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[1] A conceptual hydrological model structure contains several parameters that have to be
estimated through matching observed and modeled watershed behavior in a calibration
process. The requirement that a model simulation matches different aspects of system
response at the same time has led the calibration problem toward a multiobjective
approach. In this work we compare two multiobjective calibration approaches, each of
which represents a different calibration philosophy. The first calibration approach is
based on the concept of Pareto optimality and consists of calibrating all parameters with
respect to a common set of objectives in one calibration stage. This approach results in a
set of Pareto-optimal solutions representing the trade-offs between the selected
calibration objectives. The second is a stepped calibration approach (SCA), which implies
a stepwise calibration of sets of parameters that are associated with specific aspects of the
system response. This approach replicates the steps followed by a hydrologist in
manual calibration and develops a single solution. The comparison is performed
considering the same set of objectives for the two approaches and two model structures of
a different level of complexity. The difference in the two approaches, their reciprocal
utility, and the practical implications involved in their application are analyzed and
discussed using the Hesperange catchment case, an experimental basin in the Alzette River
basin in Luxembourg. We show that the two approaches are not necessarily conflicting but
can be complementary. The first approach provides useful information about the
deficiencies of a model structure and therefore helps the model development, while the
second attempts at determining a solution that is consistent with the data available. We
also show that with increasing model complexity it becomes possible to reproduce the
observations more accurately. As a result, the solutions for the different calibration
objectives become less distinguishable from each other, indicating that calibration results
become less dependent on the objective functions used when the model is a better
representation of reality and has a higher potential to reproduce the observations.

Citation: Fenicia, F., H. H. G. Savenije, P. Matgen, and L. Pfister (2007), A comparison of alternative multiobjective calibration

strategies for hydrological modeling, Water Resour. Res., 43, W03434, doi:10.1029/2006WR005098.

1. Introduction

[2] Conceptual hydrological models commonly operate
with several connected stocks representing physical ele-
ments in a catchment. Model parameters define the behavior
of the various conceptual elements and the way they relate
to each other. As conceptual elements represent averages of
various subcatchment processes that contribute to the over-
all catchment response, model parameters are conceptual
representations of abstract watershed characteristics and
cannot be assessed from direct measurements. Instead they
have to be determined by calibration, which is a process of
changing parameter values until a satisfactory agreement
between simulated and observed catchment behavior is
obtained [Sorooshian and Gupta, 1995].

[3] In manual calibration a process of trial and error
parameter adjustment is made, and the simulated and
observed watershed behavior is compared using visual
inspection and different measures of performance. While
manual calibration can produce good results, it can be time
consuming and it involves a great deal of subjective
judgment.
[4] The shortcomings of manual calibration have moti-

vated the automation of the calibration process. This has
transformed the calibration problem into an optimization
problem, consisting in determining the set of model param-
eters that optimizes (maximizing or minimizing) a number
of objective functions. Objective functions are single valued
equations that depend on model parameters and express the
agreement between observed and simulated catchment be-
havior in numerical form.
[5] Single objective calibration consists of determining

the set of model parameters that optimizes a single objective
function. Such an approach to model calibration, however,
is subject to limitations that restrict its applicability. Cali-
bration based on a single objective function, in fact, often
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results in hydrograph representations that are considered
unrealistic from the operational hydrologist’s point of view.
This can be due to the following reasons. First, a single
objective function may enhance the error with respect to the
simulation of some aspects of the observed signal at the
expense of other aspects, therefore constraining the calibra-
tion to fit certain characteristics of the system response
while neglecting others. Second, the integration of the
residuals into one value may hide or underestimate the
information content of the data available, therefore not
capturing and not exploiting all the information that is
present in the data. These limitations suggest the need of
constraining the calibration processes by a larger number of
objective functions, leading to a multiobjective view of the
calibration problem.
[6] In this paper we compare two multiobjective

approaches, representative of different ways of interpreting
the calibration process. The first approach refers to the
concept of Pareto optimality [Gupta et al., 1998] and
consists in calibrating all model parameters simultaneously
with respect to a common set of objective functions. The
approach results in the determination of a set of Pareto-
optimal solutions, reflecting various trade-offs between
parameters and calibration objectives. The second is a
‘‘stepped’’ calibration approach [Hogue et al., 2000], and
consists in associating model parameters with calibration
objectives based on the processes that each parameter is
designed to represent and on the role of each process on the
overall system response. The parameter sets associated with
the different objectives are calibrated in separate stages,
reflecting the procedure that is followed by operational
hydrologists in manual calibration. The approach provides
a single solution that represents a balance between the
selected calibration objectives. The purpose is to demon-
strate the principles and implications of each approach in a
comparative evaluation. The two approaches are examined
in a case study that considers the calibration of two models
of different levels of complexity.
[7] The set of objective functions, the same for the two

approaches, is chosen to evaluate model performances with
respect to three aspects of the stream hydrograph simula-
tion, namely, low flows, high flows and lag time of the
system. A comparison is made between two model struc-
tures with different levels of complexity. Initially a simple
model structure is used and calibration results are evaluated.
According to the calibration results and to the hydrological
insight of the catchment, the initial model structure is
improved by introducing additional processes and compo-
nents. The calibration procedure is repeated for the im-
proved model structure. This comparison gives the
opportunity not only of evaluating the performance of
multiobjective calibration at different levels of model com-
plexity, but also allows a discussion of the results of
calibration strategies as a means of understanding model
deficiencies and helping model development.

2. Description of the ‘‘All at Once’’ Pareto-Based
Calibration Approach

[8] In the field of hydrology, the principles of multi-
objective calibration based on the concept of Pareto opti-
mality were first presented by Gupta et al. [1998].
Subsequently, the concept has been applied in several case

studies with different kinds of model structures and calibra-
tion objectives [Bastidas et al., 1999; Boyle et al., 2000;
Madsen, 2000, 2003; Wagener et al., 2001; Meixner et al.,
2002; Crow et al., 2003; Vrugt et al., 2003]. In such a
framework, the multiobjective calibration problem can be
stated as follows [Madsen, 2000]:

Min F1 #ð Þ;F2 #ð Þ; . . . ;Fm #ð Þf g J 2 Q

where the solution # is a vector of model parameters, which
is constrained to vary within the feasible parameter spaceQ.
The objective functions Fi(#), i = 1. . .m; are scalars that
reflect the model performance with respect to the selected
calibration objectives. Lower values in Fi(#) indicate better
model performances.
[9] The concept of Pareto optimality is based on the

notion of Domination and is defined as follows: (1) A
solution #1 is said to dominate another solution #2 when #1
is better than #2 in at least one objective (meaning Fi(#1) <
Fi(#2) for at least one value of i), and not worse than #2 in
any of the others (meaning Fi(#1)� Fi(#2) for all values of i).
(2) The Pareto-optimal set of solutions is composed of those
solutions that are not dominated by any solution of the
feasible search space. The mapping of the Pareto-optimal
solutions in the objective function space is defined as the
Pareto-optimal front.
[10] The Pareto-optimal set of solutions will in general

consist of more than one solution. When this is the case, the
objective functions are said to be conflicting with each
other, in a sense that moving from one optimal solution to
the other determines an improvement in one or more
objectives, and a deterioration in the others.
[11] When applied to hydrological modeling, the exis-

tence of multiple optimal solutions can be related to a
systematic component of the modeling error. This compo-
nent can be determined by errors in the model structure, in
the boundary conditions, and in the process of data collec-
tion and preparation. When the modeling task is seen as an
effort to represent as closely as possible the observed
behavior of the catchment, which can appear reasonable
when no information is available to correct eventual dis-
tortions in the measured data, the existence of multiple
Pareto-optimal solutions can be regarded as a failure of the
model to perform this task. In this view, the condition of
multiple optimal solutions can be regarded as an inability
of the model to reproduce simultaneously different aspects
of the system behavior, and therefore is related to model
structural limitations.
[12] The Pareto-based approach, apart from helping the

identification of model limitations, can also be useful to
compare relative merits of different models and to track
changes in model performance. The Pareto-optimal front, in
fact, marks the best performance that a model can reach
given a record of calibration data. A shifting of the front
toward the origin of the axes with the same calibration
record would therefore indicate a better model, or a suc-
cessful modification of the model structure. As an example,
Xia et al. [2002] use this approach to evaluate differences
between alternative model structures and parameterizations,
concluding that such an approach provides a useful
guidance for model improvement.
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[13] In the light of the Pareto-based approach, all Pareto-
optimal solutions are equally important, as it is difficult to
prefer one solution over another without any further infor-
mation about the problem. This does not mean, however,
that an operational hydrologist who is interested in model
simulations that fulfill the selected calibration objectives
would regard all Pareto-optimal solutions as equally good.
In the presence of conflicting objectives, for instance, the
solutions that optimize each individual objective function
and that belong to the Pareto-optimal set of solutions would
probably suffer from the same problems that affect single
objective calibration and that lead to the determination of
often unsatisfactory outcomes. Those solutions could in fact
result in a biased performance that fits one aspect of the
observed system behavior (the one related to the specific
objective function) but neglects other aspects. Madsen
[2003], for instance, performed multiobjective calibration
by considering the simulation of groundwater levels and
catchment runoff as calibration objectives. They observed
that the Pareto-optimal solution that optimizes the perform-
ance with respect to groundwater levels performed ‘‘very
badly’’ in simulating catchment runoff. A significant
improvement in the catchment runoff simulation could be
obtained by slightly relaxing the performance of the
groundwater level simulation. Xia et al. [2002, 2005],
analyzing several land surface models, determined that
some parameter sets, while being optimal, corresponded to
an unrealistic description of processes.
[14] This is to say that the solutions that fulfill all the

selected calibration objectives may have to be found in a
proper balance of the corresponding objective functions.
Balanced solutions may be contained in the Pareto-optimal
set of solutions,butnotnecessarily representedbyall solutions
of the set.HencePareto-based calibration canbeconsidered as
a valuable tool to evaluate amodel with respect to its ability to
reproducedifferent aspects of theobservations and tocompare
performances of different models, but it has to be considered
that the solutions obtained by this approach, while being
equally good from an ‘‘optimization’’ point of view, may not
all be acceptable from a ‘‘calibration’’ perspective.

3. Description of the Stepped Calibration
Approach

[15] The stepped calibration approach (SCA) is a calibra-
tion strategy that mimics the steps that would be followed by
operational hydrologists who manually calibrate a model to
fit certain aspects of the observed watershed behavior. The
approach determines a single parameter set, which corre-
sponds to an acceptable simulation according to the selected
criteria. The approach consists of the following main points:
(1) selecting some specific characteristic of the recorded time
series that should be well simulated according to our needs
(e.g., high flows or low flows), (2) defining objective func-
tions that represent performance measures for the simulation
of the selected characteristics, (3) associating model param-
eters with the selected objective functions based on the
process description associated to each parameter and on the
influence that each process has on the simulated system
response, and (4) calibrating the parameters associated with
each objective function in separate stages.
[16] The calibration in separate stages can be done by

adopting different schemes and assigning different priori-

ties. An approach could be to first calibrate all parameters
with respect to the first objective function, then recalibrating
all parameters except those related to the first objective
function (which are fixed at the calibrated values) with
respect to the second objective function, then recalibrate all
parameters except those related to the first and second
objective function against the third objective function, and
so forth. Alternatively, after a first calibration of all param-
eters with respect to the first objective function, each group
of parameters associated with each objective function can be
calibrated individually, while fixing the remaining parame-
ters at the calibrated values [e.g., Hogue et al., 2000]. The
solution that is determined through the SCA is clearly
dependent on the succession of steps that is followed, in the
sense that altering the order of the different steps would lead
to different solutions. However, as this approach replicates
in an automated fashion the steps that are normally
undertaken by operational hydrologists during manual
calibration, the methodology that is followed is to start by
fitting first those characteristics of the hydrograph that are
more regular and better identifiable (e.g., low-flow reces-
sions), while gradually proceeding to the calibration of the
others (e.g., timing, bias).
[17] The application of the SCA can be trivial in those

cases where model components perform operations that are
not easily recognizable as specific features of the system
response, or where their effect applies to aspects of the
simulation that affect different calibration objectives. How-
ever, it is not infrequent that at least some of the model
parameters express processes that have a specific influence
on the simulation. When this is the case, a possibility could
be to use in the first stage of the SCA a general objective
function representing an overall measure of performance,
and then proceed with more specific calibration objectives
in the following stages, adjusting only those parameters that
have a direct impact on the selected objectives.
[18] The SCA is based on the assumption that model

calibration should assure that all components perform the
operations for which they are intended. In this context, it
appears logical to adjust model parameters to reproduce the
hydrograph characteristics that they are designed to influ-
ence. The purpose of the SCA is to obtain a single
parameter set that corresponds to a model simulation that
is consistent with the expert’s understanding of reality
represented by the model structure. Hence it tries to avoid
fitting some aspects of the simulations at the expense of
others and tries to prevent compensation of internal model
structural errors by adjusting model parameters to unrealis-
tic values.
[19] With respect to the Pareto-based calibration, the SCA

looks at the calibration problem more in a ‘‘calibration’’
optic than in an ‘‘optimization’’ optic. As it proceeds in
successive single objective calibration stages, in fact, the
final solution does not necessarily result in a Pareto-optimal
solution. This issue will be illustrated further in the appli-
cation. Moreover, unlike the Pareto-based calibration, the
SCA results in a single solution, and does not provide
alternative possible combinations of parameters that can
produce equally good results.
[20] The SCA has been applied by Hogue et al. [2000]

for the calibration of the Sacramento soil moisture
accounting (SAC-SMA) and snow accumulation and
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ablation (SNOW-17) models. Other applications refer to
Harlin [1991], who developed a process oriented calibration
scheme for the Hydrologiska Byråns Vattenbalansavdelning
(HBV) model, further improved by Zhang and Lindström
[1997]. In those applications, the SCA is mostly regarded as
an automated alternative to manual calibration. In the case
of this paper, we provide more insights with respect to the
principles and implications of this calibration strategy.

4. Case Study 1: Lower-Complexity Model
Structure

4.1. FLEXA Model Description

[21] In this study we use two versions with different
complexities of the flux exchange (FLEX) hydrological
model, introduced by Fenicia et al. [2006]. The first
version, named FLEXA, is composed of three reservoirs: an
unsaturated soil reservoir (UR), which represents the
storage capacity of the soil, a fast reacting reservoir (FR)
accounting for the formation of fast runoff components and
a slow reacting reservoir (SR), representing the slow runoff
components (Figure 1).
4.1.1. Unsaturated Soil Module
[22] Rainfall R is partitioned in a component that

produces runoff Rf and a component that infiltrates into
the soil Ru through a rainfall excess model that assumes a
distribution of storage capacity into the catchment (equa-
tions (1), (2), and (3))

Cr ¼
1

1þ exp
	Su=Sfc þ 1=2

b

� � ð1Þ

Rf ¼ CrR ð2Þ

Ru ¼ 1	 Crð ÞR ð3Þ

where Cr is the runoff coefficient, expressed as an S-shaped
function dependent on the ratio between the storage Su in

UR and the maximum storage Sfc, b is a shaping parameter,
Rf is the contribution to FR, and Ru is the flux that is added
to UR.
[23] Percolation Ps from UR to SR is calculated as a

linear function of Su through the coefficient Pmax.

Ps ¼ Pmax Su=Sfc
� �

ð4Þ

[24] The potential transpiration is converted into actual
transpiration according to the following formula:

Ta ¼ Tp 
min 1;
Su

Sfc

1

Lp

� �

ð5Þ

where Lp is the fraction of Sfc below which Tp is constrained
by Su.
4.1.2. Transfer Routine
[25] As shown in Figure 1, the transfer routine of the

model consists of two lag functions and two reservoirs. The
two lag functions are characterized by a triangular distribu-
tion of linearly increasing weights and are defined by the
parameters Nlagf and Nlags that determine the number of time
steps in the transformation routine. Those functions are used
to offset the flux Ps that enters SR and the flux Rf that enters
FR, and mainly control the lag time of the system and the
simulation of the rising limbs of the hydrograph.
[26] The FR and SR reservoirs are linear reservoirs

defined by the timescales Kf and Ks respectively. The
drainage equations for the two recession components are
expressed as follows:

Qf ¼ Sf =Kf ð6Þ

Qs ¼ Ss=Ks ð7Þ

where Qf and Qs are the fast and slow discharges and Sf and
Ss are the storages of FR and SR respectively. These
reservoirs mainly control the simulation of the recession

Figure 1. Structure schematization of the FLEXA model.
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limbs of the hydrograph. Some more details on the
characteristics of the transfer module composed lag function
and reservoir are given in Appendix A. The model has a
total of 8 parameters that are summarized in Table 1
together with their corresponding units.

4.2. Objective Functions Definition

[27] For this study we chose three main hydrograph
characteristics that the model should correctly simulate:
high flows, low flows, and timing. Model performance
regarding those characteristics is evaluated by the following
objective functions, respectively:

FLF ¼
1

n

X

n

i¼1

lnQs;i 	 lnQo;i

� �2

 !

ð8Þ

FHF ¼
1

n

X

n

i¼1

Qs;i 	 Qo;i

� �2

 !

ð9Þ

FLT ¼ 1	 R ¼ 1	

X

n

i¼1

Qs;i 	 Qs

� �

Qo;i 	 Qo

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

Qs;i 	 Qs

� �2
X

n

i¼1

Qo;i 	 Qo

� �2

s ð10Þ

where Q represents discharge, n is the total number of time
steps on the calibration period, the subscripts i, s, and o
stand for time of observation, simulated, and observed
respectively, and the overbar indicates the average during
the observation period. Because of the use of the
logarithmic function, FLF weighs the error (absolute
difference between observed and simulated values) on the
low flows more than the error on the high flows. Therefore
FLF places a strong constraint on the simulation of the lower
portion of the hydrograph. FHF gives the same weight to the
error on different portions of the hydrograph. However,
considering that the error on the high flows is normally
larger than the error on the low flows, and as the error is
squared, FHF gives a strong weight to the error in the peaks
of the hydrograph. R is the correlation coefficient, which is
maximized when the time shift between the fluctuations of
the observed and simulated discharge is minimal. The
reason of using 1-R (FLT) is because the problem
formulation uses a ‘‘minimization’’ objective.

4.3. Study Area and Data Description

[28] The study area is part of the experimental Alzette
river basin located in the Grand Duchy of Luxembourg
(Figure 2). For this study three years of streamflow hourly
data from 1 August 2000 until 31 July 2003 are used. The
data are recorded at the Hesperange gauging station, which
is located along the main course of the Alzette River and
drains a catchment of 288 km2. The land use consists of
agriculture (27%), grass (26%), forest (29%) and urban area
(18%). The lithology is mainly characterized by marl and
marly sandstone on the left bank tributaries, and limestone
on the right bank tributaries of the Alzette River. Limestone
areas represent zones of infiltration of rainfall water, and
constitute a permeable aquifer, which represents the main
reservoir that sustains the streamflow during dry weather
periods. Marl areas are relatively impermeable to rainfall,
therefore determining high runoff volumes during or shortly
after rainfall events, and little or no discharge during dry
periods. The density of rain gauges in the study site is of
about one instrument per 30 km2. Instruments consist of
tipping buckets and automatic samplers that measure at
different time intervals of 20 min or shorter. Hourly rainfall
is calculated by averaging the time series at the various
stations through the Thiessen polygon method. Daily
potential evaporation series are calculated through the
Penman-Monteith formula using temperature, wind speed,
humidity and net radiation. The necessary data were mea-
sured at the meteorological station located at Luxembourg
airport. Hourly estimates are calculated distributing the
daily amounts using a sine curve distribution between the
hours of sunlight.

4.4. Application of the Pareto-Based Calibration
Approach

[29] The goal of multiobjective optimization is to sample
the search space in such a way that the sampling converges
toward the globally Pareto-optimal set of solutions. As an
efficient multiobjective optimization algorithm, the multi-
objective shuffled complex evolution Metropolis algorithm
(MOSCEM-UA) [Vrugt et al., 2003] has been used. The
MOSCEM-UA algorithm starts by randomly generating a
number s of samples within the feasible parameter space,
which are subsequently sorted based on their objective
function values. The points are partitioned into q com-
plexes, and in each complex a parallel sequence is launched.
The sequences proceed by generating a new candidate point
from a multivariate normal distribution with the mean at the
current value and covariance matrix derived from the
history of each sequence. The new candidate point is added
to the sequence based on the outcome of a Metropolis-type
of acceptance rule. The algorithm proceeds until a
predefined number of iterations n is reached. On the basis
of the research of Vrugt et al. [2003] the iterative application
of the various algorithmic steps causes the population to
converge toward the globally Pareto-optimal set of
solutions. The algorithm has three algorithmic parameters
that have to be selected: s, q and n. In this study, for
the FLEXA model, which has 8 parameters to be optimized,
the initial number of random samples s is set at 1000, the
number of complexes q is set at 10 and the maximum
number of iterations n at 10,000.

Table 1. FLEXA Model Parameters and Corresponding Units

Parameter Units Definition

Sfc mm maximum UR storage
Lp - limit for potential transpiration
b - shape parameter of runoff generation
Pmax mm/h maximum percolation rate
Nlagf h lag time of FR transfer function
Nlags h lag time of SR transfer function
Kf h FR timescale
Ks h SR timescale
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[30] The outcomes of the study are represented in
Figure 3. It can be seen that significant tradeoffs exist
among the various objective functions, which indicates that
no single parameter set is able to simultaneously optimize
all individual objectives.
[31] The various Pareto-optimal solutions correspond to

representations of the hydrograph that can be significantly
different. As an example, the hydrographs corresponding to
the individual solutions that optimize FHF and FLF are
represented in Figure 4. It is possible to observe that the
individual solutions are visibly different. Figure 5 shows a
scatterplot of model residuals with respect to observed flow.
For lower flows the scatter shown by the best low-flow

model tends to be lower than that corresponding to the high-
flow model. For higher flows the best low-flow model tends
to underestimate hydrograph peaks, while the high-flow
model shows a more centered scatter. The initial parameter
ranges and the ranges corresponding to the Pareto-optimal
solutions are represented in Table 2.

4.5. Application of the Stepped Calibration Approach

[32] The application of the SCA requires the association
of model parameters with a specific objective function. The
association is performed based on the specific role that
model parameters have on the modeled processes and on the
main role that each process has on the composition of the

Figure 2. Location of the Hesperange catchment in Luxembourg.

Figure 3. Estimated Pareto-optimal fronts according to the selected objective functions for the FLEXA

model.
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integrated signal that represents the global response of the
catchment. This means that each parameter is calibrated on
the process that it is designed to influence, even if it also
influences other processes (sometimes even more than the
process it is supposed to influence). If, for instance, a
groundwater related parameter is found to have a strong
influence on high-flow reproduction, which is possible in
case of structural deficiencies of a model, in the SCA this
parameter will be adjusted to fit the base flow dynamics
rather than the peaks, as the base flow is the process that
such parameter is designed to represent. Hence the associ-
ation of model parameters with a specific objective function
is not determined on the basis of prior sensitivity analysis,

but on the judgment of the modeler and his subjectivity to
introduce certain processes and components into the model
structure.
[33] In the present case, the following parameter associ-

ations are used:

FLF  Pmax;Ks

FHF  Lp; Sfc; b;Kf

FLT  Nlagf ;Nlags

[34] This association is based on the observations that
Pmax and Ks influence the parameterization of SR, which is
designed to represent the groundwater processes. Kf

Figure 4. Comparison of FLEXA model simulations corresponding to the solutions that optimize each
of the individual objectives FHF and FLF.

Figure 5. Residuals plots of the FLEXA model simulations corresponding to the solutions that optimize
FHF and FLF.
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influences the recession after peak flow. Sfc, and b play a
role in the nonlinearity of the rainfall-infiltration-direct
runoff relation, which to our judgment plays a major role in
the simulation of peaks, since the peak depends on the
antecedent moisture condition. Lp is a parameter that affects
transpiration and is connected to the total volume of water
discharged. In this case, as this parameter is related to the
parameterization of UR, we associate it to FHF rather than to
the other calibration objectives. Nlagf and Nlags have been
introduced to correctly simulate the lag time of the system.
[35] The calibration phase proceeds in three steps: in the

first step all parameters are calibrated against FLF, then the
parameters related to high flows are recalibrated with
respect to FHF, and finally the parameters related to the lag
time of the system are recalibrated toward FLT. In the second
and third calibration steps, parameters that are not
recalibrated are kept constant at the values determined
during the previous steps.
[36] As a search method to identify the global optimum in

the parameter space we have selected the adaptive cluster
covering (ACCO) strategy with local search developed by
Solomatine [1995, 1999], which proves to be effective and
efficient in global optimization problems. This algorithm is
implemented in the global optimization tool GLOBE
[Solomatine, 1999], which has been configured to calibrate
the model parameters.

[37] The hydrograph reproduction after the first two steps
is shown in Figure 6. Compared to Figure 4, showing the
two best models with respect to low flow and high flow,
respectively, we observe that the recalibration of high-flow-
related parameters only has an impact on the peaks, while
leaving the reproduction of low flows almost unchanged.
The effect of the third calibration step is shown in Figure 7.
The ‘‘loops’’ in the scatterplots, which indicate a time lag
between observed and modeled watershed behavior, be-
come smaller after the recalibration of lag time related
parameters.
[38] A comparison of the outcomes of the two approaches

is shown in Figure 8. Each point in the objective function
space can be represented by the multiobjective vector F
(FLF, FHF, FLT). The three subplots represent a projection in
two dimensions of the three-dimensional criterion space
showing the Pareto-optimal front corresponding to the three
calibration objectives as well as the successive steps FS1,
FS2, and FSCA obtained through the application of the SCA.
The following steps of the SCA determine a progressive
deterioration of the first calibration objective, and a
progressive improvement in the other two objectives.
[39] The multiobjective vector FSCA does not necessarily

represent a Pareto-optimal point. The progression of steps in
fact determines orthogonal movements in the parameter
space and therefore disregards the eventual influence that
each parameter might have on each objective function.
However, as this solution represents a balance of calibration
objectives, it can be exploited to develop optimal solutions
that reflect such a balance. This way, the two approaches
can be used in a combined, synergistic manner that exploits
the strengths of each.
[40] A possibility to identify optimal balanced solutions

could be to exclude from the Pareto-optimal set of solutions
those parameter sets that correspond to objective function
values that exceed in at least one of the objectives the
solution developed through the SCA. If FSCA is regarded as
a balanced solution, all the remaining solutions, which are

Figure 6. Comparison of hydrograph simulations corresponding to the first two calibration steps of the
SCA generated by the FLEXA model.

Table 2. Initial and Final Parameter Ranges

Parameter Units Initial Range Final Range

Sfc mm 200–600 310–422
Lp - 0.1–1.0 0.18–0.47
b - 0.05–3.00 0.097–0.144
Pmax mm/h 0.04–0.20 0.060–0.094
Nlagf h 1–10 2.88–7.42
Nlags h 2–600 4.72–554
Kf h 20–100 29–44
Ks h 150–2000 420–1197
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characterized by F values that are all lower than those of
F
SCA, would demonstrate an improvement with respect to

F
SCA and would therefore be preferable. As an example,

Figure 8 shows the solution that minimizes the Euclidean
distance to the line that connects FSCA to the origin of the
axes. In order to calculate such a distance, the objective
space has been previously normalized by dividing each
variable by the correspondent value of FSCA. The normal-
ization operation is necessary to avoid giving a larger
weight to objectives with larger F values. It is possible to
observe that the so calculated balanced optimum F

BAL

demonstrates an improvement with respect to all F values of
F
SCA. As an indication of such an improvement and of the

progress of the successive calibration steps, the Euclidean
distance of each point from F

SCA in the normalized
objective space is reported in Table 3.

4.6. Posterior Parameter Sensitivity Analysis

[41] In order to illustrate the implications of the SCA in
the parameter space, a posterior parameter sensitivity anal-
ysis is performed. The objective of the analysis is twofold.
First it serves to evaluate the parameter sensitivity around
the optimal parameter values. Second, it shows the effects
on the optimal parameter values subsequent to the recali-
bration of model parameters at successive calibration steps.
[42] The sensitivity analysis is performed stepwise. Each

group of parameters is evaluated with respect to each
objective function in successive stages. During each stage,
the parameters that are not concerned are kept constant at
the values determined through the SCA. The parameter

sensitivity is expressed by the parameter ranges that corre-
spond to values of the objective function that differ less than
10% from the optimum value. As the optimum value of
each group of parameters might change during the recali-
bration of other parameters at successive calibration stages,
the 10% threshold is evaluated with respect to the new value
of the optimum. Since the ranges where to perform the
sampling are not known in advance, and in order to perform
an efficient sampling in the region of interest, a Markov
chain sampling strategy has been adopted. The sampling
strategy uses a Metropolis-type of acceptance rule and an
adaptive algorithm proposed by Haario et al. [2001], which
updates the covariance matrix at predefined steps. In this
analysis, for each group of model parameters a total of
10,000 parameter samples were generated, with a burn-in
period of 1000 iterations discarded for subsequent analyses.
[43] Parameter samples obtained are summarized by the

density histograms shown in Figure 9. The conclusions that
can be drawn from the analysis are summarized as follows.
[44] 1. The ranges of variation that are calculated indicate

that model parameters are in general well identified within
relatively small intervals. A noteworthy exception is the
parameter Nlags, which simulates the lag time of the system
related to groundwater flow. The fact that this parameter
shows such a high degree of variability indicates that the
process cannot be identified with the data available or with
the objective functions used.
[45] 2. The optimal values of the calibrated model param-

eters change when other parameters are recalibrated, indi-
cating that the optimum of a group of parameters associated

Figure 7. Scatterplot showing the improvement following the application of the third calibration step
applied to the FLEXA model.

Figure 8. Comparison of the Pareto-based approach and the SCA applied to the FLEXA model.
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with one calibration objective also depends on the value of
the parameters that are related to the other calibration
objectives. When the parameters related to the other objec-
tives change, because of recalibration, the optimal value of
the already calibrated parameters changes as well. The most
biased parameters are the ones that are calibrated first, while
the parameters that are calibrated last, in this case the lag
time related parameters, are not biased. Figure 9 shows the
optimum corresponding to the parameter values determined
through the SCA, and the new optimum that corresponds to
the recalibration of each group of parameters while the other
parameters are kept constant at the values determined
through the SCA. It is possible to observe that the two

values differ. The difference however is not large, as the
new optimum remains close to the initial one in most cases,
and in all cases within the calculated confidence intervals.
The distance between the parameter values due to recali-
bration with respect to their range of variation is indicated in
Table 4. In order to show the effect of recalibration in the
objective space, the distance between the solution FSCA and
the solutions corresponding to recalibration of the first and
second groups of parameters FR1 and FR2 are indicated in
Table 3. It can be observed that those distances are smaller
than those corresponding to the solutions of the first two
calibration steps FS1 and FS2.

5. Case Study 2: Higher-Complexity Model
Structure

[46] The comparison between observations and model
results allows an analysis of the hypotheses made, as it
indicates whether the conceptualization proposed is accept-
able, or, to the contrary, it is not adequate and requires
further improvements. In the latter case, it is possible to go
back to the conceptual model and modify it by introducing
different processes and components. In this sense, the
modeling becomes a learning process, as the attempt to
model the hydrological processes allows a testing of our

Table 3. Euclidean Distance in the Normalized Objective Space

From the Solution Developed Through the SCAa

Parameter Value

FSCAFS1 3.41E-01
FSCAFS2 1.01E-01
FSCAFBAL 8.61E-02
FSCAFR1 1.81E-02
FSCAFR2 6.48E-02

aRead 3.41E-01 as 3.41 � 10	1.

Figure 9. Sensitivity of FLEXA model parameters.
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perceptions of the hydrological behavior of a catchment
[Beven, 2001].
[47] In the present case, the application of the two

calibration approaches provides some useful information
about the structural limitations of the model used. The
existence of significant tradeoffs between model parameters
and calibration objectives represents a symptom of model
structural limitations. The application of the SCA develops
a compromise solution that at a careful analysis of the
observed and simulated hydrographs shows poor overall
performances.
[48] The analysis of calibration results as well as some

insights on the dominant hydrological processes in the study
area have led to a more complex version of the model,
which is for convenience named FLEXB. With respect to the
previous version, the new model structure adds an intercep-
tion reservoir (IR), described by two calibration parameters,
and introduces a process of preferential recharge, which
requires the definition of an additional calibration parameter
(Figure 10). In total, the FLEXB model structure presents
11 parameters, three more than the FLEXA model.
[49] The interception process has been included because,

apart from being an essential process in the hydrologic
cycle, it is also indicated as one of those processes that
could improve the accuracy of the simulation. In this case,

the careful examination of the observed and simulated
hydrographs has pointed out that some systematic over-
estimations of the low flows took place in correspondence
of rainfall events that occurred after prolonged dry con-
ditions. Those overestimations could be attributed to inter-
ception, which the model does not simulate. The
interception process is often neglected in conceptual mod-
els, however it is an important process that might have
significant repercussions on the resulting hydrograph
[Savenije, 2004]. This was also concluded by Zhang and
Savenije [2005] who improved overall model performance
by including an interception component in the model
conceptualization.
[50] Preferential recharge has been introduced in order to

better characterize the process of recharging the ground-
water reservoir during and shortly after rainfall events. In
limestone areas, part of the rainfall quickly reaches the
groundwater through preferential pathways, without being
stored in the soil matrix. As shown in the structure descrip-
tion in the following paragraph, the amount of water
that reaches the aquifer through preferential recharge is
made implicitly dependent on the storage of UR. This caters
for the fact that for wet conditions the preferential recharge
is a higher fraction of the effective rainfall than for dry
conditions.

5.1. FLEXB Model Description

[51] The structure of the model is shown in Figure 10 and
the differences with the FLEXA version are here briefly
described.
5.1.1. Interception Module
[52] Rainfall reaches the IR, which can be filled up to a

specified threshold, represented by Imax. Evaporation from
intercepted water Ei can occur as long as water is available
in the reservoir, and it is assumed to be linearly related to
the potential evaporation Ep through the coefficient Ic:

Ei ¼ IcEp ð11Þ

Table 4. Distance of Parameter Values due to Recalibration With

Respect to Their Range of Variation

Parameter Value

Pmax 6.2E + 00%
Ks 4.0E-05%
Lp 9.6E + 00%
Sfc 1.7E + 01%
b 4.4E + 00%
Kf 3.2E + 01%

Figure 10. Structure schematization of the FLEXB model.
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5.1.2. Unsaturated Soil Module
[53] Effective rainfall Re leaves the IR when the threshold

Imax is exceeded. This amount is then partitioned into
various components based on the value of an effective (i.e.,
after subtraction of interception [see Savenije, 2004]) runoff
coefficient Cr, which is expressed by the same formula used
in the previous structure (equation (1)). Part of Re infiltrates
into UR (Ru), excess water from UR is partitioned through
the coefficient D into preferential recharge Rs, which flows
to SR, and surface runoff Rf, which enters FR (equations
(12), (13), and (14)).

Ru ¼ 1	 Crð ÞRe ð12Þ

Rs ¼ Re 	 Ruð ÞD ð13Þ

Rf ¼ Re 	 Ru 	 Rs ð14Þ

[54] Percolation Ps from UR to SR and the potential
transpiration are calculated as in the FLEXA model through
equations (4) and (5), respectively.
5.1.3. Transfer Routine
[55] The transfer routines remain the same as in the FLEXA

model, with the difference that the fluxes Ps and Rs are first
added and their sum is routed through the triangular transfer
function. The transformed flux is then added to SR. The 11
model parameters are summarized in Table 5.

5.2. Application of the Pareto-Based Calibration
Approach and SCA to the FLEXB Model Structure

[56] The two calibration approaches are applied to the
FLEXB model structure. The application uses the same ‘‘set
up’’ of the calibration problem as in the FLEXA model
version. For the application of the Pareto-based approach,

the MOSCEM-UA algorithm has been applied with the
same algorithmic parameters as for the FLEXA version
except from the number of complexes q, which has been
increased to 15 as a result of the increased number of model
parameters.
[57] The SCA has been applied with the following

parameter associations:

FLF  Imax; Ic;Pmax;D;Ks;
FHF  Lp; Sfc;b;Kf

FLT  Nlagf ;Nlags

[58] The newly introduced parameters are all associated to
the FLF objective function. This is motivated by considering
that the parameter D is introduced to better characterize the
groundwater recharge process, and the interception pro-
cesses should manifest its impact on the final hydrograph by
improving the simulation of the catchment response to
rainfall after prolonged dry conditions.
[59] The comparison of the two calibration approaches

for the two model structures is shown in Figure 11. We
observe that the Pareto-optimal fronts corresponding to the
two model structures are clearly different, indicating that
the increase of complexity has an explanatory power on the
observed data. The more complex model is also a better
model, as it produces a visible improvement of the accuracy
of the simulation.
[60] The best models corresponding to FLF and FHF are

represented in Figure 12. If compared to Figure 4, which
represents the same situation for the FLEXA structure, we
can see that the two models corresponding to the FLEXB

structure represent the hydrograph better than any of the two
models calibrated on the FLEXA structure. Moreover, the
two models developed for the FLEXB structure are visually
closer to each other than the corresponding ones for the
FLEXA structure. This also appears from the scatterplot
shown in Figure 13. The residuals shown by the two models
vary in a similar interval in the range of observed
discharges. On the objective function space, the Pareto-
optimal front and the points that correspond to the stages
followed in the application of the SCA are also more
narrowly spaced.
[61] The hydrograph improvement obtained at following

stages during the application of the SCA on the FLEXB

model is less dramatic than for the FLEXA structure. This
indicates that when a model has the potential of reproducing
the data well, a calibration based on a single objective

Table 5. FLEXB Model Parameters and Corresponding Units

Parameter Units Definition

Ic - evaporation coefficient
Imax mm interception threshold
Sfc mm maximum UR storage
Lp - limit for potential transpiration
b - shape parameter of runoff generation
D - runoff partition coefficient
Pmax mm/h maximum percolation rate
Nlagf h lag time of FR transfer function
Nlags h lag time of SR transfer function
Kf h FR timescale
Ks h SR timescale

Figure 11. Comparison of the Pareto-based calibration approach and SCA for the FLEXA and FLEXB

model structures in the objective space.
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taking into account the overall model performance can lead
to good results, and the difference between the optimal
simulations associated to different objective functions
becomes less evident.

6. Conclusions

[62] This paper presents a comparison between two
different calibration approaches and discusses their princi-
ples and implications in hydrological modeling. The first
calibration approach is based on the concept of Pareto-
optimality, and develops a set of optimal solutions accord-
ing to the tradeoffs between different objectives. The second
approach associates different groups of parameters with
specific calibration objectives based on the processes that
those parameters are designed to influence. This approach
replicates, in an automated fashion, the steps that are

undertaken by operational hydrologists during manual cal-
ibration, and develops one optimal parameter set that is
considered acceptable according to the selected calibration
objectives.
[63] The analysis is performed on two model structures of

different levels of complexity. Initially the two approaches
are evaluated on a model structure of lower complexity.
Subsequently, based on the outcomes of the analysis and the
hydrological understanding of the system in question, the
model structure is improved by adding new processes and
components. The calibration analysis is repeated for the
model structure of higher complexity, and calibration results
are again analyzed. The main conclusions that can be drawn
from this work are summarized as follows.
[64] 1. The Pareto-based calibration approach can be

useful to visualize the structural limitations of a model, in
terms of the inability of the model to reproduce the

Figure 12. Comparison of FLEXB model simulations corresponding to the solutions that optimize each
of the individual objectives FHF and FLF.

Figure 13. Residuals plots of the FLEXB model simulations corresponding to the solutions that
optimize FHF and FLF.
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observations. The Pareto-optimal set of solutions provides
model simulations that are all equally important from a
multiobjective optimization point of view, but can contain
solutions that can be considered unacceptable with respect
to the accomplishment of the various criteria that are
demanded for calibration. Acceptable solutions, in fact,
are likely to be contained in the Pareto-optimal set of
solutions, but there may be many unacceptable solutions
within the set.
[65] 2. The Pareto-based approach is also useful to

compare merits of different models and to track changes
of model performance as model structures are modified.
Model improvements can in fact be identified as the Pareto-
optimal front progressively moves toward the origin of the
objective function space. This property has been used to
evaluate the effect of a structural modification of the initial
model.
[66] 3. The stepped calibration approach works more in a

‘‘calibration’’ optic than in an ‘‘optimization’’ optic. The
aim is to determine a single parameter set that causes model
components to reproduce the processes that they are
designed to represent. The parameter set that is developed
is not necessarily a Pareto-optimal solution; however, as it
represents a balance of calibration objectives, it can be used
to determine optimal solutions that reflect such a balance.
This way, the two calibration approaches can be used in a
combined, synergistic manner that exploits the strengths of
each.
[67] 4. The more complex model structure has been

developed from the simpler version by adding the intercep-
tion process and a better representation of groundwater
recharge. The multiobjective analysis leads to the conclu-
sion that the new model structure allows a better accuracy of
the simulation of the observed data. The additional com-
plexity clearly contributes to a better understanding of the
observed system behavior.
[68] 5. In subsequent steps, the model of higher com-

plexity displays a Pareto-optimal front which is more
narrowly spaced than for the lower-complexity model,
moreover the hydrograph simulations corresponding to the
single best solutions associated to different objectives and to
the various steps of the SCA are closer to each other. This
indicates that when a model structure has a high capability
of simulating the observations, the use of different objective
functions, even if they stress the simulation of different
aspects of the simulations, will lead to similar results. This
suggests that sometimes, instead of putting much effort on
trying to improve the fit of a poor model by sophisticated
calibration processes, it is more efficient to try to understand

the model’s limitations and to correct these by an improved
schematization.

Appendix A: Transfer Module Details

[69] In this section some more details on the properties of
the transfer module composed by the triangular transfer
function and the linear reservoir are given. This module
could be interesting for hydrological applications as it is
described by parameters that represent specific outflow
characteristics. Figure A1 shows the processing of an
instantaneous rainfall Rtot through the transfer module.
The discharge in time Qout(t) from the reservoir can be
calculated by solving the system of closure and balance
equations for the reservoir. Nlag represents the length of the
distribution function, and the discharge can be calculated
separately for t � Nlag and for t > Nlag.

A1. Calculation for t ��� Nlag

[70] The input to the reservoir Qin(t) can be written as
follows:

Qin tð Þ ¼ Bt ðA1Þ

where

B ¼
2Rtot

N2
lag

ðA2Þ

[71] The output from the reservoir Qout(t) is linearly
proportional to the level in the reservoir S(t) through the
coefficient K. The storage function can be represented as:

Qout tð Þ ¼
S tð Þ

K
ðA3Þ

Figure A1. Schematization of an instantaneous rainfall through the transfer module.

Figure A2. Qout for a unitary rainfall, K = 20 time units,
and different values of Nlag.
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[72] The water balance in the reservoir can be expressed
by the following continuity equation:

dS

dt
¼ Qin 	 Qout ðA4Þ

[73] Therefore

dS

dt
þ

S

K
¼ Bt ðA5Þ

which is a first-order linear differential equation, whose
solution is expressed by

S tð Þ ¼ BKt 	 BK2 þ Ce	
t
K ðA6Þ

where C is an arbitrary constant of integration.
[74] C can be determined imposing the constraint that for

t = 0, S = 0 (empty reservoir for t = 0), and equation (A6)
becomes

S tð Þ ¼ BKt 	 BK2 1	 e	
t
K


 �

ðA7Þ

which allows calculating Qout through equation (A3).

A2. Calculation for t >>> Nlag

[75] For t > Nlag the reservoir will empty as a linear
reservoir. The maximum storage reached is

Smax ¼ S Nlag

� �

¼ BKNlag 	 BK2 1	 e	
Nlag

K


 �

ðA8Þ

[76] From this level the reservoir will empty in time
according to

S tð Þ ¼ Smaxe
	

t	Nlag
K ðA9Þ

and Qout can be calculated through equation (A3).
[77] Figures A2 and A3 show the outflow from the

reservoir for different values of Nlag and K. The maximum
storage in the reservoir is reached for t = Nlag, the parameter
Nlag therefore represents the time to peak of the system. K
affects the slope of the falling and rising limbs of the

hydrograph. This separation of the role that different
parameters have on the outflow can be useful as these
parameters can be calibrated for the aspects they influence.
Figure A4 shows the outflow for a constant rainfall
distributed over five time units. The shape resembles that
of a natural hydrograph.
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