we can make the limit arbitrarily

small. Therefore

v/ xo(x'x)'lx'e = Op(l) .

n
(ii) Lo x.(x'x)'lx'e -1 1'x(x'x)'1x'e
/o oi=1 *t Vn
R . )
= — 1'e [assume X contains the intercept]
/n
n
- _1 Z Ei
Vo i=1
. 2
= Op(l) [converges in law to N(O,c7)] .
n 1, 42 _ 2 -1 -1
(iii) E = [xi(X'X) X'el]®“= © E xi(X'X) X'ee'X(X'X) Xi
i=1 i=1

n -1 2
=0 ) xi(X'X) xi [E ee’ = 0T}

= o2 tr x(x'x)'lx'

= ko” . [k = rank X] .
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By the Markov inequality, we have

n 2
P { 5 [k (X0 xre]? > c} <k
1=1 1 —_ [

The limit can be made arbitrarily small by taking c large

Therefore

.

n
15 [xi(X'X)_lX'e]z =0 .

1

enough.
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Addendum II
PROOF OF LEMMA 3

- ~

X B x B X _ 2x B
(i) E(®)+e®, nvar(e®)>xi'x! - ol °
The least squares estimate B is distributed as
o) 2 -
B v N(B, o2 (X)) .
Therefore,
x B v N(xOB,czxo(X'X)—lX;) ’
x 8 x fHo’x (X'X) x!
o o o o
E(e )=e
b4 B+(l/2n)02x (X'X/n)-lx'
ce © 0 )
x,B 2 -1
> e [X'X/n ~ 3, (1/2n)0"x (X'X/n) "x! ~ 0] ;
Xoé 2xoB+02xo(X'X)-lx; ozxo(X'X)_lxé
Var (e ~ ) = e (e -1,
2 -1, 2 -1
2x06+0 xo(X X) X 2x08+(1/n)c xo(X'X/n) xé
e = e
2xoB
> e 3
ozxo(X'X)-lx' (l/n)ozxo(X'X/n)_lxé
n(e °_ 1) = n(e -1

-+ 02x i-lx' .
o o
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Thus

~2 2 ~2 2
(ii) E (ec /2) > e /2 , n Var (eG /2) - 5504eU

The least squares mean squared error is distributed as

~2 02 2
e}

v n - k *n-k *

where k = rank X, n -~ k = d.f., of residual sum of squares. It follows

from Gamma integration that6

~2 ' (n-k) /2
E (e° /2) = (———n— k 2)

_ 1
L 02/2 An-k)/2
(n - k)/2
2
I e’ /2 as n > o (k fixed).

-02/2
e

It also follows from Gamma integration that7

~2 ) (n-k) /2 . \nk
Var (e° /2) = <___£L__li_72> - (——-B——-E;Ej

n-%k- 20 n-%x-g¢

6The expectation exists and equals the right~hand side of the

formula only if n - k < 02, which for any fixed 02 will hold for n
large enough.

7'I‘he variance exists and equals the right-hand side of the for-

mula only if n - k > 202, which for any fixed 02 will also hold for
n large enough.
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1 1

02 . (n-k)/2 ~ 02 n-k
l-m-wonz l'n-J

_\""n-k -\l @m ooz

2 (n-k)/2 2 n-k
L- (n - k)/2 vl T n-k

The denominator converges to

For the numerator, we will replace n - k by 1/r, and take

Taylor's expansion around r =0 (n = +=):

2 n-k 02 (n-k)/?2
(1 T n - k) - (1 T - k)/2)

1/r 1/2r
= (1 - r02) - (1 - 2r02) .

Denoting the above expression by f£(r), we have

2 2
lim f(r) = e ° -7 =0

-0

Differentiating with respect to r, we have

1/r 2
£'(r) = (1 - 16%)  + [- —% log (L - ro%) +% . =9
2 r 2
r 1- 1o
1/2r
- (1 - 2r02) . [- —l—-log (1 - 2r02) + <. ———gg———] .
2 2r 2
2r 1 - 2rxc
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2
—%-1og (1 - rcz) +-l . i)
r

r 1l - 10

5 L 7 [ - rcz) log (1 - r02) + rcz]

r'(l - ro”)

1 2 2 1% 2 2
« [ - ro°)(- ro© = =—— + o(x7)) + ro"]
2 2 2
r°(1 - ro°)
2 4
1 - [- r02 - =54 r204 + o(rz) + roz]

2 2 2

(1 - ro”)

5 L 7 [%rzc4 + o(rz)]

r'(1 - ra")

04
5 + o(1)

2(1 - ro™)

%04 + o(1) ,

where o(r”) denotes a quantity that satisfies

o(ra) >0

(¢
r

Similarly, we have

2r2

1

log (1 - 2r02) + =

2r2(1 - 2ro

2

)

as r >0 (n > 4=) ,

-202

Zr 1 - 26

¢ [(1 - 2r?) log (1 - 2ro?) + 2ro%]
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2

=t - [B2rY) + o(2))]
2r°(1 - 2rc”)

= ="+ o) .

Therefore,
—02 04 —02 4 4 -02
f'(r) ~ e o (- E—J -e c (~07) =4%0e as
4 -02

f(r) =04+ %0 e «r+ o(r) ,

2
o]

4L —
e as r~+0,

1
fnl > I
T f(r) 50

02 n-k c2 (n=k)/2
(- === -(l-m) ] >~ %0

2
) o (D b0
—202
e

~2
(n - k) Var (e0 /2

Since k is fixed, we have

~2
n Var (eo /2) > %oaec

(iii) E (

The least squares residual is distributed as

A

= - vy~ Lyt 2 _
e; = &5 - X (X'X) "X'e v N(0,067(1 Pii))

1

3
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where Pii = xi(X'X)-lxi and P = X(X'X)_lX' = projection matrix for

the linear subspace spanned by columns of X. It follows that

€4 %oz(l-P..)
E e = e 1t ’
n €, 1.2 n =%°P,,
E (%- T e ) =9 . %- I e o
i=1 i=1
Note that
~%0°P, .
1>e o %UZP.. s
— - ii
n -%0°P,, n
1>lZ e 11>1-%02-lz P..=l-1~502-5,
—n , — n ., ii n
i=1 i=1
where
n
k=rank X=trP= 3% P,. .
, ii
i=1
Therefore,
2 n ;. 2
2 2
lordr ehra-wt BT,
(=1
n £ 2 2
EE oz e =210 > (k fized) . |
n . n
i=1
1 2 & o2 o 2
(iv) n Var (E- I e )»e (e -1-0¢7).
i=1
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Note that

€. +te. =€, + Ej - xi(X'X)—ls - xj(X'X)_ls

i j i
N(0,40° (1 - 2, ) =3
11
. .
5 Pii +P,.
N(0,207(1 - == -, ) G#3,

where Pij = xi(X'X)_lxg and P = X(X'X)_lX'. It follows that

- 2 2
£, c“(1-P..) o (1-P..)
Var (e l) = e 11 [e . 1],
~ " 2 2
€, €. o“[1-(P,.4+P..)/2] ~0"P,_,
Cov (e 1,e Iy =e RN e I 1] A # 3
~ 2 2
n e n o (1-P..) ¢ (1-P..)
Var (l- T e ) = 1 T e 1 [e . 1]
n 2,
i=1 n i=1
2. 2
n o [1-(P,.+P,.) /2] -o"P,.
+-15 I I e 133 e *-131.
n~ i=1 j#i

(1I1.1)

We will refer the first term in (II.1) as the diagonal term and the
second term as the off-diagonal term.

Using the bounds

2
2 o (1-P,.) 2
e’ > e 11 >e (1- ozPii)

and

2
2 26°(1=P_ ) 2
e20 > e ii Z_eZU (1 - zczPii) ,
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we can bound the diagonal term in (IL,1) from above by

n 2 2
1 20 2
= .Z [e -e (-0 Pii)]
n i=1
2 2 2 n
= l-e0 (eo - 1) + 02eo L r P..
n 2 . ii
n i=1
=1 eoz(e02 -1 + 02e02 R
n 2
n
and from below by
n 2 2
Loz e® -2, - )
. ii
n i=1
2 2 2 n
-1 ec (e0 -1) - 202 -20 L I P,.
n 2, ii
n i=1
_1 02( 02 -1 - 2026202 k_
o € e 5 .

Therefore, the diagonal term in (II.1) can be expressed as follows:

n cz(l-Pii) oz(l-Pii)
I e [e - 1]

i=1

SNPA

2 2
-1 o .0 _ 1
=ce (e 1) + 0(n2) .

For evaluating the off-diagonal term in (II.1), we will intro-

duce the following notation:
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—02Pi,
r.. =e J—l+cP..,
ij i
~o2[(P, +P..)/2]
- ii "33
s,, =1-¢e .
ij
Note that
2 P.. + P, .
0<s., <o » ==l (I1.2)
— 7ij — 2
APij 61133
0 f-rij = + 3 + ...
64Pi.' 06|Pi.|3
f._—if‘l + ——-—7?L—— + ...
6
4 ¢ [P. |
=P% . g—-'-._.__%j_.*....
ij 2 6
4 6
2 o] o]
N ERN
2
52,0 2 ,
—Pij(e -1-07). - (11.3)

In the next to the last line of (II.3), since P is a projection

matrix, we have

PP' =P ,
o9
r P,,=P,., , (II.4)
=1 ij ii
p? <P, .



-107-

Thus

0<P.,=<1. (1I1.5)

Substituting (II.5) in (II.4), we have

<P, <1, |p..| <1.

ij — "ii — ij
The off-diagonal term in (II.l) can be re-expressed as follows:

2

1 o 2
= I e (1 ~s,,)(=0"P,, +1..),
n2 i#] ij ij ij
which can be decomposed into four terms:
2 2
- cze0 . % z Pi’ + <:r2eCI . 1—2 z Pi'si'
n i#y I n” i#j Y
: (1II.6)
02 1 02 1
+ e —2 z 5 = © * 3 T;3855
n i#j 3 n” i#y 4 H
The first term in (II1.6) equals
2 2 *
20 1 _ o” ,n-k
—oe ‘2{?.Pij"?P1i] =-oe )
n ij i n
2
1 2¢ 1
=-Joe + 0(n2) .

1'P1 = 1'1 = n.

*
Assume X contains the intercept, then I Pij
1
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By Cauchy-Schwarz inequality, the second term in (II1.6) is

dominated in absolute value by

2(‘_(2 1 9 2 P.i+1>..2
<o e * 5 r P,. e« I of 22 1] [use (II1.2)]
n i#j

4 02
< % r P2, . o1 (2Pii + 2p%,)
n i#j IJ 3 ] 1]

P .
i#]j
2 2 2
[y + By )" < 225, + 283 )
2
4 ¢ '
<oe L1 £ P2, .+ 4(n-1) 1P, .
2 2 .. 13 . ii
n i#j i
Note that
poplcr Plar P)=zP =k, (11.7)
L T T B
2
P, <IP,. =k (11.8)
. 11 -— ., 11
1 1

Therefore, the second term in (II1.6) is dominated in absolute value

by
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4o 2
22 '1—2\/4k2(n—1)=/n-2-1-k04e0=0( 1.
n n n

The third term in (II.6) is dominated from below by zero and

from above by

2 2 2 2
o 2 k o7, 0 S |
z Pij(e -1-=0) i;i e (e -1-07) = 0(—2)

n

[use (II.7)]

Again using Cauchy-Schwarz inequality, the fourth term in (II.6)

is dominated in absolute value by

2
P éf' z si. « I ri.
n igy 3 igg M

2 02 o2 2 1 Pii + P.. 2 4
<oe (e -1-0 )-—5 5 | = I P.,

B n i#3 2 ity I
[(1I1.2),(I1.3)]
2 2
< 02ec (e0 -1- 02) T \/(n -1z P?. « I P?.
- A § .. 1]
n i i#3
(.. + 7,07 <202, + 202, % <p?.]
ii 7330~ Tid 33’ i3 =143
2 2
0% (@ -1-0H - L /@T DRk X [(I1.7),(I1.8)]
n
= O(_l__..) .
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We have shown that the off-diagonal term in (II.1l), i.e., the
expression (II.6), equals

1 20 1
->ade +O(W).

Combining the two terms in (II.1), we have

Var(-tlT b2 ei)=%e (e _1_02)-‘-0(—%_/3)
n

12 i c 2
nVar(EZe)-*e (e =1-=-07). ”
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Addendum III1
PROOF OF LEMMA 5

The convergence of the expectation follows from the convergence
of the individual terms immediately.
The variance term can be decomposed as

A ~

J  E.B
n Var Cl I ed) =
J .
j=1

£.8 E.8 EB
[n Var (e 2 )] + lf I [n Cov (e d ,e k 31 .

1 J° 3#k

R

1
J2 j

(I11.1)

The first term in (III.1) converges to

2
g

J2 3

J 2g .8
-1 j

(g4

I (Eji EJ)e

as individual terms converge to their limit given in Lemma 3. We are

left with the covariance terms

£.8 E.B (£.+E )8 £.8 £ B
k nfEe 3 ¥ _gped .Eek]

=]
o
o)
<
~~
]
[}
-
™
N’
I

2 ] -1 [

n[e(ej+«zk)rs+(1/2n)o (£, (X X/m) T (E )
£.B+(1/20) 0% (X' X/n) " TE!
o j j

. egks+(1/2n)ozgk(x'x/n)_lEL]
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_ e(£j+€k)8+(1/2n)02[£j(x'x/n)'1€5+£k(x'x/n)'1£i]

(/o (x'%/m) e
. n[e J -~ 1]

(g.+g )8
i’k . 2 -1_,
Therefore,
J g8 23 2¢.8
n Var (—J— T ed) +9—2— z (E.i—li')e J
j=1 3% 3=1
2 _ (E,+E,)8
+ Sz g dTepe TF
J¢ 3¢k 3
J &.B J g8
-s2. A& ] 12 LY
=0 (J E e Ej)$ (J E e &)

k=1
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Addendum IV
PROOF OF LEMMA 7

By the strong law of large numbers, as J > =,

£.B £8
(i)—}ZeJ +Ee (a.s.)
J
k ER
_ 1 . _e . _ _F -1 _ Ty
- (/5;) o exp (E(E - DT (£ - D'} ag
1 k 1 = ' -1 = tepy t
- (/55) g e - -8 DTNE-T- 8D
- 38'Tg ~ £8]} d&
= exp (5B'TB + EB) .
5.8
(ii) %z e 4 £, > E 5B (a.s.)
h|

k EB - - .
(;%:) e e HE - DT - D) A
2m -

exp (%8'TB + £8)
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€ exp {-5(E =T - 8'DT 1(g - TB'T') dt

= (E+ B'T) * exp (48'TB + EB) .

Thus

. EB.\ g8, \' _ 1
o (E eésg)* 1<E easg> = E+eDINE D (a.s.)
E e Ee
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Appendix C

CORRECTING FOR INTRACLUSTER CORRELATION
IN PROBIT REGRESSION MODELS

by Nathua Duan

C.1l. TINTRODUCTION

For a variety of problems, it is desirable to relate a dichoto-

mous response (Yes or No) to some given explanatory variables, and to
carry out certain inferences about the fitted relationships. A probit
regression model is often used for this purpose.

An important restriction of the usual probit regression model is
that the individual observations have to be stochastically independent.
Although this is a reasonable assumption for many applicationms, it is
unlikely to be true for a large class of studies of social data. For
example, if households are sampled, but individuals are observed, then
it is very likely that individual observations in the same cluster
(household) will be correlated because of shared characteristics not
observed as explanatory variables.

In the absence of stochastic independence among the individual
observations, the estimated regression coefficients might still be
statistically consistent. However, the estimated standard errors can
be severely biased. Therefore it is necessary to consider modifica-
tions of the usual probit regression model to account for the possible
lack of independence.

The usual probit regression model can be defined as follows:

P(Z = 1) = #(x8) ,

P(z = 0) = o(xB) ,

where Z = 0, 1 is the observed dichotomous response, ¢ is the standard
normal c.d.f., ® is its complement 1 - ¢, x is a given row vector of
known characteristics, and B is the column vector of unknown regres-

sion parameters.
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For convenience, we usually regard the probit regression model

as a dichotomized continuous regression model:

>
i

-xf + e ,
e v N(O, 1) independent,

Zz=1 if Y <0,

=0 it Y>>0,

where the underlying propensity Y is not observable., We will refer
to this model as the univariate probit regression model.

The dependence among the individual observations in the same
cluster can be described by modelling their joint distribution, or by

modelling the joint distribution of their underlying propensities:

Yij = —xijB + eij . 3 =1, «ue, Ji; i=1, «0ees 1,
€N N(O, Gi) . independent,
Zij =1, if 13 <0,
=0, if Yij >0,

where Gi denotes the covariance matrix for the Zth cluster. We will
refer to this model as the multivariate probit regression model.
In this report, we will restrict our consideration to symmetric

. . . 1
intraclass covariance matrices:

lThe symmetric intraclass assumption is plausible when the indi-
viduals in the same cluster are symmetric or exchangeable (e.g., if
the cluster consists of students in the same class). It is less
plausible for asymmetric clusters such as households in which the
individuals do not play exchangeable roles--parents, children, etc.
However, further complication in the covariance structure would make
the problem less tractable, and so we will stay with the symmetric
intraclass specification as an approximation even when the symmetry
assumption might not be plausible.
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1 0
G, = ", s
i 0 ‘1
(Gi)jj =1,

. 2
where p denotes the constant correlation among eij's.

In the discussion to follow, we will assume that the true value
for the intracluster correlation p is known. We will discuss the
estimation of p in Section C.6.

In principle, we should estimate the model and carry out infer-
ences by using the full multivariate specification. However, the
multivariate probit model requires the very expensive computation of
multivariate normal integrals. Therefore, we choose to carry out the
estimation of B with the computationally cheaper univariate specifi-
cation.

By using the univariate specification to estimate the regression
parameters, we will misstate the precision of the estimated coeffi-
cients—~the estimated standard errors and t-statistics are based on
the independence assumption, not accounting for the "loss of sample
size" due to the intracluster correlation.

In Section C.2, we conjecture without proof that a generalization
of Huber's result (Huber 1967)3 can be applied to our problem, which
provides that the incorrect univariate specification will lead to a
consistent estimate of the regression parameters, together with a
general formula for the precision of the estimated regression coeffi-
cients. In Section C.3, we derive the specific form of Huber's for-

mula for the probit regression problem, and in Section C.4, we derive

2Because the scale of the underlying propensity is not identi-
fied, it can be standardized without loss of generality.

3 . .
References are cited at the end of the appendix.
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a "fudge factor," or approximation, which can be used to adjust the
precision estimated from the univariate probit model. 1In Section C.5,
we discuss the application of this fudge factor to randomly assigned
experimental treatments. In Section C.6, we discuss the problem of
estimating the intracluster correlation p, and in Section C.7, we

summarize our findings.

C.2. CONJECTURED GENERALIZATION OF HUBER'S RESULT

Huber (1967) examined the problem of maximizing a misspecified

likelihood criterion Lx(e) and proved that under certain regularity
conditions the resulting misspecified maximum likelihood estimate 6
is consistent and asymptotically normal, with asymptotic covariance

matrix

where A denotes the Fisher information matrix under the misspecified

model and T denotes the true covariance matrix of the misspecified

score function

3

5(9) = 33

log L(6) .

Huber (1967) proved this result for the ome population case,
where the observations are independently and identically distributed.
Similar results have been proven for other cases: Huber (1973) and
Bickel (1975) for linear regression, and Ogata (1980) for incorrect
Markov models.

For the multivariate probit model, the clustered observations

vees 2.2 )T

%' = (2 iJ,
1

i il’
are stochastically independent; however, they are not identically

distributed: the cluster sizes Ji and the observed characteristics

{xij:j =1, ..., Ji} can be different for different clusters. We
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conjecture that the generalization of Huber's result is still true
for our problem. I am working to provide a rigorous proof of the

conjecture,

C.3. ASYMPTOTIC COVARIANCE MATRICES

Under the univariate probit model, we have the misspecified

likelihood function

1 I J; 1-Z, .
L) = 7 LB = x w o[-1) “x 8]

and the misspecified log-likelihood function

I 1 Ji l—Zi.
2(B) = T 2,(8) = £ I log o[(-1) “x .B]
i=1 i=1 j=1 1]

The misspecified score function is

I I gy
2By = ¥ VL. (B = ¢ I x'.C..(B) ,
i=1 i=1 j=1 3
where
1-z].Lj 1-zij
Cij(s) = (-1) ¢(xije)/<1>[(—1) xijB]

¢ = standard normal p.d.f.

The misspecified Fisher information matrix, evaluated at the true

parameters value B = Bo’ is
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A(Bo) E [—vv'z(ﬁo)]

E [~z vC.,.(B ) » x,.]
ij ij* o ij

2
1-7. . o(x,.B ) o"(x,.B )

=EI (D leijso ) 1i%.? T 12%.?

+ ' ol -1 x 8] %[ (-1) ;8]

'x

13%4

2
I J, o7 (x,.8)

=0+ & I =1 2 '

X, X, .
{=1 i= ) 1) 1]
i=1 j=1 @(XijBO) Q(xijso)
where ¢ denotes 1 - . Note that the above expectation is the.same
for both the univariate and the multivariate probit models.

To simplify notation, let

¢ij = ¢(xl_']60) ’
Qi:j = (D(Xijso) ’
2
2 413
g.. = »
1] '('5
ij ij

X = [Xil’ vy X7 s Xij’ cees X1 ],
' 1

4=
n

diag [0, , v, 0,5 5 eesy O, .
11 lJ1 ij 1

where diag[...] denotes the diagonal matrix with the specified diag-

onal elements.
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We have

2

or . x).x, . = x’tzx . (€.3.1)
13743743

A(Bo) = §.
1]

Without accounting for the intracluster correlatiomn, we would

have used

ACRIICR S e R (e G £ S AP EdtoTe 1 g
(€.3.2)

or an estimated version of it, e.g., Vu(é), as the approximate co-
variance matrix for the estimated regression coefficients é. As we
have noted in the previous section, this will likely misstate the pre-
cision of é. »

We will compute the asymptotically correct covariance matrix
according to Huber's formula.

The covariance matrix of the misspecified score function, eval-

uated for the true parameter value § = Bo’ is

T(Bo) = E [Vl(Bo)][V%(BO)]'

I

AL \CURILOR
I 1 34

= I ! ''.C.. '
o E {jil xijcij(eo)][jil %14C14(85)]
I

= iil ?k *55%5, 1%k

where
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2 2
ij,ij = E Clj(BO) = O'ij s
dig,ik = E Cy5(B)C; (B

. @2(xijso,xikso) _ ¢2(xijso,—xikso)
ijtik @ij )

ik Qij . Qik

92(-x; B, %5, 8  92(-x, B ,=x;,8)

- — + — —
%5 7 %k %55 " ik

Ce e 22:5,4k = %3 %uk
N T T T

ij ij ik ik

(3 # k],

Ti4,1k%15%%k *

where ¢2 is the standard bivariate normal c.d.f. with correlation p,

¢zij’ik is @2(xijso,xik80), and

rij,ik = Corr (zij,zik = — —
Vo.. .3, .0, .3

We will further introduce the notation

=
H

DIAG [Ry, wves Ryy veey Ryl
(R,),. =1,

(R,)

i) 5k = Tig,ik ° (G#%
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where DIAG [,.,.] creates the block diagonal matrix with the specified

diagonal blocks.

We have
re) =zt o?.x!.x.. +2 ¢ r,, ,,0..0.%.x, =X{'RI{X .
o] 15 ij ijTij i j#k ij,ik"ij ik"ij7ik

The asymptotic covariance matrix can be expressed as

-1 -1 /N re2o=1
Va(B) = AB)TT(B AR )T = [(X'F 07X IREXXETR) ] .
(C.3.3)

Note that the only difference between Vu(BO) and Vﬁ(Bo) [Egs.
(C.3.2) and (C.3.3)] is the replacement of the covariance matrix R by
the identity matrix., Obviously, if there is no intracluster correla-

tion, the two formulas will be identical.

C.4. TFUDGE FACTOR

The asymptotically correct covariance matrix Vﬁ(Bo) can be esti-

mated with specially designed software after estimating the univariate
probit model. However, for many purposes, it will be sufficient to
estimate (or bound) the effect of intracluster correlation on the
precision (standard error or t-statistic) estimated from the uni-
variate probit model, and make the appropriate adjustment. For this
purpose we will develop a fudge factor to make an approximate adjust-
ment.

We make the following conjecture:

Conjecture C.4.1. If the intracluster correlation p is non-

negative, we can bound r,

ij,ik = Corr (Zij’zik) from above by

r* = 4 » $2(0,0) - 1 . (C.4.1)

Note that
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2 a $2(0,0) - &(0) * &(0)

W/@(O) « 9(0) .+ 8(0) .+ ®(0)

= Corr (Zij’zik; xijBo = %, B = 0 . [l

We don't have a complete mathematical proof of the conjecture.
— ”
XikBo 0
is a critical point of rij,ik(xijBo’XikBo)' What is missing is that
the critical point might not be unique, and might not be the global

A partial proof is given below, which shows that "xijBo =

maximum.

Partial Proof. Let t,s denote the thresholds. The correlation

of interest has the expression

32(t,s) = #(t) -+ ¥(s)

Vo(e) - F() - o(s) - B(s)

(1) The denominator assumes its maximum value when t = s = 0.

(2) The numerator has gradient vector

.
) = (e - o[22t

3(num) pt) - o(t) - o(s) ,
2

1-p

B(g;lm) = 6(s) - @(_t%) - ¢(s) - o(t) .

1-op
The only solution to the gradient equationms

3(num) _ 0, 3(num) _ 0
ot os

is t =s =0,

(3) The Hessian matrix of the numerator at t = s = 0 is
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\/1—02 \ll—p2

which is negative definite for p > 0, Therefore, the numerator assumes

a local maximum at t = s = 0.

(4) The gradient vector for r(t,s) will vanish if both gradient
vectors for the denominator and numerator vanish, e.g., if t = s = 0,
Therefore, r has a critical point at t = s = 0. ”

In order to supplement the incomplete mathematical proof, we have
carried out a numerical évaluation, with results given as Tables C.4.1,
C.4.2, and C.4.3. 1In each of the tables, we have evaluated
rij,ik(xijso’xikso) for various thresholds XijBo and XikBo (denoted
as Sj and Sk in the tables).

For the three levels of intracluster correlation considered
(p = .35, .45, .55), r* = r(0,0) is indeed the maximum among all
r(Sj,Sk)'s tabulated. (Here, r* = r(0,0) corresponds to the under-
lined entry "¢(Sj) = .50, @(Sk) = ,50" in the tables.) Moreover,
even if the conjecture is false, r* still serves as a reasonable
approximation for r(Sj,S ) over a wide range of (Sj,Sk)'s.

Based on the conjecture, we have

Lemma C.4.2. 1If the intracluster correlation p is nonnegative,

we can bound R from above by

* *
R* = DIAG [Rl, cees R:, cens RI] .
*
* *
(Ri)jk =r , (G # k)

*
in the sense that the difference R - R is nonnegative (10t necessarily

nonnegative definite, though). Il
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Table C.4,1

. *
CORRELATION OF DISCRETE DECISIONS, p = ,35

.10 .20 .30 .40 .50 .60 .70 .80 .90

.10 .156

.20 171,194

.30 173 .202 .215

.40 .169 .202 .218 .225

.50 .161 .197 .215 .225 .228

.60 149 186 .207 .219 .224 .224

.70 135 .171 .194 .207 .215 .217 .213

.80 .115 .150 .172 .187 .196 .201 .201 .194

.90 .08 .115 .136 .151 .161 .168 .172 .171 .157

L

"We have omitted the upper triangular part of the table because
the correlation r is symmetric in its two arguments.
*k
- 0¢
02(S,,5,) = 0(5,) + ®(S))

r = r(S,,S,) =
@(Sj) - ¢(Sj) . @(Sk) . @(Sk)
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Table C.4.2

*
CORRELATION OF DISCRETE DECISIONS, p =

.45

$(S,)

TG .10 .20 .30 .40 .50 .60 .70 .80 .90
a(s,)
.10 .216
.20 .230 .260
.30 .228 .267 .283
.40 219 .264  .286 .294
.50 .204 .254 ,280 .293 .298
.60 .186 .237 .267 .284 .293 .293
.70 164 ,214 .246 .267 .279 .284 .281
.80 136 .183 215 .238 .253 .263 .266 .259
.90 .098 .137 ,165 .187 .205 .218 .227 .230 .216

%
We have omitted the upper triangular part of the
the correlation r is symmetric in its two arguments.

*x

Tr =

r(Sj,S

) -

table because

02(5,,8,) - 9(5,) + $(5)

\/¢(sj) JEICHIERICRREICN
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Table C.4.3

CORRELATION OF DISCRETE DECISIONS,* p = .55
9(s,)
pra\ 7 .10 .20 .30 .40 .50 .60 .70 .80 .90
@(Sk)

.10 .284
.20 .296  .332
.30 .287 .337 .356
.40 .268 .329 .357 .368
.50 .245 .311 .347 .365 .371
.60 .218 .286 .327 .352 .365 .366
.70 .188 .253 .296 .327 .346 .356 .354
.80 152 .211 .253 .286 .311 .328 .336 .331
.90 106 152 .189 .220 .245 .267 .286 .296 .285

*
We have omitted the upper triangular part of the table because

the correlation r is symmetric in its two arguments.

*%

r =r(S.,S
J’

¢2(Sj’sk) - ¢(Sj) * ¢(Sk)

©

VB - T(s) + 55 - B8
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*
We can express R by

*
R = (1 - r*)I + r*D ,

where

o
]

DIAG [Dl, oo Di, cens DI] .

Hi
[
.

*
Replacing R by R , we have the expression for covariance matrix
* - -
V(8 = (1 - rov (8) + I x'0 x nifxar ol

*
We can either regard Vm(Bo) as an approximation for Vm(Bo), or

as an upper bound in the sense of Lemma C.4.2.
Denoting the kth row of (x'tzx)'lx'i' by b(k), we have the ex-

pression for the asymptotic variance of Bk as

* L) % ()"
[V (B )1, = b “Rb

(1 - b7 g, (W (O

L-1% 135 824 ey (3 p®)2
. VP R &
i3 i3

*
Again, we can regard [Vm(Bo)]kk as an approximation for
.. (k) . .
[Vm(Bo)]kk' If the coefficients bij have the same signs in the
same cluster, it is an upper bound.

The univariate probit model would use

[V, (B ) 1y = p @0 _ s

i3 M
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A

as the variance of Bk. The adjustment, therefore, is the multiplica-

tive factor

. _
[vm(fso)]kk N [vm(eo)]kk
[Vu(BO)]kk [Vu(BO)]kk

=1 - 1%+ 1%

P et
o]
~~

=1-r* + r*

™~
L(
/'\
O"

<1- k4w (C.4.2)

T ]

where

ng) =i-—2b.(1.‘) ,
i. J. ij
1]
2 _ 1 (k) (k)2
S; =3I (b -by
i i

(The approximation [V (8 )], above, can be replaced by upper bound if
the coefficients b(ﬁ) have the same sign in the same cluster,)
(k)

If the cluster size J is approximately independent. of b we

have
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T J (b(k))?' T Ji
i i

~ . (C.4.3)
z 3, (b(k) 2 f I

Theorem C.4.3. If the intracluster correlation p is nonnegative,
(k)

and if the cluster size J. is approx1mate1y independent of b the
estimated precision based on the univariate probit model can be ad-

justed multiplicatively by the fudge factor

r 3}

1 - r% + r* . %—3—-, (C.4.4)
1

i

where r* = 4 « $2(0,0) - 1 and 92 is the standard bivariate normal

c.d.f., with correlation p. The fudge factor is an approximate upper

(k)

bound in general, and an exact upper bound if the coefficients b
have the same signs in the same cluster. If the cluster size Ji is

=(k)

appreciably dependent on b , no such simple fudge factor exists; the
approximate upper bound (C.4.3) has to be used. ||

For the Health Insurance Study population, we have

o
[
(VAN

= 3.87 .

He
=
e

For the dichotomous decision to use medical care (first equation in
the two-part and four-part models), we estimated the intracluster
(intrafamily) correlation p to be .45, using a method described in
the last section. The corresponding r* from Table C.4.2 is .30.
Therefore, the adjustment in Theorem C.4.3 is 1.86 = (1.36)2. The
standard errors estimated from the univariate probit regression model

should be inflated by at most 36 percent.
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C.5. EXPERIMENTAL TREATMENT

For many purposes, the most crucial inferences are comparisons

of experimental treatments. If the treatments are assigned randomly

to the individual clusters, with individuals in the same clusters

()

assigned to the same treatment, the column vectors X for the

treatments will be approximately orthogonal to the other explanatory
(k)
3

variables, and the coefficient Xi will be the same (thus have the

same signs) in the same cluster., Moreover, the cluster size Ji will
be approximately independent of ;g%). Therefore the two requirements
in Theorem C.4.3 for the fudge factor (C.4.3) to be an exact upper
bound will be satisfied for those variables in terms of X(k).

The vectors b(k) = kth row of (X'$2X)—1X'$' are related to X
through (1) reweighting by } and (2) rotation by (X'$2X)_l. (1) The
reweighting is moderate. As Xijso ranges from O through 2, Bij
changes by about a factor of two (Table C.4.4). Such moderat?kie—

weighting is unlikely to change the qualitative features of X

(k)

drastically. (2) Because of the approximate orthogonality between
the treatment variables and the other explanatory variables, the
unweighted rotation matrix (X'X)-l will be approximately block diag-
onal, with one block corresponding to the treatment variables (in-
cluding the intercept) and another block corresponding to the other
explanatory variables. Since the reweighting is moderate, it is
unlikely to change the approximate orthogonality. Thus, the weighted
rotation matrix (X'jIZX)_1 will still be approximately block diagonal.
Therefore, the rotation for the treatment variables X(k) is almost
entirely among themselves (including the intercept), Since all the

(k) satisfy the conditions for Eq. (C.4.3) being

treatment variables X
an exact upper bound, rotation among the variables is not going to
change these features.

Corollary C.5.1, For randomly assigned experimental treat-

ments, if individuals in the same cluster are assigned to the same
treatment, the fudge factor in (C.4.4) will approximately satisfy

the conditions in Theorem C.4.3 for being an exact upper bound. ”
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Table €.4.4

THE MAGNITUDE OF Gij

. .B o,, = ¢../\J¢.. 0.,
ij o ij ij ij ij
0.0 .798
+ 0.5 .762
+ 1.0 .662
+ 1.5 +520
£ 2.0 . 360

C.6. ESTIMATION OF THE INTRACLUSTER CORRELATION

For either estimating the covariance matrix v in (C.3.3), or
computing the adjustment (C.4.2) or the fudge factor (C.4.4), we need
to estimate the intracluster correlation p for the underlying pro-
pensities.

To avoid the prohibitive computation of multivariate normal
c.d.f., we can use a random subsample of two individuals from each
cluster with two or more individuals, (The computation of bivariate
normal c.d.f. is still expensive, but reasonably affordable.) There-
fore, we have the reduced sample

Uzgoxg) tk=1,250=1, ..., I'},
vhere 1" < I. (Single-member clusters are dropped by this procedure.)

The likelihood function is

L(D’S) =

l
03 4

Li(p,B)

i=1

1-z 1-z
12
0201 the,en a8 00,

]
a3 H

i=1
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where 92(*,*; p) denotes the standard bivariate normal c.d.f. with
correlation p.

Lemma C.6.1. Let é be a consistent estimate of B (e.g., the
univariate probit regression estimate). We can obtain a consistent
estimate of p by maximizing L(p,é). [

Proof. We will denote the maximum likelihood estimate of (p,B)
by (;,é), the given consistent estimate of 8 by é, the estimate max-
imizing L(p,é) by ;. We will also denote the log-likelihood by 2,

the partial differentiation in p by Vp’ and the partial differenti-

ation in B by VB:
g
A n A
) (0,B)
(0,8) ' f — . —
(Q,B) (p’B)
| = > D
(p,0)

Expand the function Vpl(p,s) in p near p = p:

v 10,8) = vpz<$,§> + (o -p) - vszcé,é) + ol

Since p maximizes 2(p,B), the partial derivative Vpl(p,B) vanishes

-~

at p = p.

0= VDQ(Q)B) + (O - p) * Viz(pss) + e

H

- vpz(p,s)
p=-p =

T A
-v
pl(p,B)
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Expanding the function VpQ(p,B) in B near B = B yields

~ - ~ ~ _ ~ ' ~ -~
Vpl(p,B) sz(p,B) + (B - B) VBVpl(p,B) S P

A A

Since (p,B) maximizes 2(p,B), the partial derivative sz(p,B) vanishes.

Therefore

v A ~ -~ _ A ' -~ A
pz(p,B) 0+ (B - B) vsvpz(o,s) .

Therefore

-~ _ ~ ' A A
N B)'Va7 2(p,8)
p-p = 2 .~ -

T =Va(e,8)

(B - 8)'1(o,8)
= I(p,p) ’

where I(p,B) is the off-diagonal block in the average Fisher informa-
tion matrix, and I(p,p) is the diagonal term for p.

We have assumed é to be consistent; under mild regularity condi-
tions on the design matrix, é will also be consistent. Therefore
é - é will converge to zero, and ; - S will converge to zero as long
as I(p,p) is bounded away from zero. Again ; will be consistent
under mild regularity conditions, which proves that ; will be con-
sistent. ]I '

The maximization required in Lemma C.6.1 can be carried out by
a grid search. The numerical evaluation of the likelihood function
would require the computation of bivariate normal c.d.f., which can
be carried out either with numerical double integration or some

series expansion methods.
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C.7. CONCLUSION

Assuming the generalization of Huber's result conjectured in

Section C.2, we derived the asymptotic covariance matrix (C.3.3) for
the multivariate probit regression model. We also derived a fudge
factor (C.4.4) that can be used to adjust the standard errors esti-
mated from the univariate probit regression model. Under certain
conditions, such as an analysis of experimental treatment, the fudge

factor can be regarded as an upper bound.
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Appendix D
PREDICTIVE RESULTS FROM OTHER SITE-YEARS
FOR ALTERNATIVE MODELS

Table D.1

DAYTON YEAR 3: PREDICTIONS (STANDARD ERROR)

One~Part Two-Part Four-Part
Plan ANOVA ANOCOVA Model Model Model
Free 408.21 404.96 634,84 496,37 514,22
(46.77) (74.43) (89.24) (55.67) (41.57)
P25 387.99 365.85 379.53 313.84 371.34
(82.45) (82.45) (57.74) (39.20) (35.75)
P50 217,47 215,28 247,49 244,87 325.90
(39.76) (97.58) (42.85) (36.52) (38.67)
PFD 309.51 325,91 261.84 207.00 320,82
(57.16) (78.58) (38.99) (26.24) (33.12)
Ipp 572.39 596.85 285,43 271.04 346,78

(336.64) (133.22) (64.10) (53.88) (43.02)
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Table D.2

SEATTLE YEAR 1: PREDICTIONS (STANDARD ERROR)

One-Part Two-~-Part Four-Part
Plan ANOVA ANOCOVA . Model Model Model
Free 361.94 357.26 492,40 379.00 382.08
(40.83) (35.60) (54.43) (33.27) (27.95)
P25 ’ 323,02 339.56 401.68 314.78 325.46
(60.23) (46.68) (54.96) (35.28) (28.31)
P50 - - - - -
PFD 244,31 249,74 258,24 217.09 278.26
(41.47) (48.80) (37.02) (26.49) (27.13)
IDP 245,30 233,33 . 306.47 263.27 328.76
(25.33) (44.,05) (39.56) (28.44) (28.69)
Table D.3
SEATTLE YEAR 2: PREDICTIONS (STANDARD ERROR)
One-Part Two-Part Four-Part
Plan ANOVA ANOCOVA Model Model Model
Free 412,74 400,03 517.13 363,85 442,30
(91.56) (78.52) (60,25) (32.27) (35.20)
P25 529,12 541.58 385.41 311.93 359.12
(148.74) (105.17) (56.49) (36.71) (35.01)
P50 - - —_ - _
PFD 281,93 307.39 267,56 260,92 317.46
(57.07) (112.73) (41.75) (34.85) (33.21)
1DP 274,90 264,46 306.91 260.96 357.18

(36.02) (98.85) (42.46) (29.70) (34.80)




=140~

Table D.4

FITCHBURG YEAR 1: PREDICTIONS (STANDARD ERROR)

One-Part Two-Part Four-Part
Plan ANOVA ANOCOVA Model Model Model
Free 494,76 477.64 441,13 345,57 376.30
(172.13) (114,.89) (63,10) (41.67) (32.64)
P25 332.41 314.89 358.22 335.81 337.77
(80.59) (161.18) (67.53) (55.66) (35.87)
P50 212,98 238.86 261.85 215.24 267.86
(56.41) (237.84) (70.37) (50.10) (38.40)
PFD 295,13 292,37 214.44 181.44 285.07
(86.02) (175.00) (41.92) (31.74) (36.95)
IDP 355.73 383.92 ° 263.44 268.05 305,40
(96.31) (133.20) (42.20) (39.26) (35.60)
Table D.5
FITCHBURG YEAR 2: PREDICTIONS (STANDARD ERROR)
One-Part Two-Part Four-Part

Plan ANOVA ANOCOVA Model Model Model
Free 522,62 506.71 576.25 478,55 476.68
(110.99) (125,34) (98.10) (71.81) (45.70)
P25 252,02 289,31 375.26 301,36 384,61
(52.32) (174.95) (82.95) (59.61) (42.52)
P50 154.99 231.75 277.34 261.45 280.15
(37.62) (258.14) (88.95) (78.09) (46.86)
PF¥D 238.49 167,52 259,04 269.23 319,49
(50.99) (190.43) (60.07) (61.05) (44.76)
1DP 565.92 578.76 309.80 292,95 357.59

(240.52) (147.01) (59.86) (52.59) (40.62)
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Table D.6

FRANKLIN COUNTY YEAR 1: PREDICTIONS (STANDARD ERROR)

One-Part Two~Part Four-Part

Plan ANOVA ANOCOVA Model Model Model
Free 339.41 331.16 363.88 307.69 373.98
(48.85) (85.78) (42.71) (32.14) (31.99)

P25 194,03 202,90 233,70 206.40 310,08
(36.72) (119.14) (35.73) (28.86) (31.79)

P50 790.58 N 835.98 257.36 223,46 290,51
(622,94) (194.02) (61.36) (49.40) (43.80)

PFD 204.63 195.91 139.11 149.24 248,11
(63.47) (115.50) (21.11) (22.55) (28.12)

IDP 304,99 304,31 l 252,72 253.79 306,57
(72.11) (101.88) (33.73) (32,09) (30.91)

Table D.7

FRANKLIN COUNTY YEAR 2: PREDICTIONS (STANDARD ERROR)

One-Part Two-Part Four-Part

Plan ANOVA ANOCOVA Model Model Model
Free 394,27 400,15 368,95 289.23 399.09
(79.90) (60.24) (49,45) (32,.31) (36, 82)

P25 216.31 222.84 325.52 251.95 361.40
(37.63) (84,21) (56.53) (36.74) (38.28)

P50 452,63 500.95 297,26 252,19 282,68
(200.38) (136.85) (80.99) (61.45) (47,21)

PFD 148.91 145,71 136.19 148.02 264,15
(36.46) (83.45) (24.05) (25.25) (33.34)

IDP 286.11 261.68 238.93 214.81 318.60

(65.29) (72.44) (36.35) (28.62) (34,21)
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Appendix E
PLAN RELATIVES FROM OTHER SITE-YEARS
FOR ALTERNATIVE MODELS

Each plan is presented as a percentage of the free plan for that

site and year.

Table E.1

PLAN RELATIVES FOR DAYTON YEAR 3%

One-Part Two-Part Fbur—Part

Plan ANOVA ANOCOVA Model Model Model
Free 100 100 100 100 100
(=) ) (=) (=) (=)

P25 95 90 60 63 72
(0.21) (0.35) (2.65) (2.93) (3.62)

P50 53 53 39 49 63
(3.11) (1.53) (4.22) (4.10) (4.14)

PFD 76 80 41 42 62
(1.34) (0.73) (4.16) (5.08) (5.00)

IDP 140 147 45 55 67
(0.48) (1.25) (3.39) (3.07) (3.56)

8Absolute t-values given in parentheses are based on the difference
between that plan and the free plan as measured on the dollar scale,
not in proportioms.
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Table E.2

PLAN RELATIVES FOR SEATTLE YEAR 12

One-Part Two-Part Four-Part
Plan ANOVA ANOCOVA Model Model Model
Free 100 100 100 100 100
1G] ) (=) =) (=)
P25 89 95 82 83 85
(0.53) (0.30) (1.35) (1.48) (1.95)
P50 - - - —_ -
PFD 68 70 52 57 73
(2.02) (1.78) (4.01) (4.18) (3.61)
IDP 68 65 62 69 86
(2.43) (2.18) (3.18) (2.93) (1.82)

8Absolute t-values given in

parentheses are based on the difference
between that plan and the free plan as measured on the dollar scale,
not in proportions.

Table E.3

PLAN RELATIVES FOR SEATTLE YEAR 22

One-Part Two-Part Four-Part
Plan ANOVA ANOCOVA Model Model Model
Free 100 100 100 100 100
-) C) -) =) -)
P25 128 135 75 86 81
(0.67) (1.07) (1.85) (1.20) (2.37)
P50 -_— - - -— —
PFD 68 77 52 72 72
(1.21) (0.67) (3.88) (2.42) (3.57)
IDP 67 66 59 72 81
(1.40) (1.07) (3.31) (2.65) (2.45)

8Absolute t-values given in parentheses are based on the difference
between that plan and the free plan as measured on the dollar scale,
not in proportions.
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Table E.4

PLAN RELATIVES FOR FITCHBURG YEAR 12

One-Part Two-Part Four-Part

Plan ANOVA ANOCOVA Model Model Model
Free 100 100 100 100 100
(=) (=) ) (=) (=)

P25 67 66 81 97 90
(0.85) (0.82) (1.00) (0.16) (1.08)

P50 43 50 59 62 71
(1.56) (0.90) (2.03) (2.14) (2.70)

PFD 60 61 49 53 76
(1.04) (0.88) (3.26) (3.40) (2.44)

IDP 72 80 60. 78 81
(0.70) (0.53) - (2.64) (1.52) (1.98)

2pbsolute t-values given in parentheses are based on the difference
between that plan and the free plan as measured on the dollar scale,
not in proportions.
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Table E.5

PLAN RELATIVES FOR FITCHBURG YEAR 22

One-Part Two-Part Four-Part

Plan ANOVA ANOCOVA Model Model Model
Free 100 100 100 100 100
- (<) (=) (=) =)

P25 48 57 65 63 81
(2.21) (1.00) (1.77) (2.10) (2.07)

P50 30 46 48 55 59
(3.14) (0.96) (2.44) (2.19) (3.68)

PFD 46 33 45 56 67
(2.33) (1.48) (3.06) (2.43) (3.16)

IDP 108 114 54 61 75
(0.16) (0.37) (2.65) (2.33) (2.74)

8Absolute t-values given in parentheses are based on the difference
between that plan and the free plan as measured on the dollar scale,
not in proportioms.
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Table E.6

PLAN RELATIVES FOR FRANKLIN YEAR 1

One-Part Two-Part Four-Part

Plan ANOVA ANOCOVA ) Model Model Model
Free 100 100 100 100 100
(=) (=) (=) (=) =)

P25 : 57 61 64 67 83
(2.38) (0.87) (2.64) (2.62) (2.13)

P50 233 252 71 73 78
(0.72) (2,.38) (1.54) (1.52) (1.88)

PFD 60 59 38 49 66
(1.68) (0.94) (5.20) (4.44) (4.34)

IDP 90 92 69 82 82
(0.40) (0.20) (2.33) (1,34) (2.30)

8absolute t-values given in parentheses are based on the difference
between that plan and the free plan as measured on the dollar scale,
not in proportions. :
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Table E.7

PLAN RELATIVES FOR FRANKLIN YEAR 2

One-Part Two-Part Four-Part

Plan ANOVA ANOCOVA Model Model Model
Free 100 100 100 100 100
) ) -) (=) (=)

P25 55 56 88 87 91
(2.02) (1.71) (0.66) (0.84) (1.05)

P50 115 125 81 87 71
(0.27) (0.67) (0.81) (0.56) (2.38)

PFD 38 36 37 51 66
(2.79) (2.46) (4.66) (3.74) (3.79)

IDP 73 65 65 74 80
(1.05) (1.46) (2.41) (1.89) (2.49)

2Absolute t-values given in parentheses are based on the difference
between that plan and the free plan as measured on the dollar scale,
not in proportions.
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