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1. INTRODUCTION

The normal approximation to the binomial distribution is appropriate when n

is large and p ≈ 1
2
. There is conflicting advice concerning which values of n and

p are appropriate for using the approximation. For example, a sampling of text-

books recommends that the normal distribution be used to approximate the binomial

distribution when:

• np and n(1−p) are both greater than 5 (Aczel 1993, p. 211; Anderson, Sweeney,

and Williams 1994, p. 218; Creighton 1994, p. 159; Freund 1992, p. 245; Gold-

man and Weinberg 1985, p. 304; Jarrell 1994, p. 280; Kelly 1994, p. 375; Lapin

1990, p. 185; Mason, Lind, and Marchal 1994, p. 251; Triola 1995, p. 266;

Trivedi 1982, p. 497; Walpole and Myers 1993, p. 161; Weiss 1995, p. 392)

• p ± 2
√

p(1−p)
n

lies in the interval (0, 1) (Scheaffer and McClave 1990, p. 242;

Mendenhall and Sincich 1992, p. 299)

• n > 9 max
{

1−p
p

, p
1−p

}

(Larson 1995, p. 197)

• np(1 − p) ≥ 10 (Ross 1994, p. 219)

• np(1 − p) > 9 (Aczel 1993, p. 158).

Many other textbook authors give no specific advice concerning when to use the

normal approximation. To complicate matters further, most of this advice concerns

using these approximations to compute probabilities. Whether these same rules of

thumb apply to confidence intervals is seldom addressed. The Poisson approximation,

although less popular than the normal approximation to the binomial, is useful for

large values of n and small values of p. The same sampling of textbooks recommends

that the Poisson distribution be used to approximate the binomial distribution when

n ≥ 20 and p ≤ 0.05, n ≥ 100 and p ≤ 0.05, or n ≥ 100 and np ≤ 10 (Creighton
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1994, p. 115; Hogg and Tanis 1993, p. 177; Freund 1992, p. 204; Larson 1995, p. 157;

Weiss 1995, p. 321).

Let X1, X2, . . . , Xn be iid Bernoulli random variables with unknown parameter

p, and let Y =
∑n

i=1 Xi be a binomial random variable with parameters n and p.

The maximum likelihood estimator for p is p̂ = Y
n
, which is unbiased and consistent.

The interest here is in confidence interval estimators for p. In particular, we want

to compare the approximate confidence interval estimators based on the normal and

Poisson approximations to the binomial distribution. Determining a confidence in-

terval for p when the sample size is large using approximate methods is often needed

in simulations with a large number of replications and in polling.

Computing probabilities using the normal and Poisson approximations is not con-

sidered here because work has been done on this problem. Poor (1991) compared

the probability mass functions and cumulative distribution functions of the bino-

mial and associated Poisson approximations with means np and −n log(1 − p). Ling

(1992) suggested using a relationship between the cumulative distribution functions

of the binomial and F distributions to compute binomial probabilities. Schader and

Schmid (1989) compared the maximum absolute error in computing the cumulative

distribution function for the binomial distribution using the normal approximation

with a continuity correction. They consider the two rules for determining whether

the approximation should be used: np and n(1 − p) are both greater than 5, and

np(1− p) > 9. Their conclusion is that the relationship between the maximum abso-

lute error and p is approximately linear when considering the smallest possible sample

sizes to satisfy the rules. Azzam, Halawa, and Hussien (1991) considered the same

problem, and give a chart indicating whether the normal or Poisson approximation

should be used for various (n, p) pairs.

Concerning work done on confidence intervals for p, Clopper and Pearson (1934)

appear to be the first authors who gave tables, in graphical form, of the confidence
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limits for p. Blyth and Still (1983) developed a table of confidence limits for p,

and gave a correction factor for approximate intervals. Blyth (1986) compared five

confidence intervals for p. In addition, he used the F distribution to reduce the

amount of time necessary to compute an exact confidence interval. Vollset (1993)

compared 13 confidence intervals for p. Using an arcsin transformation to improve

the confidence limits associated with the normal approximation was considered by

Chen (1990) and others. Copas (1992) considered a Bayesian confidence interval for

p. Daly (1992) gave SAS macros for computing many of the confidence intervals

described in this article. Ghosh (1979) compared two confidence intervals for the

Bernoulli parameter based on the normal approximation to the binomial distribution.

2. CONFIDENCE INTERVAL ESTIMATORS FOR p

Two-sided confidence interval estimators for p can be determined with the aid

of numerical methods. One-sided confidence interval estimators are analogous. Let

pL < p < pU be an “exact” (Blyth 1986) confidence interval for p, where pL and pU

are functions of the sample size n, the number of successes y, and the stated coverage

of the interval 1 − α. For y = 1, 2, . . . , n − 1 the lower limit pL satisfies (see, for

example, Larsen and Marx 1986, p. 279)

n
∑

k=y

(

n
k

)

pk
L(1 − pL)n−k = α/2.

For y = 1, 2, . . . , n − 1, the upper limit pU satisfies

y
∑

k=0

(

n
k

)

pk
U(1 − pU)n−k = α/2.

The (pL, pU) pairs were tabled in Lentner (1982) for α = 0.01 and α = 0.05 and

n = 2, 3, . . . , 100, as well as a discussion of the y = 0 and y = n cases. This

confidence interval requires numerical methods to determine pL and pU and takes

longer to calculate as n increases. This interval will be used as a basis to check the
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approximate bounds reviewed later in this section. Figures showing the coverage

probabilities for bounds of this type for n = 5 and n = 10 were given in Blyth (1986).

Following a derivation similar to his (given in Appendix A, along with a similar proof

using integration by parts), a faster way to determine the lower and upper limits can

be determined. An “exact” confidence interval for p based on the F distribution is

1

1 + n−y+1
yF2y,2(n−y+1),1−α/2

< p <
1

1 + n−y
(y+1)F2(y+1),2(n−y),α/2

where the third subscript on F refers to the right-hand tail probability. These con-

fidence limits are identical to the pL and pU limits determined using the binomial

distribution. The next paragraph discusses numerical issues associated with deter-

mining these bounds.

Mathematica (Wolfram 1991) code for solving the binomial equations numerically

for a given n, y, and α is given in Appendix B. This code works well for small and

moderate sized values of n. Some numerical instability occurred for larger values of n,

so the well-known relationship (Larsen and Marx 1986, p. 101) between the successive

values of the probability mass function f(x) of the binomial distribution

f(x) =
(n − x + 1)p

x(1 − p)
f(x − 1) x = 1, 2, . . . , n

was used to calculate the binomial cumulative distribution function. The Mathemat-

ica code for determining pL and pU using the F distribution is given in Appendix C.

This method is significantly faster than the approach using the binomial distribution,

but may encounter numerical difficulty with determining the F ratio percentiles for

large degrees of freedom.

The first approximate confidence interval is based on the normal approximation to

the binomial distribution. The random variable Y −np√
np(1−p)

is asymptotically standard

normal. Thus an approximate confidence interval for p is

y

n
− zα/2

√

y
n
(1 − y

n
)

n
< p <

y

n
+ zα/2

√

y
n
(1 − y

n
)

n
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when y = 1, 2, . . . , n− 1, where zα/2 is the 1− α/2 percentile of the standard normal

distribution. This approximation works best when p = 1
2

(e.g., political polls). It al-

lows confidence limits that fall outside the interval [0, 1]. Using results from Lehmann

and Loh (1990), Chen (1990) considered coverage probabilities of this confidence in-

terval. The arcsin transformation, yielding the interval

∣

∣

∣

∣

arcsin (
√

p) − arcsin
(

√

y/n
)∣

∣

∣

∣

≤ zα/2

2
√

n

on (0, 1) is known to accelerate the rate of convergence of the normal approximation.

He concludes that the arcsin transformation is nearly the optimal transformation in

terms of this convergence.

The second approximate confidence interval is based on the Poisson approximation

to the binomial (see, for example, Trivedi 1982, p. 498). This confidence interval does

not appear in textbooks as often as the first approximate confidence interval. The

random variable Y is asymptotically Poisson with parameter np. Therefore the exact

lower bound pL satisfying

n
∑

k=y

(

n
k

)

pk
L(1 − pL)n−k = α/2

can be approximated with a Poisson lower limit pPL that satisfies

∞
∑

k=y

(npPL)k e−npPL

k!
= α/2

or

1 −
y−1
∑

k=0

(npPL)k e−npPL

k!
= α/2.

The left-hand side of this equation is the cumulative distribution function for an

Erlang random variable with scale parameter npPL and shape parameter y (denoted

by EnpPL,y) evaluated at one. Consequently,

P (EnpPL,y ≤ 1) = α/2.
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Since 2npPLEnpPL,y is a χ2 random variable with 2y degrees of freedom, this reduces

to

P
(

χ2
2y ≤ 2npPL

)

= α/2

or

pPL =
1

2n
χ2

2y,1−α/2.

By a similar line of reasoning, the upper limit based on the Poisson approximation

to the binomial distribution is

pPU =
1

2n
χ2

2(y+1),α/2.

This approximation works best when p is small. It would be appropriate, for example,

in a Monte Carlo analysis of a model of a computer’s reliability. If the probability

of failure is small and the number of replications is large, the Poisson approximation

performs better than the normal approximation.

Examples: Using n = 10, y = 3, and α = 0.05, the intervals described in this section

are:

Method Lower Bound Upper Bound
Exact 0.067 0.652
Normal approximation 0.016 0.584
Arcsin transformation 0.071 0.603
Poisson approximation 0.062 0.877

Using n = 100, y = 3, and α = 0.05, the intervals described in this section are:

Method Lower Bound Upper Bound
Exact 0.0062 0.085
Normal approximation −0.0034 0.063
Arcsin transformation 0.0058 0.072
Poisson approximation 0.0062 0.088

The normal approximation is superior to the Poisson approximation in terms of

maximum absolute error when p is close to 1
2
, the Poisson approximation is superior

to the normal approximation when p is close to 0, and the arcsin transformation

accelerates the convergence of the normal approximation.
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3. COMPARISON OF THE APPROXIMATE METHODS

There are several different ways to compare the approximate confidence interval

limits with the exact values. These ways include considering the differences between

the upper and lower bound errors individually, and considering relative errors. We

have decided to compute the error of an approximate two-sided confidence interval

as the maximum absolute error

max {|pL − p̃L|, |pU − p̃U |}

where p̃L and p̃U are the approximate lower and upper bounds, respectively. This

error is computed for all combinations of n and p̂. Because the definition of “success”

on each Bernoulli trial is arbitrary, we only consider the range 0 < p̂ ≤ 1
2
. Figures

1, 2, 3, and 4 have mirror images for the range 1
2
≤ p̂ < 1. The stated coverage is

1 − α = 0.95 throughout this section.

Figure 1 contains a plot of n versus p̂ for n = 2, 4, . . . , 100 and considers the

range 0 < p̂ ≤ 1
2

for a maximum absolute error of 0.01. Thus if the error for a

particular (n, p̂) pair is greater than 0.01, the point lands in the middle region. If one

of the two approximations yields an error of less than 0.01, then the pair belongs to

either the “normal approximation” or “Poisson approximation” region, depending on

which yields a smaller error. Not surprisingly, the normal approximation performs

better when the point estimate is closer to 1
2

and the Poisson approximation performs

better when the point estimate is closer to 0. Both approximations perform better

as n increases. In order to avoid any spurious discontinuities in the regions, the

calculations were made for even values of n. The edges of the region are not smooth

because of the discrete natures of n and p̂. If the horizontal axis were extended, the

normal and Poisson regions would meet at approximately n = 150. Mathematica

(Wolfram 1991) was used for the comparisons because of its ability to hold variables

to arbitrary precision.
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If the maximum absolute error is relaxed to 0.04, then there are more cases where

the approximations perform adequately. Figure 2 is analogous to Figure 1, but con-

siders an error of 0.04. This figure also contains the rules of thumb associated with

the normal and Poisson approximations to the binomial distribution. In particular,

• the rule labeled “R1” is a plot of p̂ = 5/n on [10, 100] corresponding to the

normal approximation rule np̂ ≥ 5 and n(1 − p̂) ≥ 5

• the rule labeled “R2” is a plot of p̂ = 4
4+n

on [4, 100] corresponding to the

normal approximation rule p̂ ± 2
√

p̂(1−p̂)
n

falling in the interval (0, 1)

• the rule labeled “R3” is a plot of p̂ = 9
9+n

on [9, 100] corresponding to the

normal approximation rule n > 9 max
{

1−p̂
p̂

, p̂
1−p̂

}

• the rule labeled “R4” is a plot of p̂ = 1
2
−

√
n(n−40)

2n
on [40, 100] corresponding

to the normal approximation rule np̂(1 − p̂) ≥ 10

• the rule labeled “R5” is a plot of p̂ = 1
2
−

√
n(n−36)

2n
on [36, 100] corresponding

to the normal approximation rule np̂(1 − p̂) > 9

• the rule labeled “R6” is a plot of n ≥ 20 and p̂ ≤ 0.05 corresponding to one of

the guidelines for using the Poisson approximation.

The n, p̂ combinations falling above the dotted curves for rules R1–R5 correspond to

those that would be used if the rules of thumb were followed. Clearly, rules R4 and

R5 are significantly more conservative than R1–R3 for moderate n.

Figure 3 is a continuation of Figure 2 for sample sizes larger than n = 100.

Note that the vertical axis has been modified and the horizontal axis is logarithmic.

The curve in the figure represents the values where the maximum absolute errors in

using the normal and Poisson approximations are approximately equal. Because this

relationship is approximately linear, a rather unwieldy rule of thumb for n between
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100 and 10,000 is: use the normal approximation over the Poisson approximation if

p̂ > 5.2−log10 n
18.8

.

All of the comparisons thus far have been based on the maximum absolute error.

The maximum relative error can be defined by

max

{∣

∣

∣

∣

∣

pL − p̃L

pL

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

pU − p̃U

pU

∣

∣

∣

∣

∣

}

.

For a maximum relative error of 0.04, Figure 4 shows a significantly different pat-

tern than that of Figure 2 because the use of the relative error favors the normal

approximation over the Poisson.

4. CONCLUSIONS

Although there are a number of different variations of the calculations that have

been conducted here (e.g., one-sided confidence intervals, different significance levels),

there are four general conclusions that would be drawn regardless of the variations

considered:

• The traditional advice from most textbooks of using the normal and Poisson ap-

proximations to the binomial for the purpose of computing confidence intervals

for p should be tempered with a statement such as: “the Poisson approximation

should be used when n ≥ 20 and p ≤ 0.05 at α = 0.05 if the analyst can tolerate

an absolute error in either limit that may be as large as 0.04” (see Figure 2).

• For sample sizes larger than 150, the maximum absolute error of the upper

and lower confidence limit is less than 0.01 if the appropriate approximation

technique is used. Figure 3 should be consulted for specific guidance as to

whether to use the binomial or Poisson approximation.

• Introductory probability and statistics textbooks targeting statistics and math-

ematics majors would benefit from including the use of the F distribution to
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find pL and pU . Many statistical software packages calculate percentiles of the

F distribution. Approximate methods should be used only when the numerical

methods associated with exact methods fail.

• More of these texts should include the use of the Poisson approximation to the

binomial distribution for determining interval estimates for p. These confidence

limits only require a table look-up associated with the chi-square distribution

and are very accurate for large n and small p.

APPENDIX A

Two derivations of the exact confidence intervals for p that depend on the F

distribution are given here. The first was given in Blyth (1986) and the second in

Hald (1952).

Let W1,W2, . . . ,Wn be iid U(0, 1) random variables. Let Y be the number of

the Wi’s that are less than p. Hence Y is binomial with parameters n and p. Using

a result from Casella and Berger (1990, p. 223), the order statistic W ≡ W(y) has

the beta distribution with parameters y and n − y + 1. Because the events Y ≥ y

and W < p are equivalent, P (Y ≥ y), which is necessary for determining pL, can be

calculated by

P (Y ≥ y) = P (W < p)

=
Γ(n + 1)

Γ(y)Γ(n − y + 1)

∫ p

0
wy−1(1 − w)n−ydw.

Using the substitution t =
(n − y + 1)w

y(1 − w)
and simplifying yields

P (Y ≥ y) =
Γ(n + 1)

Γ(y)Γ(n − y + 1)

(

n − y + 1

y

)n−y+1
∫

(n−y+1)p
y(1−p)

0

ty−1

(

n−y+1
y

+ t
)n+1 dt

= P

(

F2y,2(n−y+1) <
(n − y + 1)p

y(1 − p)

)

.
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Because this probability equals α/2 for a two-sided confidence interval,

F2y,2(n−y+1),1−α/2 =
(n − y + 1)pL

y(1 − pL)

or

pL =
1

1 + n−y+1
yF2y,2(n−y+1),1−α/2

where the third subscript on F refers to the right-hand tail probability. In a similar

fashion

pU =
1

1 + n−y
(y+1)F2(y+1),2(n−y),α/2

.

The second derivation of the exact confidence interval for p uses integration by

parts to show that the cumulative distribution function for the binomial distribution

can be expressed in terms of percentiles of a random variable having the F distribu-

tion. The binomial cumulative distribution function can be rewritten as an integral

(Hald 1952)

y
∑

k=0

(

n
k

)

pk(1 − p)n−k = n

(

n − 1
y

)

∫ 1

p
wy(1 − w)n−y−1dw. (1)

To prove this identity, we successively use integration by parts. (Details omitted here;

the interested reader should see Hald 1952.) Noting that the incomplete beta function

is

Bp(y + 1, n − y) =
∫ p

0
wy(1 − w)n−y−1dw

and that the complete beta function is

B(y + 1, n − y) =
∫ 1

0
wy(1 − w)n−y−1dw,

we have from (1)

y
∑

k=0

(

n
k

)

pk(1 − p)n−k =
B(y + 1, n − y) − Bp(y + 1, n − y)

B(y + 1, n − y)
. (2)
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Now let W denote an F -distributed random variable with (f1, f2) degrees of free-

dom. Then the random variable Z = f1W
f2+f1W

can be shown to have the cumulative

distribution function (Hald 1952)

FZ(z) = P (Z ≤ z) =
Bz(f1/2, f2/2)

B(f1/2, f2/2)
0 < z < 1.

It follows from (2) that for f1 = 2(y + 1) and f2 = 2(n − y)

y
∑

k=0

(

n
k

)

pk(1 − p)n−k = 1 − P (Z ≤ p)

= 1 − P

(

(y + 1)W

n − y + (y + 1)W
≤ p

)

= 1 − P

(

W ≤
(

n − y

y + 1

) (

p

1 − p

))

.

The lower confidence limit pL satisfies

n
∑

k=y

(

n
k

)

pk
L(1 − pL)n−k = α/2,

for y = 1, 2, . . . , n − 1. Equivalently

y−1
∑

k=0

(

n
k

)

pk
L(1 − pL)n−k = 1 − α/2

or

P

(

V ≤
{

n − y + 1

y

} {

pL

1 − pL

})

= α/2

where V ∼ F(2y, 2(n − y + 1)). To express pL in terms of the percentiles of the F

distribution,
(

n − y + 1

y

) (

pL

1 − pL

)

= F2y,2(n−y+1),1−α/2

or

pL =
1

1 + n−y+1
yF2y,2(n−y+1),1−α/2

.

Similarly

pU =
1

1 + n−y
(y+1)F2(y+1),2(n−y),α/2

.
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APPENDIX B

The Mathematica code for finding exact confidence intervals for p given n, y, and

α based on the binomial distribution is

pl = FindRoot[

Sum[Binomial[n, k] * p ^ k * (1 - p) ^ (n - k), {k, y, n}] == alpha / 2,

{p, y / n} ]

pu = FindRoot[

Sum[Binomial[n, k] * p ^ k * (1 - p) ^ (n - k), {k, 0, y}] == alpha / 2,

{p, y / n} ]

APPENDIX C

The Mathematica code for finding exact confidence intervals for p given n, y, and

α based on the F distribution is

<<Statistics‘ContinuousDistributions‘

fcrit = Quantile[FRatioDistribution[2 * y, 2 * (n - y + 1)], alpha / 2]

pl = 1 / ( 1 + (n - y + 1) / ( y * fcrit) )

fcrit = Quantile[FRatioDistribution[2 * (y + 1), 2 * (n - y)], 1 - alpha / 2]

pu = 1 / ( 1 + (n - y) / ( (y + 1) * fcrit) )
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Figure 1: Approximation methods for confidence limits (maximum absolute error:
0.01).
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Figure 2: Approximation methods for confidence limits (maximum absolute error:
0.04) and rules of thumb.
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Figure 3: Poisson vs. normal approximations for large sample sizes.
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Figure 4: Approximation methods for confidence limits (relative maximum error:
0.04).
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