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Abstract

In many applications multidimensional outcome variables measured on different scales are of
interest. In this paper we consider regression modelling of a bivariate response with a normal and a
binary component. We use three different approaches to model dependence: a joint logit-normal
model for the two responses, a factorization model with linear dependence and a factorization
model with flexible non-linear dependence. We apply these approaches to Austrian SILC data to
analyse material deprivation and household income.

Keywords: joint modelling, logit-normal, factorization model, data augmentation, material depriva-
tion, living conditions.

1. Introduction

In the past years the topic of well-being of societies became increasingly important in European
politics. It is commonly agreed that the GDP does not sufficiently measure this concept and that com-
plementary indicators are necessary to get a more comprehensive picture of living conditions. Ini-
tiatives that deal with this subject are the "GDP and beyond" initiative (http://www.beyond-gdp.eu/),
the Stiglitz-Sen-Fitoussi Commission (Stiglitz, Sen, and Fitoussi 2009) and the Sponsorship Group
on Measuring Progress, Well-being and Sustainable Development (Eurostat 2011). Currently score-
boards of indicators are being developed in European statistics. These scoreboards consist e.g. of
economic indicators, social indicators, or environmental indicators. Since such scoreboards include
many different measures we face an increasing need for analyses of dependencies between them and
of driving factors. From the methodological point of view the analysis of such dependencies requires
models which are able to deal with multidimensional data of mixed type. Our paper meets these
needs. We develop mixed data models which incorporate continuous and binary data in regression
type models. In our application we focus on social measures coming from the European survey on
income and living conditions (EU-SILC).

In this paper we investigate the dependence between a monetary and a material aspect of living con-
ditions in Austria. The monetary aspect is captured via the household income - the money each
household has to make its living from, whereas the material aspect is represented by the so-called
material deprivation indicator. According to the definition a household faces material deprivation if
the members are not capable to meet certain predefined needs like e.g. TV, phone, holiday away from
home.

http://www.ajs.or.at
http://www.ajs.or.at/
file:www.osg.or.at


104 A Comparison of Bayesian Mixed Data Models

We combine the continuous outcome variable household income and the binary outcome variable
material deprivation in mixed data models and analyse their dependence on socio-demographic factors
like e.g. the age or activity status of the main-income earner, the household type and migration status.
We derive the importance of these explanatory variables by introducing variable selection.

We consider different modelling approaches to deal with multidimensional data of mixed type. We
define the models for a continuous and a binary outcome, but they may easily be extended to other
data types. In all joint models we use a linear regression model for the continuous and a logistic
regression model for the binary outcome. Based on a representation of the binary outcome through
a latent continuous utility, the joint bivariate distribution of the error terms is specified as a mixture
of bivariate normal distributions in the first modelling approach, whereas the other models use a
factorization of the joint bivariate error distribution.

Our paper is organized as follows: Section 2 introduces the different models and corresponding priors
for the Bayesian analysis. MCMC estimation is explained in Section 3. In Section 4 we analyse
Austrian SILC data and compare results from the three different models. We summarize the findings
of the paper in Section 5.

2. Model specification

2.1. Regression model

Let yi = (ybi , y
n
i )′ denote a bivariate response observed for subjects i = 1, . . . , n, where ybi is a binary

and yni a normal component. xi = (1, xi1, . . . , xid) denotes a 1 × (d + 1) vector of covariates. To
specify a joint regression model for yi, we assume an underlying latent continuous variable ui, which
determines the value of the binary response: ybi = 1 if ui > 0 and ybi = 0 otherwise, and model the
bivariate response (ui, yni )′. In all models considered in this paper we use a regression specification
for the mean of the bivariate response and model dependence via the error terms.

The joint regression model of (ui, yni ) thus is a SUR (seemingly unrelated regressions) model, given
as (

ui
yni

)
=
(

xiβb

xiβn

)
+ εi, εi =

(
εbi
εni

)
, (1)

where βn = (βn0 , β
n
1 , . . . , β

n
d )′ and βb = (βb0, β

b
1, . . . , β

b
d)
′ denote the regression coefficients includ-

ing the intercept for the two responses. Further we assume that εni ∼ N
(
0, σ2

)
in all models, i.e. we

specify a standard normal regression model for yni ,

yni ∼ N
(
xiβn, σ2

)
(2)

and specify either the marginal distribution of εbi or the conditional distribution of εbi |εni as an (approx-
imate) standard logistic distribution. In all models we use the representation of the standard logistic
distribution Log(0, 1) as a scale mixture of six normal components derived by Mohanan and Stefanski
(1992). Table 1 gives the fixed variances s2r and weights wr of this approximation, which was shown
to be very accurate in Frühwirth-Schnatter and Frühwirth (2010).

Table 1: Variances and weights of the normal components in the finite mixture approximation of the
standard logistic distribution.

r 1 2 3 4 5 6
s2r 0.68159 1.2419 2.2388 4.0724 7.4371 13.772

100wr 1.8446 17.268 37.393 31.697 10.89 0.90745
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Using this approximation the logistic regression model with linear predictor ηbi can be represented as

ui = ηbi + εi, p(εi) =
6∑
r=1

wrϕ(εi; 0, s2r), (3)

ybi = I(0,∞)(ui), (4)

where ϕ(yi;µ, σ2) denotes the pdf of the N
(
µ, σ2

)
-distribution.

In our first model we specify the bivariate distribution of the error term εi in equation (1) as a finite
scale mixture of bivariate normal distributions,

p(ε) =
6∑
r=1

wrϕ2(ε; 0,Σr), Σr =
(
s2r srσρ
srσρ σ2

)
. (5)

Here ϕ2(y; µ,Σ) denotes the pdf of the bivariate Normal distribution with moments µ and Σ. The
mixture components share the same correlation ρ, but the variances s2r are component specific. We
call this model the logit-normal model (LN), as the marginal distribution of ui is essentially logistic
with mean ηbi = xiβb, yielding a logit regression model for the binary response ybi .

As a further modelling approach we consider factorization models with a conditional logit model
for ybi . In the conditional linear model (CL) we specify the predictor ηbi as a linear function of the
covariates xi and the standardized error of the normal model, i.e.

ηbi = xiβb + ψ
yni − xiβn

σ
.

The composite error of the latent utility is given as

εbi = ui − xiβb = ψ
εni
σ

+ εi,

where the error εi has a standard logistic distribution and hence the conditional distribution of the
composite error is εbi |εni ∼ Log(ψ εni /σ, 1). Note, that marginally εbi has not a standard logistic
distribution but a location mixture of logistic components with normal mixing distribution,

p(εbi) =
∫
R
p(εbi |Log(ψ εni /σ, 1)) ϕ(εni ; 0, 1) dεni ,

and the conditional linear model therefore is not equivalent to the logit-normal model.

To highlight the difference between both models we make use of the finite mixture approximation of
the standard logistic distribution: the joint error distribution in the conditional linear model is

p(εb, εn) =
∑
r

wrϕ(εb;ψ εn/σ, s2r)ϕ(εn/σ) =
∑
r

wrϕ2((εb, εn/σ)′; 0,Σ∗r),

where Σ∗r =
(
s2r + ψ2 ψσ
ψσ σ2

)
. This is a mixture of bivariate normal distributions, where correlations

ρr = ψ/
√
s2r + ψ2 and variances s2r + ψ2 are component specific. An implication of this model is

that dependence will be smaller for mixture components with higher variance. Note, that in contrast
the correlation ρ is constant for all mixture components in the logit-normal model.

The third model we consider is an extension of the conditional linear model, where the linear term
xiβb is combined with a smooth function of the standardized residuals εni /σ to

ηbi = xiβb + f(
yni − xiβn

σ
). (6)

The smooth function f(z) is represented as a linear combination of B-spline basis functions Bj , see
Lang and Brezger (2004),

f(z) =
J∑
j=1

γjBj(z),
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where γ = (γ1, . . . , γJ) denotes the coefficients of the B-spline basis functions. As this model allows
to capture non-linear dependence between the two error terms εn and εb it is more flexible than the
conditional linear model, and we will call it the conditional flexible model (CF). We note here that
also in the flexible model the marginal error distribution of εb is no longer logistic.

2.2. Prior distributions

Bayesian model specification is completed by assigning prior distributions to the model parameters.
We consider a prior of the structure p(βn,βb, σ2,ϑ) = p(βn)p(βb)p(σ2)p(ϑ), where ϑ denotes the
model specific parameters.

Priors for the regression coefficients βc, c = n, b could be specified as multivariate normal distribu-
tions. As we intend to perform variable selection we will however use spike and slab prior distributions
for all regression effects. Spike and slab priors are mixtures of a spike component at zero, which al-
lows to shrink small effects to zero and a rather flat slab component, see e.g. George and McCulloch
(1997); Ishwaran and Rao (2005); Malsiner-Walli and Wagner (2011) for different variants of spike
and slab priors. We introduce a vector of binary indicators δc = (δc1, . . . , δ

c
d)
′ for c = n, b, with

elements taking the value 1 if the corresponding coefficient is unrestricted and 0 otherwise. The prior
for βc can be specified hierarchically as

p(βc|δc) = pslab(βc0)
∏
j:δc

j=1

pslab(βcj )
∏
j:δc

j=0

pspike(βcj ), (7)

p(δc) =
d∏
j=1

(ωc)δ
c
j (1− ωc)1−δ

c
j , ωc ∼ B (a0,c, b0,c) , (8)

where B() denotes the Beta distribution. Note, that for both components the intercept is not subject to
selection in this specification, and hence is assigned a slab prior.

We will use independent normal slabs pslab(βcj ) = ϕ(βcj ; 0, Bc
0) and either Dirac spikes, i.e. a point

mass at zero or continuous spikes specified as N (0, αBc
0) with α << 1. Our choice of the spike

component is dictated by convenience of MCMC sampling: Dirac spikes require computation of the
marginal likelihood, which can be determined analytically only for normal and conditionally nor-
mal regression models. With the normal mixture approximation of the standard logistic distribution,
marginal likelihoods are analytically available for all parameters in the joint logit-normal model and
the conditional linear model and we use a Dirac spike for βn and βb in these models. In the condi-
tional flexible model a Dirac spike is assigned to βb but we use a continuous spike for the regression
effects βn of the normal response.

For the remaining model parameters we assign priors which are standard for Bayesian analysis. In
the logit-normal model we assume prior independence of σ and ρ with θ = lnσ ∼ N (d0, D0) and
a standard normal prior truncated to [−1, 1] for ρ. In both factorization models a G−1 (s0, S0)-prior
is specified for the error variance σ2. We chose a normal prior, N (0, P0) for ψ in the conditional
linear model. As an alternative a spike and slab prior distribution could be specified to determine
whether there is linear dependence between the error terms in both models. Finally, in the conditional
flexible model we assume the standard second order random walk prior for the spline coefficients γ
with variance τ2 ∼ G−1 (a, b), see Lang and Brezger (2004).

3. Bayesian inference

Bayesian inference for the models specified in Section 2 is feasible by sampling from the posterior
distribution using data augmentation and MCMC methods. As we use the latent utility representa-
tion for the binary response and the finite mixture approximation of the standard logistic distribution,
the latent utilities u = (u1, . . . , un)′ as well as component indicators r = (r1, . . . , rn)′ have to be
sampled additionally to the model parameters. We will use Θ to denote the collection of all model pa-
rameters and the indices LN,CL,CF to address a specific model. The different modelling approaches
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lend themselves to different MCMC schemes, which are convenient for posterior estimation. These
are detailed below.

3.1. MCMC for the logit-normal model

Conditional on the auxiliary variables u and r the logit-normal model is a bivariate linear Gaussian
regression model with regression coefficients β =

(
(βn)′, (βb)′

)′, where joint sampling of the binary
indicators δ =

(
(δn)′, (δb)′

)′ and the regression coefficients β is feasible. Posterior inference for all
model parameters can be accomplished by the following sampling scheme:

(I) Sample the component indicators r from p(r|β, δ, ρ, θ,u,y) ∝
∏n
i=1 p(ui|β, δ, ρ, θ, ri, yni )p(ri).

(II) Sample (ρ, θ) and the latent utilities u:

(IIa) Sample ρ and θ together from the posterior p(ρ, θ|β, r,y) =
∏n
i=1 p(yi|β, ρ, θ, ri)p(θ)p(ρ)

using an MH-step.
(IIb) For i = 1, . . . , n sample the latent utilities u from the posterior p(ui|β, ρ, θ, ri,yi).

(III) Sample the indicator variables and the regression coefficients (δ,β) from the full conditional
posterior p(δ,β|ρ, θ, ωn, ωb,u, r,y).

(IV) For c = n, b sample ωc from the Beta posterior, B
(∑

δcj + a0,c, d−
∑
δcj + b0,c

)
.

All sampling steps with the exception of step (IIa) are simple Gibbs steps. The component indicators
in step (I) are sampled independently from the discrete distributions

P (ri = r) ∝ φ
(
ui −mi,r

si,r

)
πr, r = 1, . . . , 6,

where mi,r and si,r are the parameters of the conditional normal distribution ui|yni ∼ N
(
mi,r, s

2
i,r

)
,

given as

mi,r = xiβb + srρ
εni
σ
, (9)

si,r = sr
√

1− ρ2. (10)

As proposal for the MH-step (IIa) we use a bivariate Student t-distribution with 10 degrees of freedom,
where the mean is the ML estimate of the likelihood p(y|β, θ, ρ, r) after a few maximising iterations
and the variance-covariance parameter is the inverse Hessian at this point. The full conditionals for
the latent utilities ui in step (IIb) are the normal distributions N

(
mi,r, s

2
i,r

)
truncated to (−∞, 0) if

ybi = 0 and to (0,∞) if ybi = 1.

Details on sampling step (III), which is a standard step for variable selection in Gaussian regression
models, are given in Appendix A.

3.2. MCMC for the conditional linear model

In the conditional linear model the joint likelihood of normal observations and latent utilities, condi-
tional on the component indicators is given as

n∏
i=1

p(ui, yni |ri,ΘCL) =
n∏
i=1

p(yni |βn, σ2)p(ui|ΘCL, sri , y
n
i ), (11)

where
ui|ΘCL, sri , y

n
i = xiβb + ψ

yi − xiβn

σ
+ ε̃i, ε̃i ∼ N

(
0, s2ri

)
. (12)

This suggests sampling (δb,βb, ψ) and (δn,βn) separately, as the full conditional posterior distribu-
tion of (δb,βb, ψ) involves only the linear regression model (12).

Hence we use the following sampling scheme for the conditional linear model:
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(I) Sample the indicators and regression coefficients (δn,βn) jointly from p(δn,βn|σ2,βb, ψ,u, r,y).

(II) Sample the error variance σ2 from its conditional posterior G−1
(
s0 + n/2, S0 +

∑
(yni − xiβn)2

)
.

(III) Sample the auxiliary variables u and r from the full conditional p(u, r|σ2,βn,βb, ψ,y).

(IV) Sample the indicators and regression coefficients in the conditional logit model (δb,βb, ψ) from
the full conditional

p(δb,βb, ψ|βn, σ2,u, r,y).

(V) Sample ωc, c = n, b from the B
(∑

δcj + a0,c, d−
∑
δcj + b0,c

)
.

Sampling steps (III), (IV) and sampling of ωb in step (V) are standard steps for Bayesian variable
selection in a logit regression model, see e.g. Wagner and Duller (2012) for full details. If ψ = 0
the joint model decomposes into a linear and a logit regression model and the remaining steps (I),
(II) and sampling of ωn in step (V) perform Bayesian estimation with variable selection in the normal
regression model. For ψ 6= 0, βn is a regression parameter the heterogeneous linear regression model

yni = xiβn + εi, εi ∼ N
(
0, σ2

)
,

wi =
ψ

σ
xiβn + ε̃i, ε̃i ∼ N

(
0, s2ri

)
,

with working observations defined as wi = ψ
yn

i
σ − (ui− xiβb). For this model, the indicators δn and

the regression coefficients βn can be sampled jointly in one Gibbs step, see in Appendix B for details.

3.3. MCMC for the conditional flexible model

In the flexible specification of the conditional model given as

ui|yni = xiβb +
J∑
j=1

Bj(
yni − xiβn

σ
)γj + ε̃i, ε̃i ∼ N

(
0, s2ri

)
(13)

the errors of the normal regression model enter nonlinearly. Hence the posterior of δn, marginalised
over the regression effects βn is not available in closed form. This is the reason why we choose a spike
and slab prior with continuous spike for the regression effect βn which allows to sample the indicators
δn conditional on βn (see Malsiner-Walli and Wagner 2011, for more details). As the full conditional
posteriors of βn and σ2 are not of closed form we sample these parameters using an MH-step.

The sampling scheme for posterior inference in the conditional flexible model consists of the following
steps:

(I) Sample βn and δn.

(Ia) Sample the regression coefficients βn of the normal model from the full conditional
p(βn|δn,βb,γ, σ2,u, r,y) using an MH-step.

(Ib) Sample the indicators δn from the full conditional p(δn|βn, ωn) =
∏d
j=1 p(δ

n
j = 1|βnj , ωn),

where

p(δnj = 1) =
1

1 + 1−ωn

ωn Lj
, Lj =

pspike(βnj )
pslab(βnj )

.

(II) Sample the error variance σ2 from its conditional posterior p(σ2|βn,βb,γ,u, r,y) using an
MH-step.

(III) Sample the auxiliary variables u and r from the full conditional p(u, r|σ2,βn,βb,γ,y).

(IV) Sample the indicators and regression coefficients in the conditional logit model (δb,βb) from
the full conditional

p(δb,βb|βn,γ, σ2,y,u, r).
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(V) Sample the spline coefficients γ from the model

ui − xiβb =
J∑
j=1

Bj(
yi − xiβn

σ
)γj + ε̃i

and the hyper-parameter τ2 from p(τ2|γ).

Sampling steps (III) and (IV) are described in Wagner and Duller (2012) and details on step (V) are
given in Lang and Brezger (2004). For sampling βn and σ2 in steps (Ia) and (II) respectively, we
use the posterior distributions resulting from the marginal regression model (2) as proposals. As these
proposals ignore only the information on βn and σ2 contained in the binary observations, this strategy
works well.

4. Analysis of household income and material deprivation

4.1. Data

Our data come from the European household survey EU-SILC, which focuses on income and living
conditions but also includes questions about socio-demographic attributes. We combine the logarithm
of household income and the material deprivation indicator to the bivariate mixed response, which is
analysed applying the different models. According to European guidelines a person is hit by material
deprivation if at least four out of the following nine criteria are fulfilled: (1) arrears on mortgage or
rent payments, utility bills, hire purchase instalments or other loan payments; (2) household cannot
afford paying for one week’s annual holiday away from home; (3) household cannot afford a meal
with meat, chicken, fish (or vegetarian equivalent) every second day; (4) household cannot bear un-
expected financial expenses of an amount which varies for different countries and is about 900 Euros
for Austria; (5) household cannot afford a telephone (including mobile phone); (6) household cannot
afford a colour TV; (7) household cannot afford a washing machine; (8) household cannot afford a car
and (9) household is not able to pay for keeping its home adequately warm.

Our data set contains 3694 households from the EU-SILC 2009 survey in Austria BMASK (2011).
Following Fusco, Guio, and Marlier (2010) we consider only those data sets where the main-income-
earner of the household, i.e. the person with the highest income, is not retired and at least one adult
person is less than 60 years old.

We include several covariates which may have an influence on the responses material deprivation
and household income, respectively. Some of these covariates are associated with the main-income
earner whereas other covariates are household variables. The variables of the main-income-earner are
gender, age, activity status (with categories full-time work, part-time work, unemployed and out-of-
labour-force), education (with categories lower education, medium education, higher education and
university) and migration background. A person has migration background if he or she either now
has or once had a non-EU/EFTA citizenship. To allow for a deviation from a pure linear relationship
between the two responses and age we add the logarithm of age as predictor. The household variables
are the type of household (with six categories: single, two adults/no children, single-parent household,
two adults/one or two children, two adults/more than two children and other household), the type of
building (categorized in single-family house, house with two families, multi-family house with three
to nine households, multifamily house with more than nine households and other) and the population
density (with categories high, medium and low).

4.2. Variable Selection

As a first step of data analysis we performed Bayesian variable selection to identify important regres-
sors for both response variables. We use a uniform prior for the inclusion probabilities ωc ∼ B (1, 1),
normal slabs with variance B0 = 5 and set α = 0.0052 for the continuous spike. We use a standard
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normal prior for θ in the logit-normal model and an improper G−1 (0, 0)-prior for σ2 in both factor-
ization models. Finally ψ ∼ N (0, 5) in the conditional linear model and in the conditional flexible
model we use cubic P-splines with 41 inner knots on the interval [−8, 8] and τ2 ∼ G−1 (0.001, 0.001).

To estimate posterior inclusion probabilities MCMC was run for 100 000 iterations after a burn-in of
10 000 draws where the first 5 000 draws are from the unrestricted model. Convergence was checked
by running several chains. Integrated autocorrelation times are highest for the conditional flexible
model, where they range from 12-82 for the regression coefficients of the binary and from 5-54 for
the coefficients of the normal response. Posterior means are estimated by the means of all draws after
burn-in.

The variable selection results were similar for the normal response log income in all three models,
which differ only with respect to the specification for the binary response. Table 2 gives detailed
results on estimated inclusion probabilities. Based on posterior inclusion probabilities larger 0.5 the
following variables were selected: linear age effect, dummy variables for all categories of activity
status and education, migration background, dummy variables for all household categories except
for households with 2 adults and 1-2 children, the category "multifamily house with more than nine
households" for the type of building variable and the category "low population density". For material
deprivation there are slight differences in the three specifications. In all three models dummy variables
for all categories of activity status and education, migration background, as well as two dummies
for the type of building variable (3-9 families, multifamily house with more than nine households)
were selected. The posterior inclusion probability for a logarithmic effect of age and the dummy for
households with two adults and no children are close to 0.5 in all three models. The dummy variables
for single parent households and for low population density have a posterior inclusion probability
larger than 0.5 in the conditional linear model but slightly below 0.5 in the two other models.

To check for sensitivity with respect to the number of P-spline knots, the analysis was repeated with
only 21 inner knots, yielding essentially the same results.

4.3. Model Selection

We compare model adequacy of different specifications of the three models by the DIC (Spiegelhalter,
Best, Carlin, and Van der Linde 2002), defined as

DIC = D(Θ) + pD(y, Θ̄(y)).

Here D(Θ) is the posterior mean of the deviance

D(Θ) = −2 log p(y|Θ) + 2 log f(y),

where f(y) is some fully specified standardizing term. pD(y, Θ̄(y)) is a measure of complexity,

pD(y, Θ̄(y)) = EΘ|y(−2 log p(y|Θ)) + 2 log p(y|Θ̄(y)),

where Θ̄(y) is the posterior mean of Θ. The model with the smallest DIC is to be preferred. DIC is
very popular for Bayesian model comparison, as it can readily be computed from the MCMC output.
We follow here Celeux, Forbes, Robert, and Titterington (2006) and set f(y) = 1.

For all models we compute the likelihood based on the factorization

log p(y|Θ) =
n∑
i=1

(
log p(yni |Θ) + log p(ybi |Θ, yni )

)
.

For the logit-normal model the conditional distribution of ybi is given as

p(ybi |Θ, yni ) =

{
1−

∑
Φ(mi,r

si,r
)πr if ybi = 0∑

Φ(mi,r

si,r
)πr if ybi = 1,

(14)

where conditional mean mi,r and standard deviation si,r are given in equations (9) and (10).
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Table 2: Posterior inclusion probabilities for the regression effects.

household income material deprivation
inclusion probability NL CL CF NL CL CF
gender (base: male) 0.20 0.23 0.15 0.30 0.36 0.23
age (centered at 15)

linear (in 10 years) 1.00 1.00 0.99 0.23 0.26 0.23
log 0.06 0.07 0.07 0.49 0.50 0.51

activity status (base: full time)
part-time 1.00 1.00 1.00 1.00 1.00 1.00
unemployed 1.00 1.00 1.00 1.00 1.00 1.00
out-of-labour 1.00 1.00 1.00 1.00 1.00 1.00

education (base: lower)
medium 1.00 1.00 1.00 0.65 0.76 0.64
higher 1.00 1.00 1.00 1.00 1.00 1.00
university 1.00 1.00 1.00 1.00 1.00 1.00

migration (base: no migration) 1.00 1.00 1.00 1.00 1.00 1.00
type of household (base: single)

2 adults/no children 1.00 1.00 1.00 0.49 0.56 0.51
single-parent 0.84 0.89 0.74 0.41 0.54 0.42
2 adults/1-2 children 0.02 0.03 0.03 0.18 0.22 0.20
2 adults/3+ children 1.00 1.00 1.00 0.19 0.26 0.20
other 1.00 1.00 0.99 0.21 0.27 0.22

type of building (base: single-family)
2 families 0.02 0.03 0.02 0.23 0.27 0.22
3-9 families 0.45 0.47 0.22 0.95 0.92 0.92
10+ families 1.00 1.00 0.98 1.00 0.99 0.99
other 0.15 0.18 0.13 0.40 0.45 0.40

population density (base: high)
medium 0.04 0.06 0.03 0.17 0.22 0.17
low 0.88 0.86 0.51 0.47 0.62 0.49

As the marginal models for the continuous outcomes are essentially the same in all three specifications,
we further focus on a comparison of the conditional models for the binary outcome based on the
posterior predictive distribution.

For model comparison we use the Brier score Brier (1950) for the binary outcome ybi ,

S =
n∑
i=1

(p(Y b
i = 1)− ybi )2,

which takes the value 0 for a perfect forecast and the maximum value 1 for the worst forecast. An
estimate of S is obtained by replacing p(Y b

i = 1) by its posterior mean, given as

p̂(Y b
i = 1|Θ, yni ) =

1
m

m∑
i=1

p(Y b
i = 1|Θ(m), yni ).

We compare four specifications of the three models, which differ with regard to the included covari-
ates. The full model includes all covariates for both responses. Models M1-M3 include only those
regressors with inclusion probability larger than 0.5 for the normal response and differ with respect
to the covariates included in the logit model. The sparsest model is M3, which includes only those
regressors selected in all specifications (i.e. all dummies for activity status, education, migration,
dummies for type of building 3-9 families and 10 and more families). M2 includes the regressors
selected in at least two models (regressors in M3 plus log(age) and dummy for households with 2
adults/no children) and finally M1 includes all regressors selected in at least one specification (regres-
sors in M2 and dummies for single-parent households and low population density). For each set of
covariates the DIC is lowest for the conditional flexible model with the lowest overall value obtained
for model M1 and and also the Brier Score is lowest for this model.
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Table 3: Model comparison: DIC and Brier Score.

DIC Brier Score
model NL CL CF NL CL CF
full 5233.5 5238.3 5222.6 0.0414 0.0415 0.0408
M1 5222.9 5228.1 5212.2 0.0416 0.0416 0.0408
M2 5225.4 5231.6 5213.8 0.0418 0.0418 0.0410
M3 5229.6 5235.4 5217.7 0.0420 0.0420 0.0412

−6 −4 −2 0 2 4 6
−20
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−5

0
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g(εn)

Figure 1: Flexible (full curved line; pointwise 90% HPD-intervals dashed) and linear dependence
(full straight line).

Figure 1 compares conditional linear and flexible dependence in model M1. The plot shows the
posterior mean of g(εn) = βb0 + f(εn/σ), where βb0 is the intercept in the conditional logit model,
together with pointwise 90%-credible intervals. The estimated smooth function has a kink with almost
zero slope before and a negative slope after the breakpoint. Hence the risk of material deprivation
changes only little before the breakpoint but decreases quickly afterwards. Also shown (in black) is
the estimated linear function βb0 + ψ(εn/σ) in the conditional linear model. The dots at the top of the
figure indicate the residuals from the normal model ε̂i = yni − xiβ̂

n
.

4.4. Results

In Section 4.3, based on DIC and Brier score, the conditional flexible model was selected and we
report estimates for the regression effects on log(income) and on material deprivation in Table 4.

From Table 4 we see that age has a positive effect on the household-income. The activity status
plays an important role. Naturally, full-time jobs yield the highest household-income and the smallest
risk of material deprivation, whereas households with the main-income-earner working only on a
part-time basis have less income and a higher risk of material deprivation. These effects are even
stronger for households with a main-income-earner who is unemployed or out-of-labour-force. It is
well-known that education has an important influence on the living conditions of households. This
is also confirmed by our study. The higher the level of education the bigger is the estimated effect
on the income and the smaller on the material deprivation response. The importance of the migration
status for the economic situation of households is also revealed in our study as households with a main-
income-earner who currently has or once had a non-EU/EFTA citizenship have a smaller income and a
higher risk of material deprivation. The type of the household has an influence on the income variable.
The income of households with two adults and no children is higher than the income of the baseline
category single-household, whereas the income of single-parent households and of households with
more than two children is smaller. Households living in a building with many flats have less income
and are more likely in a situation of material deprivation. Households living in an area with low
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Table 4: Posterior mean estimates (std.) of the regression effects.

variable log(income) material deprivation
Intercept 9.659 (0.033) -2.468 (0.542)
gender (base: male) . .
age (centered at 15)

linear (in 10 years) 0.071 (0.007) .
log . -0.326 (0.151)

activity status (base: full-time)
part-time -0.243 (0.025) 1.066 (0.257)
unemployed -0.396 (0.031) 2.396 (0.231)
out-of-labour -0.550 (0.037) 1.917 (0.322)

education (base: lower)
medium 0.128 (0.025) -0.481 (0.215)
higher 0.276 (0.028) -1.746 (0.302)
university 0.419 (0.029) -1.831 (0.335)

migration (base: no migration) -0.285 (0.033) 1.535 (0.250)
type of household (base: single)

2 adults/no children 0.181 (0.018) -0.405 (0.251)
single-parent -0.110 (0.028) 0.444 (0.241)
2 adults/1-2 children . .
2 adults/3+ children -0.206 (0.029) .
other 0.109 (0.021) .

type of building (base: single-family)
2 families . .
3-9 families . 0.643 ( 0.254)
10+ families -0.091 (0.017) 0.958 (0.237)

other . .
population density (base: high)

medium . .
low -0.054 (0.015) -0.395 (0.231)

population density have less income than households in areas with high or medium density.

The proportion of materially deprived estimated in this model is 0.0531 (std. dev. 0.0038) and corre-
sponds exactly to the proportion of materially deprived in the sample.

In this application interest is also on the probability of material deprivation as a function of income.
Though not of primary interest in joint regression modelling (where dependence is modelled in the
error distribution) the probability of the binary response taking the value 1 as a function of the con-
tinuous response is available for given covariate and parameter values in the joint models considered
here. For the conditional flexible model it can be estimated by the posterior mean of p(Y b = 1|yn,x),
i.e.

p̂(Y b = 1|yn,x) =
∫
p(Y b = 1|yn,x,β,γ, σ)p(β,γ, σ|y)dβdγdσ.

From the MCMC draws we compute the estimate

p̄(Y b = 1|yn) =
M∑
m=1

exp(η(m))
1 + exp(η(m))

,

where

η(m) = xβb,(m) +
J∑
j=1

Bj

(
yn − xβn,(m)

σ(m)

)
γ

(m)
j .

Figure 2 shows the estimated probability of material deprivation for different households. In all plots
the reference household with a main income earner of median age 42 and baseline values in all other
covariates is compared to a household differing in only one covariate value. The estimated probability
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Figure 2: Probability of material deprivation for different households conditional on covariates and
income (in 1 000 Euro). Main income earner of age 42 years, baseline values for all other covariates.

of material deprivation is shown for households with/without migration background of the main-
income earner in the left panel, for households with lower education/university degree of the main-
income-earner in the middle and for households with full-time/part-time employed main-income-
earner in the right panel.

For a household income of 21 219 Euro, which is the median income in our sample, the probability
of material deprivation is estimated as 2.1% for the reference household but almost doubles to 4.09%
when the main-income-earner has migration background. The risk of material deprivation for an oth-
erwise reference household, is estimated as 1.02% if the main-income-earner has a university degree
and as 2.97% if the main-income-earner works only part-time.

Due to the non-linear dependence between the error terms each of the curves in Figure 2 has a kink
with risk of material deprivation decreasing more pronouncedly afterwards. The income correspond-
ing to this kink is around 10 000 Euro but differs with covariate values.

5. Conclusion

We presented three different approaches for joint regression modelling of a bivariate response with a
normal and a binary component. In these models we use the latent utility specification for the binary
response. The first two models, the normal-logit and the conditional linear model assume linear
dependence between the latent utility and the normal response and differ with respect to the marginal
error distribution of the latent utility whereas the third model, the conditional flexible model, allows for
non-linear dependence between the error terms of the normal response and the latent utility. For each
model Bayesian estimation and variable selection is feasible by straightforward MCMC sampling.

In joint regression modelling of log household income and material deprivation, based on the DIC and
the Brier score, the conditional flexible model turned out to be preferred to the other models for each
of the mean specifications we considered.

Extensions of the flexible model, where the normal distribution of the continuous response is replaced
by a scale mixture of normal distributions with fatter tails, e.g. a t-distribution or a normal-gamma
distribution Griffin and Brown (2010) is straightforward and requires only an additional sampling
step to draw the scale parameters. Also, the logit model could be easily replaced by a probit or a robit
model where the latent utility follows a normal or a t-distribution.

Finally we emphasize that our focus was on joint regression modelling of a binary and a normal
outcome. All models considered here share the property that the error term and not the observed
normal response enters as a regressor in the conditional model for the binary component. This im-
plies that the effect of the continuous on the binary outcome is heterogeneous, i.e. it depends on
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the regressors included in the linear predictor of the continuous response, as shown in Figure 2. A
non-differential, smooth nonlinear effect of the endogenous continuous variable could be estimated in
a model, where the continuous variable enters as endogenous regressor with smooth nonlinear effect
in the logit model. Bayesian estimation of models allowing for a smooth effect of an endogenous re-
gressor is considered in Chib, Greenberg, and Jeliazkov (2009) for continuous response with normal
and in Wiesenfarth, Hisgen, Kneib, and Cadarso-Suarez (2012) for a flexible error distribution. As
noted in Chib et al. (2009) extension to a binary response requires a further data augmentation step, in
which the unobserved latent utility is sampled. A comparison of our analysis to this latter modelling
approach would be an interesting task for future research.

Appendix

A Sampling indicator variables and regression coefficients in the logit-normal model

Let ỹi denote the bivariate variables ỹi = (ui, yni )′ and ỹ the stacked vector of all ỹi. By X̃ we denote
the corresponding regressor matrix in the joint regression model

ỹ = X̃β + ε, ε ∼ N (0,Σ)

and Σ is the block diagonal matrix with blocks Σri given in equation (5).

We sample the indicator variables one at a time from the posterior marginalised over β, which is given
as

p(δj = 1|δ\j , ρ, θ, ỹ) =
1

1 + p(0,δ\j)

p(1,δ\j)
Rj
, Rj =

p(ỹ|0, δ\j , ρ, θ)
p(ỹ|1, δ\j , ρ, θ)

,

where δ\j includes all indicators but δj . The posterior for δj involves the conditional marginal like-
lihoods of two heteroscedastic linear regression models with design matrices differing only by inclu-
sion/exclusion of the j-th column of the matrix X̃. The conditional marginal likelihood of a linear
regression model is available in closed form as

p(ỹ|δ, ρ, θ) ∝ |Bδ|1/2

|B0,δ|1/2
exp

(
− 1

2
(ỹ′Σ−1ỹ − b′δB−1

δ bδ + b′0,δB−1
0,δb0,δ)

)
,

where Bδ and bδ are the moments of the normal posterior

Bδ = (X̃′δΣ−1X̃δ + B−1
0 )−1,

bδ = BδX̃′δΣ−1ỹ,

and Xδ is the appropriate design matrix, including those regressors, for which the corresponding
indicator variable takes the value 1.

Regression coefficients βj for which the corresponding indicator δj = 0 are set to zero and the
remaining elements βδ are sampled from the normal posterior N (bδ,Bδ).

B Details on posterior sampling the conditional linear model

We give details on sampling the indicators and regression coefficients for the normal response in the
conditional linear model. As noted in Section 3.2 we deal with the heterogeneous linear regression
model

yn = Xβn + ε, ε ∼ N
(
0, σ2I

)
, (15)

w = Vβn + ε̃, ε̃ ∼ N (0,S) , (16)

where yn = (yn1 , . . . , y
n
N )′, and w = (w1, . . . , wN )′ is the column vectors of the (working) responses.

X is the regressor matrix for the normal response, V is the matrix with rows vi = ψ
σxi and S =
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diag(s2ri) is the diagonal matrix of the error variances. The conditional posterior inclusion probability
of regression coefficient βnk in this model is given as

p(δnk = 1|δn\k, ω
n, σ2,S,yn,w) =

1

1 + 1−ωn

ωn

p(yn,w|δn
k =0,δn

\k,σ
2,S)

p(yn,w|δn
k =1,δn

\k,σ
2,S)

.

Denoting by Xδ and Vδ the submatrices of X and V consisting of those columns for which the
corresponding elements of the indicator vector δ is equal to 1, and by B0,δ the prior variance matrix
for the corresponding elements of βn, the marginal likelihood p(yn,w|δ, σ2,S) is explicitly available
as

−2 log p(yn,w|σ2, δ) = (log |BN,δ|−log |B0,δ|)+
( n∑
i=1

(
(yni )2

σ2
+
w2
i

s2ri
)−b′N,δ(BN,δ)−1bN,δ

)
+N log(2πσ2),

where

B−1
N,δ =

1
σ2

X′δXδ + V′δS−1Vδ + B−1
0,δ,

bN,δ = BN,δ(X′δ
yn

σ2
+ V′δS−1w).
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