
TI 2006-046/4 
Tinbergen Institute Discussion Paper 

 

A Comparison of Biased Simulation 
Schemes for Stochastic Volatility 
Models 

 Roger Lord1,4 

Remmert Koekkoek2 

Dick van Dijk1 

1 Econometric Institute, Erasmus University Rotterdam, and Tinbergen Institute; 
2 Robeco Alternative Investments, Rotterdam; 
4 Rabobank International, Utrecht. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
Please send questions and/or remarks of non-
scientific nature to driessen@tinbergen.nl. 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 



 1

 
 

A comparison of biased simulation schemes for 
stochastic volatility models 

 
 

Roger Lord1 
Remmert Koekkoek2 

Dick van Dijk3 
 

First version: June 23, 2005 
This version: May 17, 2006 

 
 

ABSTRACT 
When using an Euler discretisation to simulate a mean-reverting square root process, one 
runs into the problem that while the process itself is guaranteed to be nonnegative, the 
discretisation is not. Although an exact and efficient simulation algorithm exists for this 
process, at present this is not the case for the Heston stochastic volatility model, where the 
variance is modelled as a square root process. Consequently, when using an Euler 
discretisation, one must carefully think about how to fix negative variances. Our 
contribution is threefold. Firstly, we unify all Euler fixes into a single general framework. 
Secondly, we introduce the new full truncation scheme, tailored to minimise the upward 
bias found when pricing European options. Thirdly and finally, we numerically compare 
all Euler fixes to a recent quasi-second order scheme of Kahl and Jäckel and the exact 
scheme of Broadie and Kaya. The choice of fix is found to be extremely important. The 
full truncation scheme by far outperforms all biased schemes in terms of bias, root-mean-
squared error, and hence should be the preferred discretisation method for simulation of 
the Heston model and extensions thereof. 
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1. Introduction 
 
Within the area of mathematical finance, most models used for the pricing of derivatives start 

from a set of stochastic differential equations (SDEs) that describe the evolution of certain 
financial variables, such as the stock price, interest rate or volatility of an asset. Since Monte 
Carlo simulation is often the method of choice for the valuation of exotic derivatives, due to its 
ability to handle both early exercise and path dependent features with relative ease, it is important 
to know exactly how to simulate the evolution of the variables of interest. Obviously, if the SDEs 
can be solved such that the relevant variables can be expressed as a function of a finite set of state 
variables for which we know the joint distribution, the problem is reduced to sampling from this 
distribution. This is for example the case with the Black-Scholes model. 

Unfortunately not all models allow for such simple representations. For these models the 
conceptually straightforward Euler-Maruyama (Euler for short) discretisation can be used, see 
e.g. Kloeden and Platen [1999], Jäckel [2002] or Glasserman [2003]. The Euler scheme 
discretises the time interval of interest, such that the financial variables are simulated on this 
discrete time grid. Under certain conditions it can be proven that the Euler scheme converges to 
the true process as the time discretisation is made finer and finer. Nevertheless, the disadvantages 
of such a discretisation are clear. Firstly, the magnitude of the bias is unknown for a certain time 
discretisation, so that one will have to rerun the same simulation with a finer discretisation to 
check whether the result is sufficiently accurate. Secondly, the time grid required for a certain 
accuracy may be much finer than is strictly necessary for the derivative under consideration – 
many trades only depend on the realisation of the processes at a small number of dates. Clearly, if 
exact and efficient simulation methods can be devised for a model, they should be preferred. 

The models we consider in this paper are all based on the Heston [1993] stochastic volatility 
model. In this model, the stock price process (S) and the variance process (V) evolve according to 
the following SDEs, specified under the risk-neutral probability measure: 

 

( ) )t(dW)t(VdtV)t(V)t(dV

)t(dW)t(S)t(Vdt)t(S)t(dS

V

S

η+−λ−=

+μ=
             (1) 

 
where μ is the risk neutral drift of the stock price, which may be different from the risk free rate 
due to dividends, λ is the speed of mean-reversion of the variance, V  is the long-term average 
variance, and η is the so-called volatility of variance. Finally, WS and WV are correlated 
Brownian motions, with instantaneous correlation coefficient ρ. The Heston model was heavily 
inspired by the interest rate model of Cox, Ingersoll and Ross [1985], who used the same mean-
reverting square root process to model the spot interest rate. It is well known that, given an initial 
nonnegative value, a square root process cannot become negative, see e.g. Feller [1951], giving 
the process some intuitive appeal for the modelling of interest rates or variances. The Heston 
model is often used as a first extension of the Black-Scholes model that includes stochastic 
volatility, and is typically used for product classes such as equity and foreign exchange, although 
extensions to an interest rate context also exist, see e.g. Andersen and Andreasen [2002] and 
Andersen and Brotherton-Ratcliffe [2005]. 

Though pricing in the Cox-Ingersoll-Ross (CIR) and Heston models is a well-documented 
subject, most textbooks seem to avoid the topic of how to simulate these models. If we focus 
purely on the mean-reverting square-root component of (1), there is not a real problem, as Cox et 
al. [1985] found that the conditional distribution of V(t) given V(s) is noncentral chi-squared. 
Both Glasserman [2003] and Broadie and Kaya [2006] provide a detailed description of how to 
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simulate from such a process. Combining this algorithm with recent advances on the simulation 
of gamma random variables by Marsaglia and Tsang [2000] will lead to a fast and efficient 
simulation of the mean-reverting square root process. 

Complications arise, however, when we superimpose a correlated stock price, as in (1). As 
there is no straightforward way to simulate a noncentral chi-squared increment together with a 
correlated normal increment for the stock price process, the next idea that springs to mind is an 
Euler discretisation. This involves two problems, the first of which is of a practical nature. 
Despite the domain of the square root process being [0,∞), for any choice of the time grid the 
probability of the variance becoming negative at the next time step is strictly greater than zero. As 
we will see, this is much more of an issue in a stochastic volatility context than in an interest rate 
setting, due to the much higher values one finds for the volatility of variance η. Practitioners have 
therefore often opted for a quick “fix” by either setting the process equal to zero whenever it 
attains a negative value, or by reflecting it in the origin, and continuing from there on. These fixes 
are often referred to as absorption or reflection, see e.g. Gatheral [2005]. Interestingly this 
problem also arises in a discrete time setting, a lead we follow up on in the final section. 

The second problem is of both a theoretical and practical nature. The usual theorems leading 
to strong or weak convergence in Kloeden and Platen [1999] require the drift and diffusion 
coefficients to satisfy a linear growth condition, as well as being globally Lipschitz. Since the 
square root is not globally Lipschitz, convergence of the Euler scheme is not guaranteed. 
Although recently Albin et al. [2005] relax the global Lipschitz condition somewhat, their results 
are only applicable to processes on an open interval, whereas the domain of the square root 
process is [0,∞), with 0 being an attainable boundary. For this reason, various alternative methods 
have been used to prove convergence of particular discretisations for the square root process. We 
mention Deelstra and Delbaen [1998], Diop [2003], Bossy and Diop [2004], Berkaoui, Bossy and 
Diop [2005] and Alfonsi [2005], who deal with the square root process in isolation. 

It is only recently that papers dealing with the simulation of the Heston model in its full glory 
have started appearing. In Broadie and Kaya [2004,2006] an exact simulation algorithm has been 
devised for the Heston model. In numerical comparisons of their algorithm to an Euler 
discretisation with the absorption fix, they find that for the pricing of European options in the 
Heston model and variations thereof, the exact algorithm compares favourably in terms of root-
mean-squared (RMS) error. However, their algorithm is highly time-consuming, as we will see, 
and therefore certainly not recommendable for the pricing of strongly path dependent options that 
require the value of the stock price at a large number of time instants. It is for this reason that 
Higham and Mao [2005] considered an Euler discretisation of (1) with a novel fix, for which they 
prove strong convergence. In addition, and more importantly, they are to the best of our 
knowledge the first to rigorously prove that using an Euler discretisation in the Heston model for 
the pricing of plain vanilla and barrier options is theoretically correct, by proving that the sample 
averages converge to the true values. Unfortunately they do not provide numerical results on the 
convergence of their fix compared to other Euler fixes. Finally, we mention the recent paper of 
Kahl and Jäckel [2005a], who compare a number of discretisation methods for a whole host of 
stochastic volatility models. For the Heston model they find that their IJK-BMM scheme, a quasi-
second order scheme tailored specifically toward stochastic volatility models, gives the best 
results. Their numerical results are however not comparable to those of Broadie and Kaya, as they 
use a strong convergence measure which cannot directly be related to an RMS error. 

The contribution of this article is threefold. Firstly, we unify all Euler discretisations 
corresponding to the different fixes for the problem of negative variance known thus far under a 
single framework. Secondly, we propose a new fix, called the full truncation scheme. Full 
truncation is a modification of the Euler scheme of Deelstra and Delbaen [1998], to which we 
from hereon refer as the partial truncation method. The difference between both methods lies in 
the treatment of the drift. Whereas partial truncation only truncates terms involving the variance 
in the diffusion of the variance, full truncation also truncates within the drift. In both schemes 



 4

however the variance process itself remains negative. Both schemes are extended to the Heston 
model. We motivate that full truncation can be advantageous if the partial truncation method is 
found to generate an upward bias on the option price. Following the train of thought of Higham 
and Mao, we are able to prove strong convergence for both of these fixes. With this proof in hand 
the pricing of plain vanilla options and certain exotics via Monte Carlo is justified, as we can then 
appeal to the results of Higham and Mao. Thirdly and finally, we numerically compare all Euler 
fixes to the schemes of Broadie and Kaya and Kahl and Jäckel in terms of the size of the bias, as 
well an RMS error given a certain computational budget. 

The article is structured as follows. Section 2 deals with the Heston model and its simulation, 
both exact and biased. In section 3 we prove strong convergence for the full truncation scheme, 
enabling us to invoke the theorems from Higham and Mao that justify the usage of Monte Carlo 
for the non-Lipschitzian dynamics in the Heston model. Section 4 provides numerical results on 
the convergence of several Euler schemes. Finally, we conclude in section 5. 

2. The Heston model and its simulation 
 
For reasons of clarity, we repeat equation (1) here, which specifies the dynamics of the stock 

price and variance process in the Heston model under the risk neutral probability measure:  
 

( ) )t(dW)t(VdtV)t(V)t(dV

)t(dW)t(S)t(Vdt)t(S)t(dS

V

S

η+−λ−=

+μ=
              (2) 

 
The stock price S has μ as its risk neutral drift, which may be different from the risk free rate due 
to dividends. The variance process V is a mean-reverting square root process, where λ is its speed 
of mean-reversion, V  is the long-term average variance, and η is the volatility of variance. The 
correlated Brownian motions WS and WV satisfy dWS(t) · dWV(t) = ρdt. Via the Yamada 
condition it can be verified that the SDE in (2) has a unique strong solution. 

Before turning to the issue of simulating the dynamics of the Heston model, we briefly specify 
some well-known properties of the square root process V(t) that we require in the remainder of 
this paper. These properties are: 
 
i) 0 is an attainable boundary when V22 λ>η ; 
ii) When V22 λ>η , the origin is strongly reflecting; 
iii) ∞ is an unattainable boundary. 
 
Using the classical Feller boundary classification criteria (see e.g. Karlin and Taylor [1981]) it is 
easy to establish properties i) and iii). Turning to the condition V22 λ>η , we mention that to 
calibrate the Heston model to the skew observed in equity or FX markets, one often requires large 
values for the volatility of variance η, see e.g. the calibration results in Duffie, Pan and Singleton 
[2000] where η ≈ 60%. In the CIR model η, then representing the volatility of interest rates, is 
markedly lower, see e.g. the calibration results in Brigo and Mercurio [2001, p. 115] where this 
parameter is around 5%. Moreover, the product Vλ  is usually of the same magnitude in both 
models if we use a deterministic shift extension to fit the initial term structure in the CIR model, 
so that it is safe to say that for typical parameter values the origin will be accessible within the 
Heston model, whereas in the CIR interest rate model it will be inaccessible. The second property 
is demonstrated by Revuz and Yor [1991]. Strongly reflecting here means that the time spent in 
the origin is zero – the variance can touch zero, but will leave it immediately. The interested 
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reader is referred to Andersen and Piterbarg [2004], where the behaviour of the Heston model and 
related stochastic volatility models is analysed in detail. 

We now turn to the simulation of (2). Firstly, we demonstrate why it is not wise to change 
coordinates to the volatility, i.e. the square root of V. Secondly, we briefly discuss the exact 
simulation method of Broadie and Kaya [2006]. Thirdly, we unify all Euler discretisations known 
thus far, and by analysing the boundary behaviour of the square root process, we make a strong 
case for a new scheme: the full truncation scheme. Finally, we take a brief look at alternative 
discretisations, in particular the recently proposed scheme by Kahl and Jäckel [2005a]. 

 
2.1. Changing coordinates 

 
For reasons of increased speed of convergence it is often preferable to transform an SDE in 

such a way that it obtains a constant volatility term, see e.g. Jäckel [2002, section 4.2.3]. If we do 
this for the process V(t), we can achieve this by considering volatility itself: 

 

)t(dWdt)t(V
)t(V2

V
)t(Vd V2

1
2
1

2
4
1

η+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ−

η−λ
=             (3) 

 
Although this transformation is seemingly correct, we are only allowed to apply Itô’s lemma if 
the square root is twice differentiable on the domain of V(t). However, since the origin is 
attainable for V22 λ>η , and the square root is not differentiable in zero, the process obtained by 
incorrectly applying Itô’s lemma is structurally different, as is also mentioned in Jäckel [2004]. 
Even when the origin is inaccessible, the numerical behaviour of the transformed equation is 
rather unstable. Unless 2

4
1V η=λ , when V(t) is sufficiently small, the drift term in (3) will blow 

up, temporarily assigning a much too high volatility to the stock price, in turn greatly distorting 
the sample average of the Monte Carlo simulation. Luckily, anyone trying to implement (3) will 
pick up this feature rather quickly, as illustrated in section 2.4 below. We mention that similar 
issues arise with other coordinate transformations, such as switching to the logarithm of V(t). 

 
2.2. Exact simulation 
 

As mentioned, Broadie and Kaya [2004,2006] have recently derived a method to simulate 
without bias from the Heston stochastic volatility model in (2). Although we refer to their papers 
for the exact details, we outline their algorithm here to motivate why it is highly time-consuming. 
First of all a large part of their algorithm relies on the result that for s ≤ t, V(t) conditional upon 
V(s) is, up to a constant scaling factor, noncentral chi-squared: 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−η

λ
χ

λ
−η

−λ−

−λ−

ν

−λ−

)e1(
)s(Ve4

4
)e1(~)t(V )st(2

)st(
2

)st(2

                     (4) 

 
where )(2 ξχν  is a noncentral chi-squared random variable with ν degrees of freedom and non-

centrality parameter ξ. The degrees of freedom are equal to 2V4 −ηλ=ν . Glasserman [2003] as 
well as Broadie and Kaya show how to simulate from a noncentral chi-squared distribution. 
Combining this with recent advances by Marsaglia and Tsang [2000] on the simulation of gamma 
random variables (the chi-squared distribution is a special case of the gamma distribution), leads 
to a fast and efficient simulation of V(t) conditional upon V(s). 
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Secondly, let us define ∫=
t

s
du)u(V)t,s(V  and ∫=

t

s aa )u(dW)u(V)t,s(V  for a = S,V. 

First of all Broadie and Kaya recognized that integrating the equation for the variance yields: 
 

)t,s(V)st(V)t,s(V)s(V)t(V Vη+−λ+λ−=              (5) 
 
so that we can calculate VV(s,t) if we know V(s), V(t) and V(s,t). Knowing all these terms, and 
solving for ln S(t) conditional upon ln S(s) yields the final step: 
 

( ))t,s(V)1(),t,s(V)t,s(V)st()s(SlnN~)t(Sln 2
V2

1 ρ−ρ+−−μ+           (6) 
 

where N indicates the normal distribution. The algorithm can thus be summarised by: 
 

1. Simulate V(t), conditional upon V(s) from (4) 
2. Simulate V(s,t) conditional upon V(t) and V(s) 
3. Calculate VV(s,t) from (5) 
4. Simulate S(t) given V(s,t), VV(s,t) and S(s), by means of (6) 

Algorithm 1: Exact simulation of the Heston model by Broadie and Kaya 
 

The crucial and time-consuming step is the one we skipped over for a reason – step 2. Broadie 
and Kaya show how to derive the characteristic function of V(s,t) conditional upon V(t) and V(s). 
This step utilises the transform method, so that one has to numerically invert the cumulative 
distribution function, itself found by the numerical Fourier inversion of the characteristic 
function. Since the characteristic function non-trivially depends on the two realisations V(s) and 
V(t) via e.g. modified Bessel functions of the first kind, we cannot precompute a major part of the 
calculations, and thus must repeat this step at each path and date that is relevant for the exotic 
derivative. It suffices to say that this makes step 2 very time-consuming and unsuitable for highly 
path-dependent exotics.  
 
2.3. Euler discretisations - unification 
 

Given that the exact simulation method of Broadie and Kaya can be rather time-consuming, a 
simple Euler discretisation may not be without merit. Even if in future a more efficient exact 
simulation method for the Heston model would be developed, Euler and higher-order 
discretisations will remain useful for strongly path-dependent options and stochastic volatility 
extensions of the LIBOR market model, see e.g. Andersen and Andreasen [2002] and Andersen 
and Brotherton-Ratcliffe [2005], as it is unlikely that the complicated drift terms in such models 
will allow for exact simulation methods to be devised. Turning to Euler discretisations, a naïve 
Euler discretisation for V to get from time t to t+Δt would read: 

 
( ) )t(W)t(VtV)t(Vt1)tt(V VΔΔΔΔ ⋅η+λ+λ−=+                                     (7) 

 
with ΔWV(t) = WV(t+Δt) – WV(t). When V(t) > 0, the probability of V(t+Δt) going negative is: 

 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

η
λ−λ−−

=<+
Δ

ΔΔ
Δ

t)t(V
tV)t(Vt1N0)tt(V                          (8) 
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where N is the standard normal cumulative distribution function. Although the probability decays 
as a function of the timestep Δt, it will be strictly positive for any choice hereof. Furthermore, 
since η typically is much higher in a stochastic volatility setting than in an interest rate setting, 
the problem will be much more pronounced for the Heston model. If we do not want the volatility 
to cross over to the imaginary domain, we will have to decide what to do in case the variance 
turns negative. Practitioners have often opted for a quick “fix” by either setting the process equal 
to zero whenever it attains a negative value, or by reflecting it in the origin, and continuing from 
there on. These fixes are often referred to as absorption and reflection respectively, see e.g. 
Gatheral [2005]. We note that this terminology is somewhat at odds with the terminology used to 
classify the boundary behaviour of stochastic processes, see Karlin and Taylor [1981]. In that 
respect the absorption fix is much more similar to reflection in the origin for a continuous 
stochastic process, whereas absorption as a boundary classification means that the process stays 
in the absorbed state for the rest of time. Deelstra and Delbaen [1998] and Higham and Mao 
[2005] have considered other approaches for fixing the variance when it becomes negative. These 
are discussed in more detail below. 

All of these Euler schemes can be unified in a single general framework: 
 

( ) ( )( ) ( ) )t(W)t(VfV)t(Vft)t(Vf)tt(V V321 ΔΔΔ ⋅η+−⋅λ−=+                       (9) 
 

where the functions fi, i = 1, 2, 3 have to satisfy: 
 
• x)x(f i =  for x ≥ 0 and i = 1, 2, 3; 
• 0)x(f3 ≥  for x ∈ . 
 
The second condition is a strict requirement for any scheme: we have to fix the volatility when 
the variance becomes negative. The first condition seems quite a natural thing to ask from a 
simulation scheme: if the volatility is not negative, the “fixing” functions f1 through f3 should 
collapse to the identity function in order not to distort the results. In the remainder we use the 
identity function x, the absolute value function |x| and x+ = max(x,0) as fixing functions. 
Obviously only the last two are suitable choices for f3. The schemes considered thus far in the 
literature, as well as our new scheme that is introduced below, are summarised in Table 1. 
 

Scheme Paper f1(x) f2(x) f3(x) 
Absorption Unknown x+ x+ x+ 

Reflection Diop [2003], Bossy and Diop [2004], 
Berkaoui et al. [2005] |x| |x| |x| 

Higham and Mao Higham and Mao [2005] x x |x| 
Partial truncation Deelstra and Delbaen [1998] x x x+ 

Full truncation Lord, Koekkoek and Van Dijk [2006] x x+ x+ 

Table 1: Overview of Euler schemes known in the literature 
 

While the mentioned papers, apart from Higham and Mao, have dealt with the square root 
process in isolation, we also have the stock price S to simulate. We can either discretise the stock 
price process directly, or its logarithm. Though the first is more direct, switching to logarithms 
can be advantageous. As the solution to the stock price in (2) can be expressed as (cf. (6)): 
 

( ))t,s(V)t,s(Vexp)s(S)t(S S2
1 +−μ⋅=             (10) 

 



 8

it should be clear that discretising the logarithm of S will not produce any discretisation error in 
the stock price direction, whereas the alternative will. For very small timesteps the difference will 
however be negligible. Discretising the stock price directly yields: 
 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ⋅+μ+⋅=+ ΔΔΔ )t(W)t(Vft1)t(S)tt(S S5                                    (11) 

 
whereas applying Itô’s lemma to ln S(t) and subsequently discretising this equation, yields: 

 

( )( ) ( ) )t(W)t(Vft)t(Vf)t(Sln)tt(Sln S542
1 ΔΔΔ ⋅+⋅−μ+=+                    (12) 

 
In an implementation of (11) or (12) one would use the Cholesky decomposition to arrive at 

)t(1)t(W)t(W Z2
VS ΔΔΔ ρ−+ρ= , with Z(t) independent of WV(t). Note that two additional 

fixing functions have been introduced. Again, f5(x) should be nonnegative for all possible values 
of x. Although one is free to explore alternatives, we deemed it sensible to set f4 = f5 = f3 in our 
schemes, thereby treating both the Itô correction term in (12), as well as the volatility of the stock 
price in (11) and (12) identically to the diffusion of the variance. We note that (11) to first order 
yields the correct first moment for the stock price, whereas (12) exactly reproduces the first 
moment when f4 and f5 coincide. 

 
2.4. Euler discretisations – a qualitative comparison and a new scheme 
 

One thing to keep in mind when fixing negative variances is the behaviour of the true process. 
At the beginning of this section we mentioned that the origin is strongly reflecting if it is 
attainable, in the sense that when the variance touches zero, it leaves again immediately. If we 
think of both the reflection and the absorption fixes in a discretisation context, the absorption fix 
seems to capture this behaviour as closely as possible. To analyse the behaviour of all fixes, it is 
worthwhile to consider the case where an Euler discretisation causes the variance to go negative, 
say 0)t(V~ <δ−= , whereas the true process would stay positive and close to zero, V(t) = ε ≥ 0. In 
Table 2 we have depicted the new starting point ( ))t(V~f1 , effective variance4 ( ))t(V~f3  and the drift 
for all fixes as well for the true process.  

 
Scheme New starting point Effective variance Drift 
True process ε ε )V( ε−λ  
Absorption 0 0 Vλ  
Reflection δ δ )V( δ−λ  
Higham and Mao -δ δ )V( δ+λ  
Partial truncation -δ 0 )V( δ+λ  
Full truncation -δ 0 Vλ  

Table 2: Analysis of the dynamics when V(t) = ε ≥ 0, but the Euler discretisation equals -δ < 0 
 

It is worthwhile to note that in the context of the Heston model it has been numerically 
demonstrated by Broadie and Kaya [2006] that the absorption fix causes a positive bias in the 
price of a plain vanilla European call. A priori we expect that the effect of a misspecified 
effective variance will be the largest, as this directly affects the stock price on which the options 
                                                           
4  By effective variance we mean the instantaneous variance of the stock price. 
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we are pricing depend. It therefore seems evident that reflection will cause a larger positive bias 
than absorption. The Higham and Mao fix tries to alleviate this problem by letting the process 
V(t) remain negative (f1 is here the identity function). This however has an undesirable side-
effect, when at the same time reflecting the variance in the origin to obtain the effective volatility. 
If at some point in time V(t) becomes negative, and the Wiener increment for the next timestep is 
also negative, V(t) at the next timestep will drop even further. If this happens the effective 
volatility will be much too high, in turn causing larger than intended moves in the stock price. 

The scheme by Deelstra and Delbaen can be interpreted as a first bias correction applied to the 
absorption scheme. As in the Higham and Mao scheme, it aims to achieve this by leaving V(t) 
negative. Contrary to the Higham and Mao scheme, the side-effect of leaving the variance 
negative is not present here, as the effective variance is set equal to zero. We dub the scheme by 
Deelstra and Delbaen the partial truncation scheme, as only terms involving V in the diffusion of 
V are truncated at zero. Note that Glasserman [2003, eq. (3.66)] also uses this scheme for the CIR 
process. As shown below, partial truncation may still be found to cause a positive bias. We 
therefore propose a new Euler discretisation scheme, called full truncation, where the drift of V is 
truncated as well. By truncating the drift the process V(t) remains negative for longer periods of 
time, taking away more volatility from the stock, which helps to reduce the bias. This intuitive 
analysis is stated more rigorously in the following lemma. 

 
Lemma 1: 
When Δt < 1/λ the first moments of the various “fixed” Euler schemes in Table 1 satisfy: 
 

Reflection > Absorption > Higham-Mao = Partial truncation > Full truncation 
 

Proof: 
We consider a finite time horizon [0,T], discretised on a uniform grid tn = nΔt, n = 1, …, T/Δt. Let 
us denote all discretisations as: 
 

( ) nVn3n2n11n W)v(fv)v(ft)v(fv ΔΔ η+−λ−=+           (13) 
 
with vi indicating the value of the discretisation at ti and ΔWVn = WV(tn+1) – WV(tn). Let us define 
the first moment as xn = [vn] where the expectation is taken at time 0. The first moment of the 
Higham-Mao scheme can be shown to satisfy the difference equation 

vtx)t1(x n1n ΔΔ λ+λ−=+ , which by noting that x0 = v0 can be solved as: 
 

v)vv()t1(x 0
n

n +−λ−= Δ              (14) 
 
The result holds regardless of the chosen function f3, and therefore also holds for the partial 
truncation scheme. This is an accurate approximation of the first moment of the continuous 
process V(t), as it is a well-known result that V)V)0(V)(e1()]t(V[ t +−−= λ− . Since we 
initially have x0 = v0 for all schemes, the remaining results can be found by noting that: 
 

++ ⋅λ−≥⋅λ−≥⋅λ−≥⋅λ− ΔΔΔΔ nnnnn vtvv)t1(v)t1(|v|)t1(          (15) 
 
which are the drift terms of, from left to right, the reflection, absorption, Higham-Mao and partial 
truncation and finally the full truncation schemes. As xn+1 is exactly the expectation of these 
terms, the statement follows by induction, starting with n = 0. In the second step (n = 1) the 
inequality already becomes strict, as in each of the schemes v1 can become negative. � 
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Certainly the first moment is not all that matters, but the above lemma does demonstrate that both 
the Higham-Mao and truncation fixes adjust respectively the reflection and absorption fixes such 
that the first moment is lowered. Both the partial truncation and the Higham-Mao scheme already 
obtain an accurate approximation of the true first moment. By truncating the drift, full truncation 
pulls the first moment down even further, with a view to adjust any remaining bias of the partial 
truncation scheme. 

As the above analysis has been rather qualitative, we will try and visualise some of the effects. 
In Figure 1 we have depicted a sample path of the effective volatility and the stock price over the 
period of one day. The “true” sample path was generated with an Euler discretisation of the 
Heston model, using a timestep of 1E-05 year. Using the same realisations of the Wiener process, 
we generated sample paths for the effective volatility of the different fixes, i.e. ( ))t(Vf3 , using a 
timestep which is ten times as large5. We also included a sample path of the absolute value of the 
volatility, obtained from an Euler discretisation of the transformed SDE in (3). 

 
Figure 1: Sample path of the effective volatility, all fixes, as well as the transformed SDE in (3) 

 
The first thing we notice from Figure 1 is that changing coordinates to volatility itself is 

numerically instable. For small values of V(t) the volatility can explode; since the high effective 
volatility will persist for a long time, we immediately notice this in the stock price. Secondly, we 
notice that both the absorption and truncation6 fixes remain fairly close to the true path, whereas 
the reflection fix slightly overshoots at the beginning. Finally, the undesirable side-effect of the 
Higham and Mao fix is evident on this sample path – because V(t) goes negative in the middle of 
the graph, the effective volatility is too high, causing larger moves in the stock price. 

 
2.5. Alternative discretisations 
 

Obviously there are myriads of schemes other than the Euler scheme one could use for the 
discretisation of the Heston model. Though we by no means aim to be complete, we briefly 
consider some schemes here that yield promising results or are frequently cited. 

In Glasserman [2003, pp. 356-358], a quasi-second order7 Taylor scheme is considered. Its 
convergence is found to be rather erratic, which is one of the reasons why Broadie and Kaya 
[2006] chose not to compare their exact scheme to second order Taylor schemes. A closer look at 
                                                           
5  The graphs for the fixes were created by linearly interpolating between the realisations. 
6  Since the sample paths of partial and full truncation were virtually indistinguishable for this example, we 

chose to display only one line for both fixes. 
7  By quasi-second order we mean schemes that do not simulate the double Wiener integral. 
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Glasserman’s scheme shows the probable cause of this erratic convergence – the discretisation 
contains terms which are very similar to the drift term in (3), and can therefore become quite 
large when V(t) is small. Since then, two papers have applied second order schemes to either the 
mean-reverting square root process or the Heston model in its full-fledged form, namely Alfonsi 
[2005] and Kahl and Jäckel [2005a]. We start with the latter. After comparing a variety of 
schemes, Kahl and Jäckel conclude that at least for the Heston model applying the implicit 
Milstein method8  (IMM) to the variance, combined with their bespoke IJK scheme for the 
logarithm of the stock price, yields the best results as measured by a strong convergence measure. 
Their results indicate that their scheme by far outperforms the Euler schemes (9) and (12) with 
the absorption fix. The IMM method discretises the variance as follows: 

 

( ) ( )t)t(W)t(W)t(VV)tt(Vt)t(V)tt(V 2
V

2
4
1

V ΔΔΔΔΔΔ −⋅η+⋅η+−+λ−=+    (16) 
 

The IMM method actually preserves positivity for the mean-reverting square root process, 
provided that V42 λ<η , see Kahl [2004]. Unfortunately, this condition is not frequently satisfied 
in an implied calibration of the Heston model. For values outside this range, a fix is again 
required. The best scheme for the logarithm of the stock price is their IJK scheme: 
 

( )
( ) ( ) ( )t)t(W)t(W)t(W)tt(V)t(V

)t(W)t(V)tt(V)t(Vtt)t(Sln)tt(Sln
2

V4
1

VS2
1

V4
1

ΔΔΔΔΔ

ΔΔΔΔΔ

−ηρ−ρ−⋅+++

⋅ρ+++−μ+=+
  (17) 

 
which is specifically tailored to stochastic volatility models, where typically ρ is highly negative. 
For more details on both discretisations, we refer the interested reader to Kahl [2004] and Kahl 
and Jäckel [2005a]. In the remainder we will refer to (16)-(17) as the IJK-IMM scheme. Note that 
this scheme too is quasi-second order. 

Alfonsi [2005] deals with the mean-reverting square root process in isolation, and develops an 
implicit scheme that also preserves positivity by considering the transformed equation (3). The 
range of parameters for which the scheme works is again V42 λ<η . He also considers Taylor 
expansions of this implicit scheme, the best of which (his E(0) scheme) is equivalent to (17) to 
first order in Δt. We therefore purely focus on Kahl and Jäckel’s scheme in our numerical results. 
As an interesting sidenote, the E(0) scheme coincides exactly with a special case of the variance 
equation in the Heston and Nandi [2000, Appendix B] model, which they show converges to the 
mean-reverting square-root process as the timestep tends to zero.  

Finally, we mention a moment-matching scheme suggested by Andersen and Brotherton-
Ratcliffe [2005]. In their discretisation, the variance V is locally lognormal, where the parameters 
are determined such that the first two moments of the discretisation coincide with the theoretical 
moments. Kahl and Jäckel have incorporated this scheme into their comparisons, and conclude 
that for the Heston model it “has practically no convergence advantage over straightforward 
explicit Euler integration”. For this reason we exclude it from our numerical results. 

3. Strong convergence of the full truncation scheme 
 
In the previous section we introduced the full truncation scheme and motivated how the 

truncation of the drift and diffusion of the variance process can help to reduce the bias inherent to 

                                                           
8  Though they consider the balanced Milstein method (BMM), for the square root process their control 

functions (see figure 6) coincide with the implicit Milstein method. From now on we will therefore refer 
to their scheme as the IJK-IMM scheme. 
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any Euler discretisation of the Heston model. As it is our final goal to price derivatives in the 
Heston model, we have to be absolutely sure that the sample averages of the realised payoffs 
converge to the option prices as the timestep used in the discretisation tends to zero. One may be 
tempted to think that for sufficiently small values of the timestep the probability of the 
discretisation in (9) of the square root process yielding negative values is negligible, so that for 
any choice of fixing functions the fixed Euler discretisation will converge. As plausible as this 
may seem, it is a fallacy. As an example, consider the case where f2(x) = f3(x) = |x| and f1 is the 
identity function. A priori nothing seems wrong, but if at any time instant the process becomes 
negative and such that its absolute value is larger than its mean-reverting value, this scheme will 
cause the process to drift to even more negative values. Numerical evidence suggests that this 
discretisation scheme indeed explodes and does not converge. Hence, convergence of any fix 
must be proven rigorously. 

For European options weak convergence is typically enough to prove this result for Euler 
discretisations, see e.g. Kloeden and Platen [1999], although for more complex path-dependent 
derivatives strong convergence may be required. As mentioned earlier though, the square root 
dynamics of the Heston model preclude us from invoking the usual theorems on weak and strong 
convergence of Euler discretisations. Consequently, various authors have proven convergence of 
their particular discretisation of the mean reverting square root process in isolation. Recently, 
Diop [2003] and Bossy and Diop [2004] have proven that an Euler discretisation with the 
reflection fix converges weakly for a variety of mean-reverting constant elasticity of variance 
(CEV) processes. For the special case of the mean-reverting square root process, weak 
convergence of order 1 in the timestep is proven, provided that 22V η>λ . This certainly ensures 
that the origin is not attainable. As the proof may carry over to the general case, we mention that 
the order of convergence derived is ( )1,Vmin 2−ηλ . Diop proves strong convergence in the Lp      
(p ≥ 2) sense of order ½ under a very restrictive condition, which is relaxed somewhat in 
Berkaoui et al. [2005]. For p = 2 the condition becomes: 
 

{ }22
2
1 26,14maxV ηλη+η≥λ                                      (18) 

 
One can easily check that, unfortunately, this condition is hardly ever satisfied for any practical 
values of the parameters. Both Higham and Mao and Deelstra and Delbaen prove strong 
convergence of order ½ for their discretisation, without any restrictions on the parameters. As for 
the absorption scheme, to the best of our knowledge there is no paper dealing with the 
convergence properties of the absorption fix, although its use in practice is widespread, see e.g. 
Broadie and Kaya [2004,2006] and Gatheral [2005]. 

For the mean-reverting square root process in isolation, following Deelstra and Delbaen and 
Higham and Mao, we use Yamada’s [1978] method to find the order of strong convergence. The 
big picture of our proofs is virtually identical to that of Higham and Mao, but the truncated drift 
complicates the proofs considerably. Here we merely report the main findings. First let us 
introduce some notation. The discretisation has already been introduced in equation (13) of 
lemma 1. For the full truncation scheme we have f1(x) = x and f2(x) = f3(x) = x+. To distinguish 
between the discretisation of the variance and the true process, we will denote the discretisation 
with lowercase letters (v) and the true process with uppercase letters (V). Obviously Vv = . 
Following Higham and Mao [2005] we also require the continuous-time approximation of (13): 
 

( ))t(W)t(Wv)vv)(tt(v)t(v nVVnnnn −⋅η+−−λ−≡ ++          (19) 
 
The main findings for the mean-reverting square root process now follow from theorems 1 and 2. 
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Theorems 1 and 2 – Strong convergence of v(t) in the L1 and L2 sense 
The full truncation scheme converges strongly of order ½ in the L1 sense and of order ¼ in the L2 
sense, i.e. for sufficiently small values of the timestep Δt and some constants β and γ, we have: 
 

[ ]
[ ] 4/12/12

]T,0[t

]T,0[t

)t()t(v)t(Vsup

t)t(v)t(Vsup

Δ

Δ

γ≤−

β≤−

∈

∈

Ä

Ä
            (20) 

 
Proof: See the appendix. � 
 
We note that the true order of L2 convergence is probably higher, but we were not able to find a 
sharper estimate. Although the above theorems refer to the full truncation scheme, they also hold 
for the partial truncation scheme, with an easier proof. To discretise the stock price process, we 
use the direct discretisation in (11), although the proofs almost certainly carry over to the log-
discretisation in (12). Analogous to equations (13) and (19), we now define: 
 

( ))t(W)t(Wvss)tt(s)t(s

Wvss)t1(s

NSSnnnnn

nSnnn1n

−⋅+−μ+≡

+μ+=

+

+
+ ΔΔ

                      (21) 

 
In theorem 3, strong L2 convergence is proven of the stock price. The result is slightly different 
from the usual proofs of strong convergence, as we consider the stock price stopped by a stopping 
time. We need this result to prove convergence of plain-vanilla and barrier option prices. 
 
Theorem 3 – Strong L2 convergence of the stopped stock price 
If we define the following stopping time for any i, j > 0: 
 

{ }j|)t(v|i|)t(S|:0tinfij >∨>≥≡τ             (22) 
 
and tij = min(t,τij), then for a sufficiently small timestep and some constant βij, depending on both 
i and j, we have: 
 

4/1
ij

2/1
2

ijij
]T,0[t

)t()t(s)t(Ssup Δβ≤⎥⎦
⎤

⎢⎣
⎡ −

∈
Ä             (23) 

 
Proof: See the appendix. � 
 
Theorem 3 was originally proven in Higham and Mao [2005] for their particular discretisation. 
As before, we only supply the proof for the full truncation scheme, although one could follow the 
exact same steps to prove convergence for the extension of the partial truncation scheme to the 
Heston model. To our knowledge, Higham and Mao were the first to consider convergence of 
Euler discretisations of the Heston model. Moreover, they filled a gap in the literature by showing 
that the strong convergence in theorems 1-3 is sufficient to guarantee that the sample averages of 
the payoffs of plain vanilla options and barrier options converge to the true option prices. This is 
dealt with in the final theorem 4. Its proof is independent of the discretisation, and only depends 
on theorems 1-3, as well as some auxiliary results. 
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Theorem 4 – Convergence of plain vanilla options and barriers 
Let us define the following payoffs: 
 

( ) ( ) ]Tt0,A)t(s[t]Tt0,A)t(S[ 1)K)T(s()T(V1)K)T(S()T(V ≤≤∈
+

≤≤∈
+ ⋅−γ=⋅−γ= Δ        (24) 

 
with γ ∈ {-1,1} and A either of the form [0,B] or [B,∞). For any ε > 0 we can find i, j > 0 such 
that, for sufficiently small timesteps there is a constant βij, depending on both i and j, such that: 
 

[ ] [ ] t)T(V)T(V ijt Δβ+ε≤− Δ             (25) 
 
Proof: See the appendix. � 

4. Numerical results 
 
The previous section established the strong convergence of the full truncation scheme and 

justified the pricing of plain vanilla and barrier options under this scheme. Obviously it is useful 
to have a theoretical result on the order of convergence, but several practical problems remain. 
Firstly, the theoretical results only say something about the limiting behaviour of the 
discretisation. Secondly, the actual rate of convergence may be faster than the theorem indicates. 
Thirdly, if we have two schemes that both achieve strong convergence of order ½ in the timestep 
Δt, anyone would prefer the scheme with the smallest constant in front of Δt1/2. Though the proofs 
provide these constants, they are usually much too crude to be of any practical relevance. At the 
end of the day we should therefore be interested in what practitioners really care about: the size of 
the mispricing given a certain computational budget. 

It is our goal in this section to compare all five Euler fixes, as well as the schemes of Broadie 
and Kaya [2006] and the second order IJK-IMM scheme of Kahl and Jäckel [2005a]. In our 
comparisons we take into account both the bias and RMS error, as well as the computation time 
required. To be clear, if α is the true price of the European call, and α̂  is the Monte Carlo 
estimator, the bias of the estimator equals α−α]ˆ[  , the variance of the estimator is )ˆ(Var α , and 
finally the root-mean-squared error (RMS error or RMSE) is defined as (bias2+variance)1/2. This 
fills an important gap in the literature as far as the Euler fixes are concerned, as we do not know 
of a numerical study that compares the various fixes to one another. In the context of the Heston 
model, Broadie and Kaya only consider the absorption scheme, and estimate its order of weak 
convergence to be about ½. Alfonsi [2005] compares both reflection and partial truncation to his 
scheme, but only for the mean-reverting square root process. 

We first focus on the Heston (SV) model, and next consider the Bates (SVJ) model. The latter 
is an extension of the Heston model to include jumps in the asset price. Clearly all results readily 
carry over to further extensions of the Heston model, such as the models by Duffie, Pan and 
Singleton [2000] and Matytsin [1999], both of which add jumps to the stochastic variance 
process. As Broadie and Kaya [2006], we focus purely on European call options, since these can 
be valued in closed-form in both models. We leave the investigation of the bias in more complex 
path-dependent options for future research.  

 
4.1. Results for the Heston model 

 
In this subsection we investigate the performance of the various simulation schemes for the 

Heston model. As Heston [1993] solved the characteristic function of the logarithm of the stock 
price, European plain vanilla options can be valued efficiently using the Fourier inversion
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Steps/yr. Absorption Reflection Higham-
Mao 

Partial 
truncation 

Full 
truncation 

20 2.102 4.360 2.710 0.420 0.050 
40 1.595 3.205 1.671 0.188 0.025 
80 1.209 2.369 1.021 0.081 0.013 

160 0.923 1.771 0.613 0.034 0.007 
O(Δt 

p) 0.40 0.43 0.71 1.21 0.95 

Table 3: Bias for Euler fixes when pricing an ATM call in the Heston example 
For all fixes the log-transformation for the stock price was used 
Stochastic variance process: λ = 200%,V(0) =     = 9%, η = 100%, ρ = -30% 
Stock price process: S = 100, μ = r = 5% 
Deal specification: European call option, Maturity 5 yrs. True option price: 34.9998. 

 
Full truncation – log IJK-IMM-Absorption Exact scheme Paths Steps/yr. Bias RMSE CPU Bias RMSE CPU RMSE CPU 

10,000 20 0.050 0.591 0.2 -0.231 0.615 0.2 0.613 3.8 
40,000 40 0.025 0.289 1.9 -0.020 0.286 2.1 0.290 15.3 

160,000 80 0.013 0.145 15.4 0.083 0.166 16.7 0.146 61.3 
640,000 160 0.007 0.07 122.6 0.113 0.134 131.4 0.073 244.5 

O(Δt 
p) 0.95 1.02  0.10 0.74  1.02  

Table 4: Bias, RMS error and CPU time (in sec.) in the Heston example for an ATM call 
 

approach of Carr and Madan [1999]. For very recent developments with regard to the evaluation 
of the multi-valued complex logarithm in the Heston model we refer the interested reader to Kahl 
and Jäckel [2005b] and Lord and Kahl [2006a]. In the latter paper it is also pointed out how to 
keep the characteristic function which appears in Broadie and Kaya’s exact simulation algorithm 
continuous. Finally, for a very efficient Fourier inversion technique which works for almost all 
strike prices and maturities we point the reader to Lord and Kahl [2006b]. 

The set of parameters and deal specification used here can be found in the caption of Table 3 
and stem from the second example of Broadie and Kaya [2006]. Though η is quite high and ρ is 
somewhat higher than is frequently found in an implied calibration, we feel the example is quite a 
good test case as V22 λ>>η , implying that the origin of the mean-reverting square root process 
is attainable. Furthermore, the probability of a particular discretisation yielding a negative value 
for V(t) is magnified via the large value of η, cf. equation (8), so that the way in which each 
discretisation treats the boundary condition will be put to the test. Conveniently, using the 
example of Broadie and Kaya allows us to compare all biased schemes to their exact scheme. As 
they report computation times for both the Euler scheme with absorption and their exact scheme, 
we scaled our computation times to match their results. Their results were generated on a desktop 
PC with an AMD Athlon 1.66 GhZ processor, 624 Mb of RAM, using Microsoft Visual C++ 6.0 
in a Windows XP environment. One final word should be mentioned on the implementation of 
the biased simulation schemes. Clearly, the efficiency of the simulations could be improved 
greatly by using the conditional Monte Carlo techniques of Willard [1997]. As Broadie and Kaya 
point out, this only affects the standard error and the computation time, not the size of the bias, 
which arises mainly due to the integration of the mean-reverting square root process. We 
therefore chose to keep the implementation as straightforward as possible. 

In Table 3 we first report the biases of the five Euler fixes for an at-the-money (ATM) call, 
using the log-transformation for the stock price, i.e. simulating using equations (9) and (12). To 
obtain accurate estimates of the bias we used 100 million simulation paths. The standard error of 
each bias is roughly 0.006. Without the log-transformation the biases are uniformly higher, so 
that it clearly makes sense to use it here. The first thing one notices is the enormous difference in  

V
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Figure 2: Bias as a function of the strike and the timestep in the Heston example 

 

Figure 3: Convergence of the RMS error9 in the Heston example for an ATM call 
Left panel: Direct integration of stock price, Right panel: Log-transformation of stock price 

 

the magnitude of the bias. To relate the size of the bias of the full truncation scheme to implied 
volatilities, one can glance at Figure 2. Even with twenty timesteps per year the bias is only 7 
basispoints (bp) for the ATM call, i.e. the option has an implied volatility of 28.69% instead of 
28.62%. This is already accurate enough for practical purposes. In contrast, the bias for the 
absorption scheme is 3.02%, and 6.28% for the reflection scheme. It is clear that the combination 
of truncating the effective volatility and allowing the variance process to remain negative is the 
most effective in reducing the bias. One possible reason for this is that the boundary behaviour 
remains as close as possible to the boundary behaviour of the continuous time process. As 
expected, the truncation of the drift lowers the bias even further. 

For the order of weak convergence, it is worthwhile to note that under some regularity 
conditions, see e.g. Theorem 14.5.2. of Kloeden and Platen [1999], the Euler scheme converges 
weakly with order 1 in the timestep. Though the SDE for the mean-reverting square root process  
does not satisfy these conditions, both schemes seem to regain this weak order10, the partial 
truncation scheme leading to an order of convergence even slightly above 1. In contrast, 

                                                           
9  The first point from the left in the exact scheme has been extrapolated. 
10The order of weak convergence was estimated here by regressing ln(|bias|) on a constant plus ln(Δt). 
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absorption and reflection have a weak order of convergence slightly under ½. The orders of 
convergence are roughly the same when considering the first example of Broadie and Kaya. 

Turning to the IJK-IMM scheme of Kahl and Jäckel [2005a], the estimated bias of this scheme  
is reported in Table 4. Note that for the combination of parameters in Table 3 the IMM scheme 
fails to preserve positivity for the variance process. We chose to implement it in combination with 
the absorption fix, and hence refer to the full scheme as IJK-IMM-Absorption. Initially the size of 
the bias compares favourably to the other biased schemes, though full truncation still performs 
better. The convergence is however rather erratic, similar to the aforementioned findings of 
Glasserman [2003, pp. 356-358] who considered another second order Taylor scheme for the 
Heston model. The bias seems to increase when increasing the number of timesteps per year from 
40 to 80, and then to 160. This behaviour is visualised in Figure 2 where we plot the bias in terms 
of implied volatility as a function of the strike and the timestep. Indeed, the sign of the bias 
switches when the timestep is decreased. In contrast, the absolute value of the bias decreases 
uniformly for the full truncation scheme. Interestingly, using the full truncation fix in 
combination with the IMM scheme makes the convergence uniform again, and in addition 
increases the weak order of convergence to 0.95. These results are not included in Table 4 as the 
size of the bias was slightly larger than of the IJK-IMM-Absorption scheme.  

Finally, let us investigate the RMS error and computation time. These are reported in Table 4 
for full truncation, IJK-IMM-Absorption and the exact scheme. In Figure 3 the RMSE is plotted 
as a function of the timestep for all schemes. The choice of the number of paths is an important 
issue here. It suffices to say here that Duffie and Glynn [1995] have proven that if the weak order 
of convergence is p, one should increase the number of paths proportional to (Δt)-p. When p = 1, 
this means that if the timestep is halved, we should quadruple the number of paths. Obviously, a 
priori we often do not have an exact value for p, nor do we know the optimal constant of 
proportionality. We refer the interested reader to the discussion in Broadie and Kaya for the 
rationale behind the choice of the number of paths in this example. The convergence of the exact 
scheme is clearly the best. The method produces no bias and hence has O(N-1/2) convergence11, N 
being the number of paths. For a scheme that converges weakly with order p, Duffie and Glynn 
have proven that for the optimal allocation the RMSE has O(N-p/(2p+1)) convergence. Indeed, all 
biased schemes show a lower rate of convergence than the exact scheme. However, due to the 
fact that the full truncation scheme already produces virtually no bias with only twenty timesteps 
per year, the RMSEs of both schemes are roughly the same. Given the stark contrast in 
computation time required for both schemes, combined with the fact that this is an example with 
an extremely large volatility of variance η, causing large biases, the full truncation scheme should 
certainly be the discretisation method of choice, even for weakly path-dependent options. 
 
4.2. Results for the Bates model 
 

In the Bates (SVJ) model [1996], the Heston model is extended with lognormal jumps for the 
stock price process, where the jumps arrive via a Poisson process: 

 

( ) )t(dW)t(VdtV)t(V)t(dV

)t(dN)t(SJ)t(dW)t(S)t(Vdt)t(S)()t(dS

V

)t(NSJ

η+−λ−=

++μξ−μ=
                     (26) 

 
                                                           
11 The discussion here clearly only holds true when using pseudo random numbers, as we do in this paper.  

In a Quasi-Monte Carlo setting the convergence would be O((ln N)2/N). 
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Absorption Partial truncation Full truncation Steps/yr. No log Log No log Log No log Log 
2 0.588 0.832 2.860 2.780 -0.145 0.103 
4 0.281 0.411 0.280 0.410 -0.102 0.028 
8 0.134 0.201 0.038 0.104 -0.059 0.008 

16 0.055 0.089 -0.009 0.025 -0.033 0.001 
O(Δt 

p) 1.13 1.07 2.81 2.24 0.73 2.17 

Table 5: Bias for Euler fixes when pricing an ATM call in the Bates example 
Stochastic variance process: λ = 399%, V(0) = 0.8836%,    = 9%, η = 27%, ρ = -79% 
Stock price process: S = 100, μ = r = 3.19% 
Jump process: ξ = 11%,      = -12%, σJ = 15%  
Deal specification: European call option, Maturity 5 yrs. True option price: 20.1642. 

 
Full truncation – log IJK-IMM Exact scheme Paths Steps/yr. Bias RMSE CPU Bias RMSE CPU RMSE CPU 

10,000 2 0.103 0.250 0.1 0.885 0.914 0.1 0.223 0.6 
40,000 4 0.028 0.115 0.3 0.432 0.446 0.3 0.112 2.3 

160,000 8 0.008 0.057 1.9 0.204 0.211 2.1 0.056 9.1 
640,000 16 0.001 0.028 12.6 0.094 0.098 13.7 0.028 36.2 

O(Δt 
p) 2.17 1.05  1.08 1.07  1.00  

Table 6: Bias, RMS error and CPU time (in sec.) in the Bates example for an ATM call 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Convergence of the RMS error in the Bates example for an ATM call 
Left panel: Direct integration of stock price, Right panel: Log-transformation of stock price 

 

where N is a Poisson process with intensity ξ, independent of the Brownian motions. The random 
variable Ji denotes the ith relative jump size and is lognormally distributed, ln Ji ~ N(μJ, σJ

2). If the 
ith jump occurs at time t, the stock price right after the jump equals S(t+) = JiS(t-). To ensure no 
arbitrage, Jμ  in (26) has to be the expected relative jump size: 
 

)exp(]J[1 2
J2

1
JiJ σ+μ==μ+               (27) 

 
The Bates model is often used in an equity or FX context, where the jumps mainly serve to fit the 
model to the short term skew. Since the jump process is specified independently from the 
remainder of the model, the same simulation procedure as for the Heston model can be used. If a 
timestep of length T is made till the next relevant date, we draw a random Poisson variable with 

V

Jμ
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mean ξT, representing the number of jumps. Subsequently the jump sizes are drawn from the 
lognormal distribution, and the stock price is adjusted accordingly. In this way the addition of 
jumps does not add to the discretisation error. 

The parameters and deal specification for our example can be found in the caption of Table 5. 
This example stems from Duffie, Pan and Singleton [2000], where parameters resulted from a 
calibration to S&P500 index options. Broadie and Kaya [2006] also use this example, which 
again allows us to compare the various biased simulation schemes to their exact scheme. We note 
that the example under consideration satisfies V22 λ<<η , which firstly means that the origin of 
the square root process is not attainable. Secondly, the low level of η implies that the probability 
of any discretisation yielding a negative value is significantly smaller than in the Heston example. 
Hence we may expect that the sizes of the bias are lower than in the previous example. Thirdly 
and finally, this combination of parameters is such that the IMM scheme preserves positivity. The 
IJK-IMM scheme, contrary to the previous example, does not require an additional assumption 
about the treatment of the stochastic variance at the boundary. 

Starting with the bias of an ATM call in Table 5, we see an interesting pattern when the 
logarithmic transformation is not used for the stock price. As expected, the full truncation scheme 
yields a lower bias than the partial truncation scheme. The bias is however decreased so far that it 
turns negative. When using the logarithmic transformation, the bias of the full truncation scheme 
remains positive. How can this be explained? On the one hand, note that not using a logarithmic 
transformation induces a negative bias in the stock price when the expected rate of return μ is 
positive. For example, if no jumps were included in this example, we would have had            
[S(1) | S(0)] = 100·1.0319 = 103.19 if (11) were used. In contrast, the same expectation equals 
100·exp(0.0319) = 103.24 when (12) is used. Since jumps are used, and the expected relative 
jump size is negative, the drift rate in (26) is slightly higher. This causes an even larger negative 
bias in the stock price. On the other hand, fixing negative variances using traditional fixes such as 
absorption or reflection induces a positive bias in the option price, as was evident in the previous 
subsection. Due to the combination of parameters of this example, the probability of the Euler 
discretisations yielding a negative value is significantly reduced. As the full truncation scheme is 
tailored to minimise an upward bias, the combination of both downward biases drives the bias 
into the negative domain. By using the logarithmic coordinates in (12) this effect is corrected. 

Having explained this behaviour, we can again conclude that the full truncation scheme by far 
outperforms the other Euler fixes in terms of bias, certainly when applied in logarithmic 
coordinates. Results for the other fixes, apart from absorption, are not reported here as the 
previous subsection demonstrated quite convincingly that the truncation schemes by far 
outperform the other Euler fixes. Absorption was included since it is the most widely used fix. 
The order of weak convergence is higher than in the Heston example, most likely due to the lesser 
importance of the fixes here. The relatively high bias found when the partial truncation scheme is 
used with only two timesteps, also evident in Figure 4 is probably due to the fact that Δt is barely 
smaller than 2/λ. As can be seen from (14), this is a strict requirement for the first moment of the 
partial truncation scheme to converge. Still, the order of convergence is, as before, the highest 
among all biased schemes. The size of the bias is nevertheless higher for the chosen timesteps. 

As mentioned, for this example the IJK-IMM scheme automatically preserves positivity. 
However, it is outperformed both in terms of bias and order of weak convergence by the full 
truncation scheme. Interestingly, Figure 4 indicates that the level of bias of the IJK-IMM scheme 
is here roughly comparable to that of the absorption scheme. Comparing to the exact scheme, we 
see that like before, the RMS errors of both the full truncation scheme and the exact scheme are 
roughly equivalent. The cause of this is the almost negligible level of bias found by the full 
truncation scheme, with only 2 steps per year the bias is 14 bp in terms of implied volatility. 
Clearly, since the Euler full truncation scheme is the computationally least intensive scheme, and 
produces the smallest bias among all biased schemes, it should be the preferred discretisation. 
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5. Conclusions and further research 
 

In this paper we have considered the simulation of the Heston stochastic volatility model and 
varieties thereof. In this model, the stochastic variance is modelled as a mean-reverting square 
root process.  When discretising this process one immediately runs into the problem that although 
the process itself is guaranteed to be nonnegative, any Euler discretisation has a nonzero 
probability of becoming negative in the next timestep, regardless of the size of the timestep. 
Hence, one has to “fix” these negative variances. 

Our contribution is threefold. Firstly, we unify all “fixes” appearing in the literature in a single 
general framework. Secondly, by analysing the rationale behind the known fixes, we are led up to 
propose a new scheme, the full truncation scheme, designed specifically to minimise the positive 
bias one finds when pricing European options using the traditional fixes. Strong convergence of 
order ½ in the timestep is proven for this scheme. Combined with the recent results of Higham 
and Mao [2005] this justifies the pricing of European and barrier options. 

Thirdly and finally, we numerically compare the various Euler schemes to each other, as well 
as to the recently developed quasi-second order IJK-IMM scheme by Kahl and Jäckel [2005a] 
and the exact scheme of Broadie and Kaya [2006]. Both papers compare their schemes to the 
Euler scheme with an absorption fix and find their scheme to be superior. Our numerical results 
demonstrate that using the correct fix at the boundary is extremely important, and significantly 
impacts the magnitude of the bias. In our examples, when looking at the error made when pricing 
a European call, we find the full truncation scheme produces the smallest bias by far, even when 
compared to the IJK-IMM scheme. The order of weak convergence seems to be around 1 in the 
timestep. The full truncation fix therefore seems to bring back the order of weak convergence to 
the theoretical level for an Euler discretisation of an SDE with Lipschitzian dynamics. We 
mention that the partial truncation scheme seems to have an even higher order of convergence. 
Nonetheless, the size of the bias is much higher than that of full truncation for practical values of 
the timestep. Interestingly, using our full truncation fix within the IJK-IMM scheme also seems to 
greatly improve its order of weak convergence. 

Given the almost negligible levels of bias we find with the full truncation scheme, the scheme 
is able to generate a much smaller RMS error given a certain computational budget than any other 
biased or exact scheme considered here. As such it should be the preferred discretisation method 
for the simulation of the Heston stochastic volatility model and varieties hereof, even when 
valuing European or weakly path-dependent options. In future work we aim to investigate the 
effectiveness of the full truncation scheme when applied to exotic path-dependent options in more 
general stochastic volatility models, and perhaps design even more effective schemes. Clearly, 
although our focus has here been on the Heston model, the schemes presented here can readily be 
adapted to any stochastic process with reflecting boundaries, such as the class of affine jump-
diffusion models and CEV-type processes.  

As a final note, we return to the lead mentioned in the introduction, namely that the issues 
considered here in a continuous time setting can also arise in a discrete time setting. Examples of 
models where such problems can arise are the model of Heston and Nandi [2000] and the Box-
Cox model of Christoffersen and Jacobs [2004]. Let us be more specific and look at the first-
order version of the Heston and Nandi model. Here the log-stock price is modelled as: 

 

( )2)t(h)t(z)t(h)tt(h

)t(z)t(h)t(hr)tt(Sln)t(Sln

γ−α+β+ω=+

+λ++−=

Δ

Δ
           (27) 

 
where z(t) is a standard normal random variable and h(t) is the conditional variance of the         
log-return between t-Δt and t. In this setup h(t) is known at time t-Δt. Note that all the model 
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parameters will depend on the chosen timestep Δt. The process remains stationary with finite first 
two moments if β + αγ2 < 1. Without further restrictions on the parameters, h(t+Δt) can become 
negative. In their estimates however ω, β and α are positive and significant at the 95% confidence 
level, so that there does not seem to be a problem. Turning to their appendix B however, where 
they prove convergence of (27) to the Heston model with ρ = -1 as the timestep tends to zero, we 
see that in their proof they choose12 22

4
1 )t)(V( Δη−λ=ω , β = 0 and 22

4
1 )t(Δη=α . Positivity of 

the conditional variance h(t+Δt) can thus only be guaranteed provided that 2
4
1V η≥λ . This is the 

same condition under which the schemes of Alfonsi [2005] and Kahl and Jäckel [2005b] preserve 
positivity, and not surprisingly so as we already remarked the equivalence of these three schemes 
to first order in Δt in section 2.5. Looking in closer detail at their estimation procedure, we see 
that they only included options with an absolute moneyness less than or equal to ten percent, i.e. 
at or around at-the-money options. In the Heston model Vλ  can certainly be smaller than ¼η2, 
when the skew is quite pronounced. This would not be noticed however if only options at or 
around the at-the-money level would be included in the calibration procedure. Concluding, the 
“fixes” considered in the continuous time setting in this paper certainly also have an application 
in a discrete time setting. 
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Appendix – Proof of strong convergence 
 

In this appendix we prove strong convergence of the full truncation scheme applied to the 
Heston model. First of all we consider the mean-reverting square root process in isolation. For 
ease of exposure the discretisation over a finite time horizon [0,T] is performed on a uniform grid 
tn = nΔt, n = 1, …, T/Δt. The full truncation scheme then reads: 

 

nVnnn1n Wv)vv(tvv ΔΔ ++
+ η+−λ−=           (A.1) 

 
where vi indicates the value of the discretisation at ti and ΔWVn = WV(tn+1) – WV(tn). To 
distinguish between the discretisation of the variance and the true process, we will denote the 
discretisation with small letters (v) and the true process with capital letters (V). Obviously Vv = . 
Following Higham and Mao [2005] we will consider the continuous-time approximation of (A.1): 
 

( ))t(W)t(Wv)vv)(tt(v)t(v nVVnnnn −⋅η+−−λ−≡ ++        (A.2) 
 
or, in integral notation: 
 

∫∫ +
τ

+
τ η+−λ−=

t

0 V

t

0
)u(dW)u(vdu)v)u(v()0(v)t(v        (A.3) 

 
where v(0) = v0, vτ(t) = v(τ(t)) and τ(t) equals t n if t n ≤ t ≤ t n+1. Obviously vτ(t) coincides with v(t) 
at the gridpoints of the discretisation. 
 
Bounds on the first and second moment of the stochastic variance 
 

One of the elements required in proving strong convergence of the full truncation scheme, are 
bounds on the first and second moments of v n in (A.1). In the remainder we denote the first and 
second moments by ]v[x nn ≡  and ]v[y 2

nn ≡  respectively. In the main text lemma 1 already 
supplied the following inequality: 
 

v)vv()t1(]v[x 0
n

nn +−λ−≤= ΔÄ           (A.4) 
 
As we do not require very sharp bounds, we will often use the following corollary. 
 
Corollary 1: 
For Δt < 2/λ the first moment of vn in the full truncation scheme is bounded from above by: 
 

v|vv|x 0n +−≤                          (A.5) 
 
Proof:  
Trivial from (A.4). � 
 
Secondly, we will find an upper bound on the second moment of v n. 
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Lemma 2 – Bounding the second moment of the full truncation scheme 
For any n = 0, …, N where NΔt = T, and Δt < 2/λ, the second moment of vn in the full truncation 
scheme is bounded by: 
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22
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+λ+λ⋅+≤                      (A.6) 

 
Proof: 
Clearly, y0 = v0

2 so that the assertion is then true. Suppose the lemma now holds true for some n. 
Using (A.1) we can then write: 
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To bound this expression, we note that, apart from the first constant, the right-hand side can be 
written as the expectation of the following function: 
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This means that f(x) is a piecewise parabola: 
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                        (A.9) 

 
We will bound f(x) from above by a quadratic function with constant coefficients: 
 

γ+β+α≤ xx)x(f 2           (A.10) 
 
so that if both random variables are ordered, their expectation will also satisfy this ordering. First 
of all note that since λ < 2/Δt, we have that c < a = 1, so that we can safely set α = a = 1. Setting β 
equal to b means that we must choose γ ≥ 0. For x ≥ 0 (A.10) now implies that: 
 

0x)bd(x)1c( 2 ≤γ−−+−          (A.11) 
 
We will ensure that this holds true by choosing γ such that the maximum of the parabola in (A.11) 
with respect to x on [0,∞) equals zero. The maximum occurs in: 
 

)c1(2
bdx*

−
−

=            (A.12) 

 
When d < b this is smaller than zero, so then we only need to ensure that the condition in (A.11) 
holds true for x = 0. This can be achieved by choosing γ ≥ 0. When d ≥ b it can be shown that: 
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ensures that the condition in (A.11) always holds true. Returning to (A.7) we then have: 
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Repeated use of (A.14) and corollary 1 immediately yields (A.6), if we in addition also bound nΔt 
from above by T. � 
 
It is important to note that ∞<+=Δ

→Δ
x

2
0y0t

TUv)t(Ulim , so that the second moment of the 

discretisation does not blow up in finite time. We proceed by studying the strong L1 error, 
followed by the strong L2 error. 
 
The strong L1 error for the mean-reverting square root process 
 
Before addressing the strong L1 error we need a bound on the L2 difference between the two 
continuous-time approximations vτ(t) and v(t). The proof entirely depends on lemmas 1 and 2. 
 
Lemma 3 – The L2 difference between vτ(t) and v(t) 
For Δt < 2/λ we have: 
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Proof: 
For t ∈ [t n,t n+1) we have: 
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The first term can be bounded from above by: 
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so that (A.16) becomes: 
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Finally, the supremum on [0,T] is then bounded from above by: 
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which completes the proof. � 
 
Clearly Ucont(Δt) is of O(Δt), so that the difference between the discrete-time approximation and 
its continuous extension vanishes when the timestep tends to zero. We are now ready to prove 
strong convergence in the L1 sense. 
 
Theorem 1 – Strong convergence of v(t) in the L1 sense  
The full truncation scheme converges strongly of order ½ in the L1 sense, i.e. for sufficiently 
small values of the timestep Δt and for some constant β, we have: 
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Proof: 
In this proof we bound [ ])t(v)t(V −Ä  from above in a function of the timestep, so that we can 
prove that this L1 norm tends to zero as the timestep tends to zero. As in Yamada [1978], this is 
achieved by bounding ( )[ ])t(v)t(Vk −φÄ  for a series of C2(Ñ,Ñ) functions φk which tend to the 
absolute function. Here we use the same notation as in Higham and Mao [2005]. First of all let   

a0 = 1 and define ak = e-k(k+1)/2 for k ≥ 1, so that kduu1k

k

a
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− − . For each integer k ≥ 1 there 

exists a continuous function ψk with support in (a k-1, a k) such that  
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A final property we will use is: 
 

|x|)x(a|x| k1k ≤φ≤− −           (A.23) 
 
Consider ( ))t(v)t(Vk −φ . Using Itô’s lemma and taking expectations yields: 
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where we defined: 
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One can show that ( ) yxyx
2

−≤− + . Since V(u) ≥ 0 a.s., we have: 
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Secondly, note that ( ) )u(v)u(vuv)u(V)u(v)u(V ττ −+−≤− . Thirdly, we use the 
property of the second derivative of φ in (A.22). It follows that: 
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where we used [ ] ]X[|X| 2ÄÄ ≤  for any random variable X and lemma 3. Turning to M(t), we 
use the property of the first derivative of φ from (A.22) and obtain: 
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M(t) can thus be bounded from above by: 
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Combining the bounds on I(t) and M(t) from (A.26) and (A.29) in (A.24) yields:  
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From property (A.23) it follows that ( )[ ] ( )[ ] 1kk atv)t(V)t(v)t(V −−−≥−φ ÄÄ , hence: 
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where we also bounded t from above by T. This gives an upper bound of the same form as in 
Higham and Mao, and allows us to apply Gronwall’s inequality to find: 
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Since (A.32) holds for any value of k, it is easy to show that [ ] 0)t(v)t(Vsuplim
]T,0[t0t
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∈→Δ

Ä  as in 

corollary 3.1 of Higham and Mao. Furthermore, the order of convergence is determined by the 
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order of Ucont(Δt), which we know to be O(Δt) from lemma 3. As we here take its square root, the 
order of strong convergence is ½. � 
 
The strong L2 error for the mean-reverting square root process 
The following theorem derives a bound on the error using an L2 measure, and with the supremum 
inside the expectation operator. The proof uses the L1 error from theorem 1. 
 
Theorem 2 – Strong convergence of v(t) in the L2 sense  
For sufficiently small values of the timestep Δt and for some constant β, we have: 
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Proof: 
Subtracting v(t) from V(t) yields the following equation: 
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Squaring both sides allows us to deduce the following inequality: 
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where we used (x-y)2 ≤ 2x2 + 2y2 as well as |x-y+| ≤ |x-y| for x ≥ 0 in the first step, and the 
Cauchy-Schwartz inequality in the second step. For any s ≤ T we then have: 
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where we used Doob’s martingale inequality in the first step, ( ) |yx|yx
2

−≤− +  in the 
second, and elements from the proof of theorem 1 in the remaining steps. Applying Gronwall’s 
inequality yet again leads to the final bound: 



 30

( )

[ ]⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

λ
η

++

⋅λλ≤⎥⎦
⎤

⎢⎣
⎡ −

∈

∈

ΔΔ )t(v)t(Vsup4)t(U4)t(TU

)T2exp(T2)t(v)t(Vsup

]T,0[t
2

2

contcont

2222

]T,0[t

Ä

Ä
  (A.37) 

 
Since the L1 error tends to zero when the timestep tends to zero, it is also clear that the L2 error in 
(A.37) does. The order of convergence is again O(Δt1/2), which leads to O(Δt1/4) in (A.33). � 
 
Convergence of plain vanilla and barrier prices 
Before we can establish convergence of the sample averages of the payoffs of European calls, 
puts and barriers, we need to bound the expectation of the supremum of the absolute value of v(t), 
and prove strong convergence in the L2 sense for the stock price, stopped by a stopping time. 
 
Lemma 4 – Bounding the expectation of the supremum of |v(t)| 
For any c ≥ 0 and some constant CBDG we have: 
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Proof: 
First of all we note that for any c > 0 we can bound the square root function as cxx c4

1 +≤ . 
With this useful inequality in hand, we can use the definition of v(t) in (A.3) and the Burkholder- 
Davis-Gundy inequality to arrive at: 
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where CBDG is a universal constant from the Burkholder-Davis-Gundy inequality. Again, 
Gronwall’s inequality yields the desired result. � 
 
We will now introduce the full truncation discretisation for the stock price. Here we only consider 
a direct discretisation of the stock price, i.e. equation (11), although the proofs could be carried 
out using a log-discretisation as in (12). The analogue of (A.1) and (A.3) for the stock price are: 
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We are now ready to prove the strong L2 convergence of the stopped stock price. 
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Theorem 3 – Strong L2 convergence of the stopped stock price 
If we define the following stopping time for any i, j > 0: 
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and tij = min(t,τij), then for a sufficiently small timestep and some constant βij, depending on both 
i and j, we have: 
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Proof: 
Considering the difference of S(tij) and s(tij), we find: 
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Squaring the left-hand side, noting that (x+y+z)2 ≤ 3x2 + 3y2 +3z2 and applying Hölder’s 
inequality for integrals as well as Doob’s martingale inequality, yields, for s ≤ T: 
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As before we can apply ( ) |yx|yx
2

−≤− +  in the second term, and use y+ ≤ |y| in the third 
term. The stopping time used implies that for all t, |X(tij)| ≤ i and |v(tij)| ≤ j. Combining, we find: 
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The remainder of the proof is identical to that of Higham and Mao, and leads to: 
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with C = 3μ2T + 12j. This clearly tends to zero as the timestep does, and the speed with which it 
approaches zero is of O(Δt1/2), as follows from theorem 1. � 
 
The final theorem now follows. 
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Theorem 4 – Convergence of plain vanilla options and barriers 
Let us define the following payoffs: 
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with γ ∈ {-1,1} and A either of the form [0,B] or [B,∞). For any ε > 0 we can find i, j > 0 such 
that, for sufficiently small timesteps there is a constant βij, depending on both i and j, such that: 
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Proof: 
The proof for both the plain vanilla put and the up-and-out barrier call Higham and Mao consider 
only depends on lemmas 6.1, 6.2 and 6.3. Only lemmas 6.2 and 6.3 depend on the particular 
discretisation one chooses, and we have proven their equivalents (lemma 4 and theorem 3 
respectively) for the full truncation scheme. The proof for the plain vanilla call follows from put-
call parity, as Higham and Mao remark. For the barrier case, one can check that the proof for the 
up-and-out call does not depend on where the initial stock price is located, so that the proof for a 
down-and-out call follows immediately. We can use the in-out barrier parity to prove 
convergence for “in” barriers, and round up the proof by noting that for puts the proof carries 
over directly. The order of convergence follows by inspecting Higham and Mao’s proof. � 


