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Abstract: - This paper deals with the construction of integro-differential polynomial splines of the fifth order on
a uniform grid of nodes. It is supposed that values of function in nodes and the values of integrals over
intervals are known. The properties of the left, the right and the middle integro-differential polynomial splines
are investigated. The approximation with these splines is constructed on every grid interval separately. The
results of numerical approximation by the left, the right, and the middle integro-differential splines
show that the middle splines are preferable. Errors of approximation of the left, the right and the middle
integro-differential polynomial splines of one variable of the fifth order are given. The approximation of
functions of two variables is constructed using the tensor product. Numerical examples are presented.
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1 Introduction

A variety of splines with different properties are
used in calculations in many engineering projects
[1,3]. Among them are analysis-suitable T-splines of
arbitrary degree, which are useful for modeling
cracks in plane problems, and for solving boundary-
value problems, cubic, bicubic and biquadratic B-
splines, trigonometric, orthogonal splines. These
splines are applied to the construction of curves and
surfaces, to the designing of ship hulls, to the
transformation of a sound signal’s frequency and to
many others [1-13]. In this paper we discuss the
construction of the polynomial splines which use
three integrals over subintervals in addition to the
values of the function in the nodes. As in previous
papers, we construct the approximation separately
for each subinterval. As wusual, local spline
approximation uses values of the approximated
function and, sometimes, values of its derivatives.

2 Approximation of the function

Suppose that n,m are natural numbers, while
a, b, c, d,h are real numbers, h=(b-a)/n. Let

function u(x) be such that u e C°[a—3h,b].
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We have the grid of interpolation nodes {x; }
such that x , =a—kh, k=3,2,1, x, =a,

X, =X; +h, J=0,...,n, X, =b.

Suppose that u(x; ), j = 0,1...,n, and

X j

[ u@ne, [ uene, [ u@de,j = 0.n,

Xja Xj_ Xj-3

are  known. We denote G(x) as an
approximation of the function u(x) in the

interval [ x;,x;,, |<[a,b]:
li(X) = Uu(X;)w; (X) +u(X;,,) W, (X) +

ST u@dE W0+ [ u(@dE Wi ()

Xj1

+ f u(&)de wi% (x).

Xj-a

We obtain basic splines w; (x), w,,,(x),
Wj<71,0>(x)’ Wj<72,0> (X), Wj<73,0> (X)

from the system:
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ad(x)=u(x), u(x)=x"* i=1234,5.
If x=x;+th, te[0,1], then the basic splines
can be written in the form:

3 2
W‘(x‘+th):(1_t)(125t +577t +736t+222)1

222
2 3
W, (X, +th) = t(12+ 33t + 24t° + 5t )’
74
_ 2
W_<,1,0>(X‘+th):t(t 1)(155t +6om+51®’
! ! 148h
_ 2
szm(x44h):ta t)(55t +17ﬁ+90{
! ! 148h
_ 2
WS (x. +th):t(t 1)(85t +197t+92).
! ! 1332h

We can also construct the approximation in this
form:

V(%) = u(x)o(x) + u(x,)@.(x) +

+fu@mgwf“(m+fu@méw?A1@-+

Xja Xj-2

+_[ u(&)dé o> (x), XE[XJ,XJ+1:| (1)

Xj-3

We obtain basic splines o, ,(x), @,,,,(x),

(()-<S'S+l> (X) , S

] =-1,-2,-3, from the system:

V(x)=u(x), u(x)=x", j=12,345 (2

If x = x; + th, te[0,1], then the basic splines
can be written in the following form:

o,(x, +th) = (1-t)(125t% +577t° +736t+222)

222
(12 + 33t + 24t% + 5t°
w;,,(X; +th) = ( o ),
_ 2
af4ﬂ>(x.+th):t(t 1)(985t +4085t+3926)’
! ! 1332h
_ 2
072 (X +th) = — t(t—1)(205t° + 671t + 359) .
! ! 666h
_ 2
wfﬁfb(x.+th)=t(t 1)(85t +197t+92)’
! ! 1332h
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It can be shown that the next relations are
fulfilled:

DV (%) =u(x;), 2V (x5.) =u(x;.),

Xj

3) jV x)dx = j u(x)dx,
4) J'V :X]‘lu(x)dx,
5)X].2V(x)dx :Xru(x)dx

Firstly, let us notice that statements 1)-2) follow
from the next relations:

coj(xj) =1 a)j(xm) = 0,

O (%) = 0 (%) =1,
a)f"l'(b(xj) =0, a)j<"1‘°>(xj+l) =0,
() =0 07 (1) =
o7 (x) =0, &% (x,) =0

Similarly, statements 3)-5) follow from the next
relations:

J)::Cl)j(X)dX =0, J‘:j:whl,o(x)dx =0,

| K o (x)dx =1, J':‘l w2 dx =0,

Xj71

o o;(x)dx = 0,

ij o377 (x)dx = 0, j !

Xj1 Xj-2

XXH @10 (X)dX

-2

J i a)f‘z"1> (x)dx =1, J.XXH

Xj-2 j-2

=0, LX_H a)f‘l"”(x)dx =0,

o (x)dx =0,

o (x)dx =0, :_H ®;,10(X)dx =0,
[ (x)dx = 0, [0 (x)dx=0

| T (X)dx = 1.

Xjiz
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Our aim is to determine if V (x) = E(x)

Lemma 1. Let functionu e C°[a—3h,b].
The next statement is valid:

V(0 =0(x), xe[x;, %], §=0,1..n—L

Proof. It can be shown that the next relations
are valid:

I, = <l°>(x +th)+ W<20>(Xj +th)+
+W<30>(Xj +th):a)j<’1'°>(xj +th),
I, = w; 2% (x; +th) + W% (x; +th) =
=072 (x, +h),

I, = wj’3'°>(xj +th) = a)j<’3"2>(xj +th).
Therefore, we obtain:

:(xj + th)z u(xj) o(X) + (XJ+1) @10

+fu@m§| ]u@m§|+jU@N§|—

Xj1 i-2 Xj-3

= U (%)) @, (¥) +U (X1 ) @150 (X)
+ j u(E)dE o] (x; + th)+

] -1

+ j u(@E)dé o2 (x, + th) +

+ j U(E)dE o * % (x; + th)

The proof is complete.

:V(xj + th).

Lemma 2. Let the function be such that
u e C°[a—-3h,b].

The next statement is valid:

V()-u(x)]| < K, h* |u®

[Xj_3.Xj.1]

xe[x;, %], K =0.085.

Proof. Using relations (1), (2) and the Taylor
formula with remainder in the integral form
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4 (k)( )
u(x) = Z Z(x=x,)" +

k=0

+ELU“’)((X—X,->V+x-)(x—x-f(l—y)“oly.

K, h5[max |u® |,

j-31 J+1]

we get |V (X)-u(x)| <
where K, =0.085.

Table 1 shows actual and theoretical errors of
approximation of functions constructed with

formula (1) when [a,b] = [-11], h = 0.1,
Calculations were done in Maple with
Digits = 15.

Table 1. Actual and theoretical errors of

approximation constructed with formula (1)

max|u—V| | max|u-V|
U(X) [-11] [-1]
actual theoretical
errors errors
sin(3x)cos(5x) | 0.26107 0.13910™*
& /5] 0.18010° | 0.8510°°
1/(1 + 25X°) 0.2510* | 0.27

Figure 1 shows the errors of approximation of
function sin(3x)cos(5x) with splines (1) when
h=0.1, a=-1 b=1.

Figure 2 shows the errors of approximation of
function 1/(1 + 25x*) with splines (1) when

h=0.1 a=-1 b=1

i
1 g

Vv

Fig.1. Errors of approximation of function
sin(3x)cos(5x) with splines (1).
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Fig.2. Errors of approximation of function
1/(1 + 25%*) with splines (1).

3 Comparison with Lagrange type splines

Suppose we know the values of function
u e C°[a—3h,b] in the points ;.

We consider the interpolation with Lagrange

type splines
W(x) = ( )a’J(X ( J+1) o, (X)+
+u( ) L(x) + u( ,z)a), ,(X) +
Xe| X)X |- (3)

+U (X ) @5 (x),

It can be found that

@, (X) = (X=X)(X= X )(X=X]_,) %
X(X=X; )/ Z 1,
Z g = (K = X)X = X)) (X, = Xj,) %
X (Xj1 = Xjs),
o, (X) = (X=X )(X= X )(X=X; ;) x
x(x—xH)/Zj,
Zj = (XJ‘_XH)(XJ'_X j_l)(x,- ‘Xj—Z)X
X(XJ _Xj—s)'

o, (x) = (x - xm)(x - xj)(x - xjfz)x

x(X - Xj_3)/Zj_l,
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X(Xj—l_xl3)
@12 (%) = (% =2 ) (x = )(x = x4 )
(x—xjs)/Z
Zya = (% =% 1) (X2 =) (%2 =x,0)
(Jz i),

(=) (0 = %)

x—sz)/Z

Zys = (X =X ) (X =) (%0 =)
(%5 %)

Lemma 3. Supposeu € C°[a—3h,b]. There is a
point 7 e[x;_5,x,,,], such that

X
—_—

j+1

u(x)-W(x) = 5(!77) (X=X, )(X=X;,1) X
x(X= %) (X=X, ) (X =%15),

Xe[ X; X, |-

Proof. The points X, 1 =-10123 are the

points of interpolation. Using the formula of the
remainder term of Lagrange interpolation we
obtain the formula.

Corollary. If M = max
Xe[a—3h,b]

put x = x; + th, t[0,1], then

‘u(s) (x)‘ and we

5
IW (x; + th)—u(x; + th)|<3.63 Mh :
Proof. Obviously,
Mh®
u(xj + th)ls =
xtt-D(t + 1)(t + 2)(t + 3).

It can be obtained, that

max [t(t—1)(t+1)(t+2)(t+3)| = 3.63,

teOl

when t = 0.6444.

W (x; + th)-

X
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Table 2 shows actual and theoretical errors of
approximation of functions constructed with
formula (3) when [a,b] = [-11], h = 0.1.
Calculations were done in Maple with

Digits = 15

Table 2. Actual and theoretical errors of
approximation constructed with formula (3)

max|u —W| max|u —W|
u (X) [_1*1] [_1'1]
actual theoretical
errors errors
sin(3x)cos(5x)| 0.45107? 0.50107
x> /5! 0.302591079 0.3026210°
1/(1 + 25x2) 0.3410" | 0.9510°

Figure 3 shows the errors of approximation of
function sin(3x)cos(5x) with splines (3) when
h=0.1, a=-1 b=1.

Figure 4 shows the errors of approximation of
function 1/(1 + 25x*) with splines (3) when

h=0.1 a=-1 b=1

I. G. Burova, A. G. Doronina, I. D. Miroshnichenko

4 Other splines. Part 2

Let the function u(x) be such that

u € C°[a — 2h, b]. Suppose h=(b—a)/n. Letthe
grid of interpolation nodes X; be such that

X, =a-2h,

x,=a-h, X, =X +h,

j=0,...,n, X, ,=b+h.

Suppose that u(x;), j=0,...,n, and [

T u(x)dx} [Tu(x)dx

}j u(x)dx},

], j=0,...,n,

known. We denote u,(x) as an approximation of
the function u(x) in the interval [x;,X;,,] =[a,b]:

are

X

U3 (X) = U)W, (X) + U (X)W, 1 () +

+ j u(€)dE w2 + j u(E)dE Wi (x) +

i-2 j-1

+ j u(&)d& w;* (x).

We obtain the basic splines w;*" (x),

W, (), W (X), W (X), s=-2,-1,
from the system:
w(x)=u(x), u=x, i=01234.

If xe[x;,X;,], x=X%; +th,t €[0,1], then the

basic splines can be written in the form:

w; (x; +th) =1—t—gt2 +2t° +§t4,
2 2

Fig.3. Errors of approximation of function
sin(3x)cos(5x) with splines (3). t(5t° — 4— 3t + 8t?)
W, (x; +th) = 5 )
3 _ 2
0 W-<_2’O>(X-+th)=—t(5t +2-3t+4t )’
. ! 36h
A 1o _ t(4-9t+5t%)
i o TN s W) =T
Y £(85t° —92 —105t +112t2)
002 ¥ WO (x; +th) =— :
Fig.4. Errors of approximation of function 36h

1/(1 + 25%*) with splines (3).
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As in the previous section, we can also take the Figure 5 shows the errors of approximation of

approximation in the form: function sin(3x)cos(5x) with splines (4) when
Vi (x) =u(x;)o; (x) +u(x,,,)o;,,(X) + h=0.1, a=-1 b=1.

+xj‘lu(§)d§ a)f’z"1>(x)+ ]1 u(&)dé a)f’l'°>(x)+ Figur_e 6 shows the errors_of approximation of

e o function 1/(1 + 25x*) with splines (4) when
X1 h=0.1 a=-1 b=1.

+u@ds o). @

We obtain the basic splines w;(X), @;,,(X),

@ (x), s=-2,-1,0, then the basic splines

255 .

can be written in the form:

@(M+ﬂﬂ:1—t—%ﬁ+2ﬁ+gﬁ,

3_ AN 2
0, (x, +th) - LB =4=3+8)

6
3,09 o p42
C()-<72’71> (X- +th) _ t(5t +2-3t-4t ) ’
: : 36h
B 2 3
o0 (X +th) = — t(17 -39t + 2t° + 20t°) ’ . o -
! . 18h Fig.5. Errors of approximation of function
t(85t> —92 —105t +112t%) sin(3x)cos(5x) with splines (4).

&% (x, +th) = -

36h
The following Lemma is valid.

Lemma 4. Let function u € C°[a — 2h, b] The

next statement is valid: V,(x) = G(x).

Proof.
The proof is similar to the proof of Lemma 1.

Lemma 5. Let the function be such that
u € C°[a — 2h, b].
The next statement is valid: 0008

V() -u(¥)| < K, h* [u®

R T LR
LTRSS RN .o
pooos

[Xj—ZlXj+1] :
xe[x,x ], K,=0.0199. Fig.6. Errors of approximation of function
b 1/(1 + 25%*) with splines (4).

Proof.

The proof is similar to the proof of Lemma 2.
5 Other splines. Part 3
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Let function u(x) be such that u €
C>[a — h, b + h]. We have the grid of
interpolation nodes x; so that

X,=a-h, x,=a, Xjq =X, +h,
1=0,..,n, X ,=b+h, x,,,=b+2h.
Suppose that u(x;), j=0,1,...n, and

[}] u(x)dx}, {Tu(x)dx}, {Tu(x)dx} are

known.

We denote Gz(x) as an approximation of
function u(x) in interval [x;,x;,,]<[a,b]:

U2 () = U W, (X) + U (X, W, () +

[ U@ W (0 + [ UEIE) WP () +

Xj4 X

+ [ U0 wes (1),

We obtain the basic splines w;(x), w;,,(x),
WT’1’°>(X), WJ<°’3>(X), s=12

from this system:

u(x)=u(x), u=x, i=0,1,2,3 4.

If x=x; +th, t[0,1]. then the basic splines
can be written in the form:
w; (x; +th) =1—3t—gt2 +6t° —gt“,

t(4—3t -8t +5t°)

Wi, (X; +th) =- 5
_ _ 2 3
W_<’1’°>(x. +th):t( 4 +15t —-16t° +5t )’
’ . 12h
_ _ 2 3
WO (x4 th) = (20-81 =327 +158)
j ! 4h
_ _ 2 3
W2 (x. +th) = t(2—3t—4t° +5t )
) ! 12h

Similar to the previous section, we can also

make an approximation in this form:

E-ISSN: 2224-2880
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V5 (X) =u(X;)@; (X) +u(X;, )@;,, (X) +

Xj+1

+ [ u@dé o] (0 + [ u@dé o (0)+

I Xj

uecort . ©

Xjs1

We obtain the basic splines w;(X), ®;,,(X),
a)fs's*b(x), s=-1,0,1, from this system:
V,(x)=u(x), u=x', i=0,1,2,3,4.

If xe[x;,X;,,], x=x; +th, t€[0,1], then

the basic splines can be written in the form:

o, (x; +th) =1—3t—%t2 + 6t —gt",

_ t(4-3t-8t° +5t%)

©,.4(X, +th) = .
— _ 2 3
0)_<_1’0>(X. T th) = t(—4+15t —16t° +5t°) |
! ’ 12h
At B2 3
C()_<O'l> (Xj +th) _ t(31 ot —50t° + 25t ) ’
' 6h
_ _ 2 3
CO_<1'2> (XJ +th) — t(2 3t 4t +5t )
! 12h

Our aim is to determine if V,(x) = Gz(x).

Lemma 6 Let function u € C>[a — h, b + h].

The next statement is valid: V,(x) = l]z(X).

Proof. The proof is similar to the proof of
Lemma 1.

Lemma 7. Let the function be such that
u € C°[a — h,b + h].
The next statement is valid:

V,(x)-u(x)| < K, h* [u®

i)
[Xj1%j1]
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Xe [Xj ) Xj+1]! K3 =0.0175.

Proof. The proof is similar to the proof of
Lemma 2.

Tables 3 and 4 show actual and theoretical
errors of approximation of functions
constructed with formulas (4), (5) when [a,b] =
[-1,1], h = 0.1. Calculations were done in
Maple with Digits = 15.

Comparison of the numerical and theoretical
approximation errors, given in Tables 1, 2, 3,
show that among the integro-differential
splines, the middle ones are preferable. In
addition, interpolation with of integro-
differential splines is preferable to interpolation
with Lagrangian splines.

Table 3. Actual errors of approximation
functions constructed with formulas (4), (5)

u(x) r[rjggflu—vll r[ljfl>]<|U—Vz|
sin(3x) x

(3x) 0.1902:10° | 0.9353-10*
cos(5x)

5

% 0.1211-107 | 0.6026:10°
N 102 102
250 0.9393:10 0.1242:10

Table4. Theoretical errors of approximation

functions constructed with formulas (4), (5)

u(0 | maxju-V,| [ maxju-V,|
sin(3x) x

(%) 0.31:10° 0.28'107
cos(5x)

X 0.199:107 0.175:10°

51
2| 062510 0.55'10"
(1+25x?) ' '

Figure 7 shows the errors of approximation of
function sin(3x)cos(5x) with splines (5) when
h=0.1, a=-1 b=1.
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Figure 8 shows the errors of approximation of
function 1/(1 + 25x*) with splines (5) when

h=0.1 a=-1 b=1

Fig.7. Errors of approximation of function
sin(3x)cos(5x) with splines (5).

B
0.001
n.ooiﬁ
IYIBELT
a1 05 VE"?‘UU 05 1
v
-0.0005 :
00085
Wi

Fig.8. Errors of approximation of function
1/ 1+ 25x?) with splines (5).

6 Approximation functions of two variables

Suppose we construct a set of lines parallel to
x-axis and y-axis which are drawn in a
rectangular domain D on a plane with a
constant step h along the x-axis and y-axis. For
the approximation of a function of two variables
we can use the next formula using the tensor
product in every elementary rectangular in D:
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3 3 Ykis .
Vo0 y) =203 [ u(x, y)dxdy o] (x) o7 (y) +
s=1 i=1 Vi

X

.[ U(X! yk+s)dx a)k+s (y) a):i>(x) +

]

>

s=0

+

3
=1

Yiss
<S>

2> [ Ul dy @, (0 @ (y)+

s=1 i=0 Vi

+

Z u(Xj+i ! yk+s) Wy s (y) a)j+i (X)

3
i=0 s=0

Figure 8, 9 show plots of function

u(x,y) =sin(2x—2y)-cos(3x—3y) and the
error of its approximation constructed with
tensor product of splines (1),

step h=0.2 in [-1,-1]x[-1,-1].

Figure 10 shows plot of the error of
approximation  function  u(x,y)=(x-y)°

constructed with tensor product of splines (1),
step h=0.2 in [-1,-1]x[-1,-1].

Fig.8. Approximation of function
u(x,y) =sin(2x—2y)-cos(3x—3y) with
tensor product of splines (1).
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Fig.9. Errors of approximation of function
u(x, y) = sin(2x—2y)-cos(3x —3y),
h=0.2.

Fig.10. Errors of approximation of function
u(x,y)=(x-y)% h=0.2.

7 Conclusion

Here we investigated approximation using the
values of integrals of the function over the
subintervals immediately to the left of
subinterval [xj,xH], immediately to the right

of this subinterval, and immediately to the left
and to the right of this subinterval. The results
of numerical approximation by the left, the
right, and the middle integro-differential splines
and theoretical errors of approximation show
that the middle integro-differential splines are
preferable. In addition, interpolation with of
integro-differential splines is preferable to
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interpolation with Lagrangian splines. If the
values of the integral of the function are
unknown, we can use quadrature formulae with
the fifth order of approximation. For the
approximation of a function of two variables we
can use a formula using the tensor product in
every elementary rectangular.
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