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Abstract – This study presents a multivariate, variance component-based QTL mapping model
implemented via restricted maximum likelihood (REML). The method was applied to investigate
bivariate and univariate QTL mapping analyses, using simulated data. Specifically, we report
results on the statistical power to detect a QTL and on the precision of parameter estimates using
univariate and bivariate approaches. The model and methodology were also applied to study the
effectiveness of partitioning the overall genetic correlation between two traits into a component
due to many genes of small effect, and one due to the QTL. It is shown that when the QTL
has a pleiotropic effect on two traits, a bivariate analysis leads to a higher statistical power of
detecting the QTL and to a more precise estimate of the QTL’s map position, in particular in
the case when the QTL has a small effect on the trait. The increase in power is most marked
in cases where the contributions of the QTL and of the polygenic components to the genetic
correlation have opposite signs. The bivariate REML analysis can successfully partition the two
components contributing to the genetic correlation between traits.

multivariate / QTL mapping / livestock

1. INTRODUCTION

In many quantitative trait loci (QTL) mapping experiments in livestock
populations, a number of phenotypic traits are recorded e.g. [8,11,26]. Usu-
ally, QTL are mapped for individual traits using single trait analyses. The
traits, however, may be environmentally and genetically correlated. A genetic
correlation can be the result of pleiotropic effects of a single QTL affecting
more than one trait, or of linkage disequilibrium between two or more QTLs,
each affecting one trait only [5].

When a QTL has a pleiotropic effect on two or more traits, a joint analysis
involving both traits can result in a higher statistical power of detecting it, and
in higher precision of the estimate of its map position [14,15].
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Apart from the issue of power, it is important to understand the structure
of a genetic correlation between two traits. Indeed, partitioning the genetic
correlation into a component due to the action of many pleiotropic genes of
small effect, and another due to the effect of a pleiotropic QTL can provide
relevant information, for example, for selection decisions.

Several approaches for a multivariate QTL analysis have been proposed.
One is to use a canonical transformation of the original data followed by
single trait analyses [16,23]. However, a transformation that uncorrelates
the traits phenotypically and genetically in the transformed scale does not
ensure that each QTL influences a single canonical trait only [15]. A second
approach is to use multivariate least squares methods for QTL detection and
location e.g. [3,15]. This approach was applied to a three-generation pedigree
and was shown to increase the power to detect a pleiotropic QTL, and the
precision of the estimate of its location, relative to a univariate approach [15].
The advantage of multivariate least squares is that it is easy to implement
without using sophisticated software and the method is computationally fast.
However, it is not applicable for more general pedigree structures with many
different relationships and multiple generations, as found typically in livestock
populations. A third approach is to use multivariate maximum likelihood
(ML) methods. These have been implemented for a number of different
experimental designs, such as crosses between inbred lines [14], and half-
sib families [19]. The multivariate ML methods have been shown to result in
estimates of parameters with improved precision and to increase the power to
detect QTL. The advantage of a fully parametric ML method is that it explicitly
models the number of loci, the number of alleles per locus and their frequencies
and that it can be applied to general pedigrees. However, a fully parametric
ML method is computationally demanding.

Here, a multivariate QTL mapping approach based on the variance compon-
ent model e.g. [1,9,10,24] is presented. This model decomposes the overall
genetic variance into a component due to the segregation of a putative QTL,
and another due to the effect of a polygenic term (the collective effects of all
other QTL affecting the trait). An advantage of this approach is that it can
be applied to general pedigree structures and multiple generations e.g. [12,7].
In this study, the model is implemented via restricted maximum likelihood
(REML). The maximization of the restricted likelihood is achieved using a
novel and efficient algorithm known as average information [13].

The variance component model has previously been applied to a multivariate
QTL mapping analysis, and shown to increase the statistical power to detect
QTL, relative to univariate analyses [2]. However, the results from power
studies for different scenarios of genetic and phenotypic relationships between
traits have not been given. A more detailed simulation study is needed to
evaluate the properties of the multivariate variance component-based QTL
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mapping approach. This would highlight situations in which it is advantageous
to use multivariate QTL analyses.

The objective of this work was to implement the multivariate variance
component-based QTL mapping model via REML and to compare bivariate
and univariate QTL mapping analyses of simulated data, with respect to the
statistical power to detect a QTL and to the precision of parameter estimates.
In particular, we studied genetic scenarios that lead to differences in power
between univariate and multivariate analyses. The developed methodology
was also applied to partition the overall genetic correlation into components
due to the action of many pleiotropic genes and due to a single pleiotropic
QTL.

2. METHODS

2.1. Multivariate mixed model

The multivariate mixed model with a single QTL can be written in general-
ized matrix form as

y = Xβ+ Zu+Wq+ e, (1)

where y is a n ∗ t vector of n observations on t traits, X is a known design
matrix, β is a vector of unknown fixed effects, Z is a known matrix relating
records to individuals, u is a vector of unknown additive polygenic effects, W
is a known matrix relating each individual record to its unknown additive QTL
effect, q is a vector of unknown additive QTL effects of individuals and e is a
vector of residuals. Here model (1) is considered as the full model and for tests
of hypothesis described in the next section, a number of different sub models
is derived from it.

The random variables u, q and e are assumed to be multivariate normally
distributed and mutually uncorrelated (MVN).

Specifically, the vector u is MVN (0, G0 ⊗ A), the vector q is MVN (0,
K0 ⊗ Q|M,p) and the vector e is MVN (0, E0 ⊗ I). Matrices G0, K0 and E0

include variances and covariances among the traits due to polygenic effects,
QTL effects and residuals effects, respectively. The symbol ⊗ represents
the Kronecker product. Matrix A has elements that describe additive genetic
relationships among elements of u. Matrix Q|M,p is the identity by descent
(IBD) matrix of the QTL, and is a function of marker data (M) and the position
(p) of the QTL on the chromosome.

2.2. IBD matrix

The IBD matrix for the QTL effects, Q|M,p, was computed constructing
first the gametic relationship matrix [6], and then using the linear relationship
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between the gametic relationship matrix and the IBD matrix [7]. The gametic
relationship matrix describes the covariance structure among the random QTL
allelic effects of all the individuals in the pedigree. The covariance between
any two QTL allelic effects is proportional to the probability that the QTL
alleles are identical by descent. The gametic relationship matrix of a QTL is
not observable because the QTL genotype is unknown. However, transmission
of linked markers can be followed from the parents to the offspring. This
information is used to calculate IBD probabilities at the position of a putative
QTL, thus yielding an expected gametic relationship matrix, conditional on
QTL position and marker information.

In outbred populations, markers may only be partially informative. It is
therefore important to use information on all markers in the linkage group.
Here, information from all markers in the analysis was accounted for in a
similar way as described in Yi and Xu [25]. The method is illustrated using a
simple pedigree consisting of a sire with QTL alleles (gS1 and gS2) and a single
offspring with QTL alleles (gO1 and gO2). Consider a linkage group with m
marker loci. Assume that the QTL (q) is located between markers k and k + 1
for 1 ≤ k ≤ m − 1. The probability that the paternal QTL allele (gO1) in the
offspring is identical by descent (≡) to the first QTL allele (gS1) in the sire,
given the inherited parental marker haplotype (Hpat) can be written as

P(gO1 ≡ gS1|Hpat)

= P(Hpat|gO1 ≡ gS1)P(gO1 ≡ gS1)

P(Hpat|gO1 ≡ gS1)P(gO1 ≡ gS1)+ P(Hpat|gO1 ≡ gS2)P(gO1 ≡ gS2)
, (2)

where P(gO1 ≡ gS1) and P(gO1 ≡ gS2) are the prior distribution of the IBD state
for the QTL which are equal to 0.5. The conditional probability of the inherited
haplotype in the offspring, given the inheritance of the first QTL allele from
the sire, can then be computed as [25]

P(Hpat|gO1 ≡ gS1)

=
(

1
1

)T

N1R1,2 . . .NkRk,q

(
1 0
0 0

)
Rq,k+1Nk+1 . . .Nm−1Rm−1,mNm

(
1
1

)

and similarly for the second allele (gS2)

P(Hpat|gO1 ≡ gS2)

=
(

1
1

)T

N1R1,2 . . .NkRk,q

(
0 0
0 1

)
Rq,k+1Nk+1 . . .Nm−1Rm−1,mNm

(
1
1

)
.

The matrix Rk,k+1 =
(

1− rk,k+1 rk,k+1

rk,k+1 1− rk,k+1

)
is computed using the recom-

bination fraction rk,k+1 between loci k and k + 1. The matrix, Nk =
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(

P(mk
O1 ≡ mk

S1|Mk) 0
0 P(mk

O1 ≡ mk
S2|Mk)

)
is computed using the probabilities

that the paternal marker allele (mk
O1) in the offspring, is IBD with the first

(mk
S1) or second (mk

S2) marker allele in the sire, at the marker locus k. If the
marker information is complete, then one of the diagonal elements of Nk is
equal to 1 and the other diagonal element is equal to zero. In the absence of
marker information, the diagonal elements of Nk are equal to 0.5. Equation (2)
was used to compute the IBD elements in the gametic relationship matrix for a
given position of the QTL, using a recursive algorithm [22] and assuming the
most likely linkage phase is the true linkage phase in the sire.

2.3. AI-REML analysis

Conditional on the IBD matrix for the QTL effects, Q|M,p, the restricted
likelihood [18] of the multivariate mixed model, assuming a single QTL, is
given by

L(θ|K′y,Q|M,p) ∝
�

p(K′y|u,q,E0⊗ I)p(u|G0⊗A)p(q|K0⊗Q|M,p)dudq,
(3)

where θ = (
vech(G0)

′ vech(K0)
′ vech(E0)

′) is the vector containing the N
unique elements of the symmetric matrices G0, K0 and E0, and K′y is the
vector of “error contrasts”. The restricted likelihood was maximized with
respect to the variance components (G0, K0 and E0) using the AI-REML
algorithm [13]. Preceding the AI-REML analysis and using only marker data,
the IBD matrix Q|M,p is computed, conditional on the QTL position p, on
the chromosome. Maximizing a sequence of restricted likelihoods over a grid
of specific positions, yields a profile of the restricted likelihood of the QTL
position.

The AI-REML algorithm is based on first and second derivatives of the
restricted log likelihood [13]. It was implemented by combining it with
the Expectation Maximization (EM) algorithm [4], to ensure that parameter
estimates stay within the parameter space [13]. There are cases however, when
estimates of the elements of K0 are expected to fall at the boundary of the
parameter space. Specifically, if a biallelic QTL has a pleiotropic effect on two
or more traits, then the QTL correlation between the traits is unity. This has
to be accounted for in order to detect convergence, which was achieved here
using two different criteria. One of these checked for small values of the vector
of first derivatives of the restricted log likelihood. If the algorithm converges
to a point inside the parameter space, then the values of the vector of the first
derivatives of the restricted log likelihood should approach zero. However, if
the estimates are at the boundary of the parameter space, then the vector of
the first derivatives is not necessarily zero. Therefore the other convergence
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criterion requires that changes in estimates of the (co)variance components
between successive rounds approach zero.

2.4. Simulation

A granddaughter design with 20 unrelated grandsires, each having 50 sons,
was simulated. Each son produced 100 daughters, and dams of sons were
assumed to be unrelated. The structure and size of this design resembles that
of a current experiment involving the Danish Holstein population [11].

2.4.1. Genetic scenarios

To compare univariate and bivariate QTL mapping analyses, a number of
different genetic scenarios were simulated (Tab. I). All the simulations mimic
a situation where two traits are affected by a single pleiotropic QTL, in addition
to polygenic and residual effects. The QTL was placed at a map position of
34 cM from the start of the linkage group. In order to evaluate the robustness
of the method to changes in the number of QTL alleles, the QTL was simulated
using either a biallelic or a multiallelic QTL model. The variance ratios (λ1 and
λ2) involving the proportion of genetic variance explained by the QTL, were
15% for trait 1 and 5% for trait 2. In all scenarios, the total phenotypic variance
was 100 for each trait, and the polygenic heritabilities (h2

1 and h2
2) were 0.3 and

0.14 for traits 1 and 2, respectively. The simulated scenarios differed in the
correlations between traits due to the QTL (rK), polygenes (rG) and residuals
(rE). In Table I, each alternative is characterized by three signs indicating a
characteristic of the correlation between the QTL effects, the polygenic effects
and the residual effects, in this order. A “+” indicates that the correlation is
positive, a “−” that it is negative, and a “0” that it is zero. Specifically, the
QTL correlation was 0.5 in the multiallelic case and 1.0 in the biallelic case.
The polygenic and residual correlations were zero in the “+00” scenario. The
polygenic correlation was 0.5 in the “+++” and “++−” scenarios and−0.5
in the “+ − +” and “+ − −” scenarios. The residual correlation was 0.5 in
the “+ + +” and “+ − +” scenarios, and −0.5 in the “+ + −” and “+ − −”
scenarios. The analyses presented are based on 200 replicated simulations.

2.4.2. Marker and QTL genotypes

The simulated linkage group was 80 cM long. It consisted of five markers
which were positioned at 0, 20, 40, 60 and 80 cM. Founder alleles (i.e. alleles in
grandsires and all maternally inherited alleles) were sampled from a base pop-
ulation which was assumed to be in Hardy Weinberg and linkage equilibrium.
Five alleles with equal frequencies were simulated for each marker, whereas the
simulation of the QTL was biallelic with equal frequencies. In the case of the
multiallelic QTL model, all founder QTL alleles were assumed to be different.
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Alleles were transmitted from parents to offspring according to the Haldane
mapping function. Marker genotypes were simulated for grandsires and their
sons, while QTL genotypes were simulated for grandsires, sons and daughters.

2.4.3. Phenotypes

For each son, a daughter yield deviation (DYD) based on 100 daughters was
simulated. DYD is an average of the phenotypes of the daughters adjusted for
the fixed effects and genetic values of the daughters’ dams [21]. For the ith
son, the phenotype was simulated as a sum of the effects due to the QTL, the
polygenes and the residuals, using the following model:

DYDi = 1

ni

n∑

j=1

qij + ui + ei,

where DYDi =
(

DYDi1

DYDi2

)
is a vector of daughter yield deviations for trait 1

and 2 for son i, ni is the number of daughters of son i, qij =
(

qp
ij1

qp
ij2

)
is a vector

of the paternal (p) QTL allelic effects for trait 1 and 2 in daughter j of son i,

ui =
(

ui1

ui2

)
is a vector of polygenic effects and ei =

(
ei1

ei2

)
is a vector of

residual effects.
The QTL effects were sampled as follows. For the biallelic QTL model with

alleles Q and q, genotypes QQ, Qq, and qq were assigned the effects a1(a2),
0(0), and −a1(−a2) for trait 1(2). For example, if the individual i genotype
is QQ, then the QTL effect for trait 1 is qi1 = a1. The total variance explained
by the QTL is 2σ2

q1 = 2pQ(1− pQ)a2
1 for trait 1, and 2σ2

q2 = 2pQ(1− pQ)a2
2 for

trait 2, respectively, where pQ is the frequency of the Q allele. The covariance
between the traits due to the QTL is 2σq1q2 = 2pQ(1− pQ)a1a2. Therefore the
correlation between the traits is unity.

In the multiallelic QTL model the QTL effects for founder alleles were

drawn from MVN (0,K0), where K0 =
(

σ2
q1 σq1q2

σq2q1 σ2
q1

)
is the 2×2 (co)variance

matrix of the QTL effects. Under both QTL models, sampling of the daughters’
QTL generated the contribution of the QTL to the DYD. This sampling of the
QTL effects ensures that the variance between DYD among the daughters of a
heterozygous son, is larger than the corresponding variance associated with a
homozygous son.

The polygenic effects ui were sampled from MVN (0,G0 ⊗ A), where

G0 =
(

σ2
u1 σu1u2

σu2u1 σ2
u1

)
is the 2× 2 additive genetic (co)variance matrix between
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traits and A is the relationship matrix. Specifically, the polygenic effects for the
grandsire were generated from MVN(0,G0), and for a son, from MVN(0.5usire,
0.75G0), where usire is the polygenic effect for the sire of the son, and 0.75G0

is the sum of the genetic variance from unknown dams and the Mendelian
sampling term.

The residual effects, ei, were sampled from MVN

(
0,

1

ni
(0.5G0 + E0)

)
,

where E0 =
(

σ2
e1 σe1e2

σe2e1 σ2
e1

)
is the 2 × 2 residual (co)variance matrix between

the traits.

2.5. Hypotheses testing

Hypothesis testing for the presence of a QTL can be based on a single trait
analysis, or on a joint analysis including several traits. Here, the joint analysis
involves only two traits. The hypothesis tests in the univariate and bivariate
testing procedures are performed using the likelihood ratio test statistic, LRT =
−2 ln(Lreduced − Lfull), where Lreduced and Lfull are the maximized likelihoods
under the reduced model and full model, respectively. The data analyzed in the
tests described below, were simulated using model (1).

In the bivariate testing procedure, initially the null hypothesis “there is
no QTL affecting the traits” was tested against the hypothesis “there is a
QTL affecting both traits”. This test was performed using the test statistic
LRTB12 = −2 ln(LB0 − LB12), where LB0 is the maximum likelihood for a
bivariate model with no QTL affecting the traits and LB12 is the maximum
likelihood for a bivariate model with a single pleiotropic QTL affecting both
traits. This is a joint test for the combined effect of the QTL on both traits and,
therefore, does not test whether each trait is significantly affected by the QTL.
When the joint test was significant the two following trait specific tests were
performed: First, the null hypothesis “there is a QTL affecting trait 1” was
tested against the hypothesis “there is a QTL affecting both traits” using the
test statistic LRTB1 = −2 ln(LB1 − LB12). Second, the null hypothesis “there
is a QTL affecting trait 2” was tested against the hypothesis “there is a QTL
affecting both traits” using the test statistic LRTB2 = −2 ln(LB2 − LB12). LB1

(LB2) is the maximum likelihood for a bivariate model with a QTL affecting
only trait 1 (trait 2).

In the univariate testing procedure, each trait was analyzed separately and
the null hypothesis “there is no QTL affecting the trait” was tested against the
hypothesis “there is a QTL affecting the trait” using the test statistic LRTU1 =
−2 ln(LU0_1 − LU1) for trait 1 and LRTU2 = −2 ln(LU0_2 − LU2) for trait 2.
LU0_1 (LU0_2) is the maximum likelihood for a univariate model with no QTL
and LU1 (LU2) is the maximum likelihood for a univariate model with a single
QTL affecting trait 1 (trait 2).
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For each test the likelihood ratio test statistic was calculated and compared
with the empirically derived significance threshold (below we explain how this
threshold was obtained).

The comparison in terms of power to detect a QTL via the univariate versus
the bivariate QTL mapping approaches was as follows. In the bivariate QTL
mapping approach, the power of detecting a QTL affecting trait 1 (B1) or
the power of detecting a QTL affecting trait 2 (B2) was computed as the
proportion out of the total number of replicates in which LRTB12 was larger
than the threshold and where LRTB1 for trait 1 or LRTB2 for trait 2 was larger
than the threshold. The overall power of detecting a QTL (B12) in the bivariate
analyses was computed as the proportion out of the total number of replicates
in which LRTB12 was larger than the threshold. In the univariate QTL mapping
approach, the power of detecting a QTL for trait 1 (U1) or the power of
detecting a QTL for trait 2 (U2) was computed as the proportion out of the
total number of replicates in which the test statistics LRTU1 or LRTU2 was
larger than the threshold. The overall power to detect a QTL in the univariate
analyses (U12) was computed as the proportion out of the total number of
replicates in which either the test statistics LRTU1 or LRTU2 was larger than the
threshold.

2.5.1. Distribution of the test statistics

Under regularity conditions, the asymptotic distribution of the likelihood
ratio test statistic follows a χ2 distribution, with degrees of freedom equal to
the difference in the number of independent parameters between the models
tested [20]. However, in the context of gene mapping, the null hypothesis
“there is no QTL affecting the trait(s)” places parameters on the boundary of
the parameter space, and therefore the asymptotic distribution of the likelihood
ratio test statistic has a non-standard form. Here, the empirical distribution
of the test statistics was found by simulation of data under the specific null
hypothesis used in the test. This approach also accounts for the large number
of correlated tests along the chromosome [15].

2.5.2. Significance thresholds and models under the null hypothesis

In both the bivariate and the univariate testing procedure the thresholds under
the null hypothesis “there is no QTL affecting the trait(s)” were obtained by
simulating individuals using the same design and marker information as above,
but with phenotypes depending on polygenic and residual effects only. In the
bivariate testing procedure the thresholds under the null hypothesis “there is a
QTL affecting trait 1” or the null hypothesis “there is a QTL affecting trait 2”
were obtained with phenotypes depending on polygenic and residual effects in
addition to a biallelic QTL affecting trait 1 or trait 2, respectively.
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The test statistic was calculated for each replicate, and the 5% significance
threshold was obtained from its distribution over 500 replicates. For the
univariate tests (U1 and U2), to account for the fact that two traits were being
analysed we used the 2.5% significance threshold value for each trait, which is
equivalent to 5% over both traits (following a Bonferroni adjustment). For the
bivariate test (B1, B2 and B12), the significance threshold already accounts for
the fact that two traits are being analysed [15].

3. RESULTS

3.1. Power to detect QTL

The power of the univariate and bivariate tests to detect QTL in different
simulated designs is shown in Table II. The results are based on the significance
thresholds obtained by simulating data under the null hypothesis as explained
above. The overall power of detecting a QTL using the bivariate joint test (B12)
was generally higher than that obtained in the univariate tests (U12). The power
of using the bivariate test (B2), for the case of a QTL affecting trait 2 that had
a small effect on the phenotype, was generally 1.5–3.2 times higher than that
of the univariate tests (U2). The highest increase in power, using the bivariate
test (B1) compared to the univariate test (U1), was found when the QTL was
biallelic and the QTL correlation and the polygenic correlation had opposite
signs.

3.2. Estimation of parameters

Position estimates agreed well with the simulated values in both univariate
and bivariate analyses (Tab. III). In the univariate analyses, estimates of the
QTL position (p1 and p2) had a lower standard deviation for the trait when
the QTL had a large effect. The bivariate analyses generated a single position
estimate (p), which had a smaller standard deviation than that obtained from
the univariate analyses, especially when the QTL correlation and the polygenic
correlation had opposite signs. The type of QTL model (multiallelic or biallelic)
did not affect the precision of the position estimates.

Estimates of the variance ratios (λ1 and λ2) involving the proportion of
genetic variance explained by the QTL were close to the simulated values for
both traits (Tab. IV). The estimates of heritabilities (h2

1 and h2
2) were slightly

higher than the simulated heritabilities in both the univariate and bivariate
analysis. There was no apparent difference in the standard deviation of the
estimates between the two analyses.

Table V shows estimates of the correlation between the QTL effects on the
two traits (rK), correlation between polygenic effects on the two traits (rG) and
the correlation between residual effects on the two traits (rE). When the QTL
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was multiallelic, estimates of the QTL correlation ranged from 0.32 to 0.52.
There was a tendency of estimates being smaller than the simulated value of
0.5 when the QTL correlation had the same sign as the polygenic correlation.
When the QTL was biallelic, estimates of the QTL correlation ranged from
0.76 to 0.87 and were generally biased downwards, compared to the simulated
correlation (1.0), as expected. The precision of the QTL correlation was higher
when the QTL was biallelic. Estimates of the polygenic correlation agreed well
with the simulated value and were in general estimated with a higher precision
than the QTL and residual correlations.

Table V also shows the estimates of correlation between polygenic effects
on the two traits (rG0) and the correlation between residual effects on the two
traits (rE0) when data was analyzed using the fully reduced model. Compared
to estimates from the full model, the polygenic correlations differed when the
QTL correlation was positive and the polygenic correlation was negative. As
expected, there was no difference in the estimates of the residual correlations.

4. DISCUSSION

In this study we implemented a multivariate variance component-based
QTL mapping model via REML, and compared bivariate and univariate QTL
mapping analyses with respect to the statistical power to detect a QTL and the
precision of parameter estimates. The simulation study showed that when a
QTL has a pleiotropic effect on two traits, a bivariate QTL mapping analysis
leads generally to a gain in power, and to higher precision of estimates of QTL
positions. Additionally, the bivariate REML analysis can successfully partition
the two components contributing to the genetic correlation between traits.

The gain in statistical power using a bivariate analysis was observed across
different scenarios of genetic and phenotypic relationships between traits.
However, it is important to detect the kind of genetic structures where a joint
analysis can be beneficial. This is so, because joint analyses of several traits
result typically in a larger number of parameters to be estimated. This can have
the effect of reducing power and increasing sampling variances of estimates
of parameters of interest. The simulation study indicated that it is particularly
beneficial to do a joint analysis involving two traits, when the QTL affects a
trait with low heritability. This is important because marker assisted selection is
especially relevant for such traits. Furthermore, the joint analysis was beneficial
when the QTL is biallelic, has a small effect on the phenotypes and when the
QTL correlation and the polygenic correlation have opposite signs. A previous
study reported that the gain in power was the highest when the QTL correlation
and the residual correlation had opposite signs [14]. On the contrary to the
work reported here, this result was obtained using a model without a polygenic
component to the genetic correlation.
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The improved precision of position estimates with a bivariate model was
also observed using a similar variance component model applied on human
pedigrees [2]. Similar results were obtained in multivariate regression models
applied to a granddaughter design [15], an F2 design [14] and a backcross
design [19]. Thus, improved precision of the position estimates seems to be a
feature of multivariate QTL mapping across methods and different designs.

The higher precision of position estimates observed when the QTL explained
a larger proportion of the total genetic variance (15% versus 5%) was expected.
In this situation, more information is available for inferring the position, and is
a result found in other simulation studies [8].

The bivariate REML analysis can successfully partition the genetic correl-
ation into a component due to the action of many pleiotropic genes of small
effect, and another due to the effect of a pleiotropic QTL. In cases where
the polygenic and QTL correlations have opposite signs the partioned genetic
correlation can provide relevant information, especially, for selection decisions.

The bivariate test for detecting a QTL does not distinguish between a
pleiotropic QTL having an effect on both traits, and two closely linked QTL
each having an effect on only one trait. Distinguishing between these two
situations can be important from several perspectives. From an animal breeding
perspective it is important to know whether the genetic correlation due to a QTL
can be broken. This could be possible in the case of two linked QTL, but not
if the correlation is due to a single pleiotropic QTL. For finemapping [17] and
positional cloning of gene(s), it is obviously important to know if one or two
genes are responsible for the genetic correlation.

In a bivariate analysis, two closely linked QTL in linkage disequilibrium
each with an effect on only one trait may behave like one pleiotropic QTL.
This is because the correlation between the QTL effects is proportional to
the degree of linkage disequilibrium [5]. This complicates the interpretation
of pleiotropy versus co-incident linkage in a bivariate analysis. The test for
pleiotropy versus close linkage may be most relevant in combination with
finemapping methods [17]. Research in this area is in progress and will be
reported elsewhere.

The results presented in this study are based on a situation with two traits and
a single QTL affecting both traits. However, there are frequently more than two
traits recorded and each trait may be affected by several QTL. Therefore we
have implemented the AI-REML algorithm for a general multivariate variance
component-based QTL mapping model. Different genetic models (multiple
QTL, close linkage, pleiotropic) can easily be specified for each trait, but further
research is needed to develop efficient strategies for the testing procedures
involved with more complex multivariate models, especially in cases where the
null hypothesis no longer is “there is no QTL affecting the traits” [15].
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