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A COMPARISON OF BLOCK PIVOTING AND INTERIOR-POINT
ALGORITHMS FOR LINEAR LEAST SQUARES PROBLEMS

WITH NONNEGATIVE VARIABLES

LUÍS F. PORTUGAL, JOAQUIM J. JÚDICE, AND LUlS N. VICENTE

Abstract. In this paper we discuss the use of block principal pivoting and
predictor-corrector methods for the solution of large-scale linear least squares
problems with nonnegative variables (NVLSQ). We also describe two implemen-
tations of these algorithms that are based on the normal equations and corrected
seminormal equations (CSNE) approaches. We show that the method of normal
equations should be employed in the implementation of the predictor-corrector
algorithm. This type of approach should also be used in the implementation of
the block principal pivoting method, but a switch to the CSNE method may be
useful in the last iterations of the algorithm. Computational experience is also
included in this paper and shows that both the predictor-corrector and the block
principal pivoting algorithms are quite efficient to deal with large-scale NVLSQ
problems.

1. Introduction

The linear least squares problem with nonnegative variables (NVLSQ) can
be stated as

(1) min^ll^x-6II2   subject to x > 0,

where A eRmx" and b eRm are given, m > n , x e R" , and || • H2 represents
the l2 norm. This problem has been studied over the years and has found many
applications in different areas of science and engineering [13]. By the definition
of the l2 norm, it is possible to restate the NVLSQ problem as the following
quadratic program:

(2) min -(ATb)Tx + \xTATAx   subject to x > 0.

Since A7A is a positive semidefinite matrix, this program is convex, whence
the Karush-Kuhn-Tucker optimal conditions constitute the following monotone
linear complementary problem (LCP):

(3) y = ATAx-ATb,    y > 0, x > 0, xTy = 0.
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If the matrix A has full column rank (rank(A) — n), the matrix ATA is
positive definite and the strictly convex program (2) and the strictly monotone
LCP (3) have unique solutions for each vector b. In this paper we only deal
with this case.

Owing to its equivalence to the quadratic problem (2), the unique optimal
solution of the NVLSQ problem can be found by a large number of algorithms
that have been designed for this type of programs. In particular, active-set meth-
ods and projected gradient algorithms can be used for this purpose. Recently,
Bierlair, Toint, and Tuyttens [1] have studied the performance of projected gra-
dient algorithms for the solution of large-scale NVLSQ problems. In another
paper [2], Björck proposes an efficient implementation of the active-set method
discussed in [ 13], which is capable of dealing with large-scale NVLSQ problems.

In [11] the performance of block principal pivoting methods for the solution
of large-scale strictly convex quadratic programs with nonnegative variables has
been investigated. This study has shown that this kind of algorithm is in general
quite efficient for this type of programs. On the other hand, it has been shown
in [17] that interior-point methods also seem to be a good alternative technique
for the solution of these quadratic programs. In this paper we discuss the use
of these last two procedures for the solution of large-scale NVLSQ problems.
We describe two types of implementations for these algorithms that are based
on the method of normal equations and on the corrected seminormal equations
(CSNE) approach. We also undertake a computational study that shows that
the predictor-corrector and the block pivoting algorithms are quite suitable for
the solution of this type of problems and are much more efficient than the
active-set method. The predictor-corrector algorithm should be implemented by
using the normal equations method. On the other hand, the use of the normal
equations is also advantageous in the implementation of the block principal
pivoting algorithms. However, a possible switch to a CSNE approach may be
profitable, particularly for ill-conditioned problems.

The organization of this paper is as follows. Sections 2 and 3 contain brief
descriptions of the active-set, block pivoting, and interior-point methods. The
implementations of these algorithms are discussed in §4. A technique for gen-
erating NVLSQ problems with a known optimal solution is introduced in §5.
Computational experience with the algorithms is described in §6, and some
concluding remarks are made in the last section of the paper.

2. Principal pivoting algorithms
Consider again the LCP (3). A point (x, y) G R2n is said to be a comple-

mentary solution if it satisfies

(4) y = ATAx-ATb,
(5) x,y, = 0,        i=l,...,n.

Next, we describe how a complementary solution can be obtained. Let F and
G be two subsets of {1, ... , n} suchthat FliG = {1, ... , n} and FC\G = 0 .
Furthermore, consider the following column partition of the matrix A :

A = [AF, AG],

where AF G Rwxlfl, AG g Kmx|G|, and |F|, |G| are the number of columns
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(6)
ATFb
Alb

of Af and AG, respectively. Based on this partition, we can rewrite (4) as
yF~\      \ATFAF   A^Aq} \xf
yo\ " [agaf   agag\ [xg

where xF , yF G R|f|, xG, yG e K|G|, x = (xF, xG), and y = (yF, yG).
A complementary basic solution is obtained by setting xG = 0 and yF = 0

in the conditions (6). The null variables x¡, i G G, and y,, i G F, are called
nonbasic, while x¡, i G F , and y,, i e G, are said to be basic variables. We
may compute the values of the basic variables xF and yG by the following
procedure:

(1) Solve the unconstrained linear least squares (ULSQ) problem

(7) min  \\\AFxF-b\\\.
xfGRlfl

(2) Set
(8) yG = ATG(AFxF-b).

Hence the complementary basic solution is given by x = (xF, 0), y = (0, yG).
This solution is called nondegenerate if the values of all the basic variables are
nonzero. Otherwise it is said to be degenerate.

A complementary basic solution is said to be feasible if xF > 0 and yG > 0.
In this case it is the optimal solution of the NVLSQ. Hence a complementary
basic solution is infeasible if there exists at least one i G F such that x¡ < 0
or one / G G with y, < 0. If a solution is infeasible, the set of infeasibilities
H = Hx U H2 is nonempty, where
(9) Hx = {ieF: x¡ < 0}    and    H2 = {i g G: y, < 0}.

Principal pivoting algorithms are procedures that use in each iteration infea-
sible complementary solutions until finding a feasible complementary solution.
In each iteration the sets F and G are modified according to the following
rules:

(10) F = F-HxuH2,        G = G-H2öHx,
where Hx ç Hx and H2 QH2 ._A. principal pivoting algorithm is said to be
single if the cardinality of Hx U H2 is one. Otherwise the algorithm is called a
block principal pivoting algorithm.

The active-set method for the solution of the NVLSQ problem has been
introduced in [2]. The algorithm can be seen as a single principal pivoting
algorithm, and may be stated in the following form:
Active-set algorithm.
StepO. Set F = 0, G = {l,...,n}, x = 0,and y = -ATb.
Step 1. Compute

r = argmin{y, : / G G}.
If yr < 0, set Hx = 0, H2 = {r}, and update F and G by (10).
Otherwise stop: x* = x is the optimal solution of the NVLSQ problem.

Step 2. Compute xF by solving (7). If xF > 0, set x = (xF, 0) and go to
step 3. Otherwise let r be such that

6 = _~*r    = min{_~*'   : i G F and 3c,- < o}
Xr     Xr ( x¡     x¡ )
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and set x = ((1 - 6)xF + 6xF ,0),HX = {r} , and H2 = 0 . Update F
and G by (10) and repeat step 2.

Step 3. Compute yG by (8) and return to step 1.

The active-set method converges to the optimal solution of the NVLSQ prob-
lem provided its matrix has full column rank [10, 13]. Murty's method [16] is
another single principal pivoting algorithm that can be applied for the solution
of the NVLSQ problem in this case. Given a complementary basic solution, the
last infeasibility

r - max{z G Hx U H2}
is considered and the sets F and G are updated by (10), where

(0       ifreG, (0       if r£F,
1 ~\{r}     ifrGF, 2      IW     ifrGG.

The algorithm is also finite but is usually less efficient than the active-set method
[10]. Murty's method can start with any sets F and G, and this can be exploited
in the design of an efficient block algorithm for the solution of the NVLSQ
problem. This property is not shared by the active-set method, since it requires
a complementary basic solution satisfying xF > 0 to start with.

As stated before, in single principal pivoting algorithms the sets of basic and
nonbasic variables only change in one element in each iteration. Hence these
algorithms are not efficient for large-scale NVLSQ problems. Block principal
pivoting algorithms allow the sets of basic and nonbasic variables to change in
more than one element and seem much more suited for this type of problem.
The first block principal pivoting algorithm for the strictly monotone LCP is due
to Kostreva [12]. However, the algorithm may cycle and has been abandoned.
Júdice and Pires [9] have studied this algorithm in practice and have concluded
that it is quite suitable for large-scale strictly monotone LCPs. Cycling may
occur, but it is extremely rare. In a more recent paper [11] they have proposed
a simple way of transforming Kostreva's algorithm into a finite procedure by
incorporating Murty's method. This latter algorithm should be used as seldom
as possible if the hybrid algorithm is to be efficient for large-scale problems.
The idea is to control the number of infeasibilities \HX \J H2\, where Hx and
H2 are given by (9), as described below.

Let x be a complementary basic solution and let ninf = \HX U H2\ be the
number of infeasibilities associated with this solution. Suppose we apply a step
of Kostreva's algorithm (H¡ = H¡, i = 1, 2). If \HX U H2\ has been reduced,
then we update ninf and repeat the same procedure. Otherwise we allow p - 1
steps of Kostreva's method for \Hxl) H2\ to be smaller than ninf. Here, p is
a small positive integer (p < 10 usually works well in practice). If after p - 1
steps, |Hx U H21 is still larger than ninf, then we use Murty's method until
we find a complementary solution for which \HX u H2\ < ninf. This is always
possible, since Murty's method is a finite procedure for finding a complementary
solution with a number of infeasibilities smaller than a required value. After
such a solution is found, the whole procedure is repeated. The steps of this
hybrid scheme are presented below.
Block principal pivoting algorithm.
StepO. Let F = 0,  G = {1, ... , n}, x = 0, y = -ATb, p = p < 10,

ninf - n + 1, and a be a permutation of the set {1, ... , n} .
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Step 1. If xF > 0 and yG > 0, stop:   x* = (xF, 0) is the solution of the
NVLSQ problem. Otherwise define Hx and H2 as in (9).
(1) If \HX U H2\ < ninf, set ninf = \HX U H2\, p = p, Hx = Hx, and

H2 = H2 .
(2) If \HX U H2\ > ninf and /> > 1, set p = p - 1, Hx = Hx, and

//2 — "2 •
(3) If \HX U tf2| > ninf and p = 0, set

//[ = {/•} and H2 = 0, if r e Hx,
Hx = 0 and F2 = {r}, if r e H2,

where r is the last element of the set Hx u #2 according to the
order defined by a.

Update F and (J by (10).
Step 2. Compute xF and yG by (7) and (8) and return to step 1.

Although this algorithm works well in practice for strictly monotone LCPs
[11], no complexity result has been established for its performance. Other
combinations of the algorithms of Murty and Kostreva have been proposed
by Júdice and Pires [11]. However, this scheme has proved, in general, to be
the most efficient of this type of block principal pivoting methods. We also note
that the block principal pivoting algorithm cannot deal with rank-deficient linear
least squares problems with nonnegative variables. In contrast, these problems
can be solved by the active-set method described in this section.

3. Interior-point methods
In this section we discuss Newton approaches to solve the monotone LCP.

The first algorithm is applied to the following system of nonlinear equations:

Fl(x,y) = XYe = 0,
where Fx : Sx -» 1" , Sx = {(x, y) G K2" : (x, y) > 0 and ATAx-y-ATb = 0} ,
e€l" is a vector of ones, and X, Y g M"x" are the diagonal matrices whose
diagonal elements are the components of the vectors x and y, respectively.

The procedure computes a sequence of points {xk} by
(11) (xk+x,yk+x) = (xk,yk) + 6k(uk,vk),

where 6k is a positive stepsize and (uk , vk) G R2" . The sequence of points
generated by the algorithm must belong to the set Sx . To do this, we impose
the following conditions:

(i)(x°,y0)GS,,     (ii) vk=ATAuk,     (iii)(xk+x,yk+x)eS2,

where

(12) S2 = {(x,y)€R2":(x,y)>0}.

The direction (uk , vk) is computed by solving the linear system
Yk      Xk

ATA    -L
uk
vk

-XkYke + pke
0

where /„ represents the identity matrix of order n and pk is a centralization
parameter [14].
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The value of pk should be nonnegative to assure the variables to be positive.
In addition, the value of pk has an upper bound related to the decrease of
g(x, y) — xTy in each iteration k . In fact, we have

Akg = g(xk+x,yk+x)-g(xk,yk)

= (xk + 6kuk)T(yk + 6kvk) - (xk)Tyk

= ((uk)Tvk)62k + ((xk)Tvk + (yk)Tuk)6k

= ((uk)TATAuk)d2 + (-(xk)Tyk + npk)dk.

Since A1A is a symmetric positive definite matrix, the condition -(xk)Tyk +
npk < 0 has to hold to assure that Akg < 0. Thus,

0<pk<
k\T„k(xk)Jy

Let 6^ be the largest value of 6k such that (iii) holds. This parameter
must also verify

0 < 6k < min(ö^iax, dk),

where
¿   _ (xk)Tyk - npk

k "      (uk)Tvk      ■

By choosing 8k in this way, a monotone decrease for g(x, y) is always guar-
anteed in each iteration.

The second approach includes the application of Newton's method to the
system of nonlinear equations

F2(x,y) = XYe
ATAXe -Ye- ATb

= 0,

where (x, y) belongs to the set 5*2 defined by (12). Hence in this approach we
do not force the iterates xk and yk to satisfy the linear constraints ATAx -
y - ATb = 0. In this case, the Newton direction (uk, vk) is obtained by the
solution of the system of linear equations

(13)
Yk     Xk

ATA     -In
-XkYke + pke

-ATAXke + Yke + ATb

By following arguments similar to those presented before, we reach the same
lower and upper bounds for the value of pk . However, in this case the value
of the parameter 8k has to verify

0<ö/t<öj^ax if(uk)Tvk<Q,

0<6k< mintöf«, Ôk)    if (uk)Tvk > 0,

where 6k is defined as before.
Our computational experience has shown that the condition öj^ax < 6k/2 is

usually fulfilled. This seems a good reason to choose 6k < Ö™3". Hence, we
follow the recommendation stated in [4] and set 6k = 0.99995 x 6^ in each
iteration k . As in [4], the parameter pk is given by

(15)
k\T„k

Pk =
{xk)'y
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The solution of the linear system (13) is obtained in two major steps. First,
we compute uk by solving the linear system

{ATA + (Xk)-xYk)uk = (Xk)~xpke - ATAXke + ATb,

where (ATA + (Xk)~xYk) is a symmetric positive definite matrix. This is in
turn equivalent to solving the ULSQ problem

(Xk)-xl2(Yk)x¡2 uk- b - AXke
(Xk)-xl2(Yk)~xl2pke(16) min -

where {Xk)xl2 , (Yk)xl2 G Rnxn are diagonal matrices whose diagonal elements
are the square roots of the components of the vectors xk and yk . In a second
step we compute vk by
(17) vk = -Yke + (Xk)~xpke - (Xk)~xYkuk .

The steps of the resulting Newton's algorithm are stated below.

Newton's algorithm.
StepO. Let TO LI and TOL2 be two tolerances for zero, fc = 0,and (xo,yo)

>0.
Step 1. Compute uk and vk by (16) and (17), respectively.
Step 2. Set 0™ax = min{0{, 02} , where

H min < -- i= 1 n and uk < 0

01 = ™ -ä:i = 1 n and vk < 0

Set dk = 0.99995 x 0£iax and update (x*+1, yk+x) by (11).
Step 3. If (xk+x)Tyk+x < TOL1 and \\ATAxk+x -ATb-yk+x\\2 < TOL2 stop:

x* = xk+x is an approximate solution of the problem NVLSQ. Other-
wise set k := k + 1 and return to step 1.

Some authors ([4] and [15]) have suggested the use of a predictor-corrector
direction to improve Newton's algorithm. In a first step the direction (uk , vk)
is predicted by

(18)
Yk

ATA
Xk -XkYke

-ATAXke + Yke + ATb

To correct the direction, we compute zk and wk by
(zk, wk) = (uk, vk) + (ük, vk),

where (ïîk ,vk) e R2n is found by
yk       Xk

ATA   -In
-UkVke + pke

0
with Uk = diag(uk) and Vk = diagiu^). The direction (zk, wk) may also be
computed by solving the linear system

(19)
yk       xk

ATA     -In W
-XkYke + pke-UkVke
-ATAXke + Yke + ATb
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Using similar arguments as above, one can see that a decrease in g(x, y) is
guaranteed if the value of the parameter pk is restricted by

(xk)Tyk + (uk)Tvk
u < pk <-

and the value of 6k satisfies (14), where

(xk)Tyk + (uk)Tvk - npk
ek (zk)Twk

A good practical criterion for the choice of pk has been introduced by Lustig,
Marsten, and Shanno [14] and simply consists of setting

nrxy „     (** + 8kUk)T(yk + ekvk)
(2U) ßk = -^2-'

where 6k is computed as in Newton's method. This value of pk is used in (19)
to obtain the predictor-corrector direction (zk , wk). It is important to notice
that this choice of pk does not guarantee a decrease in g(x, y), but works
well in practice. After such a direction is found, the new point (xk+x, yk+x)
is obtained so that all variables remain positive. The steps of the resulting
procedure are stated below.

Predictor-corrector algorithm.
StepO. Let TOL1 and TOL2 be two tolerances for zero, fc = 0,and (xo.yo)

>0.
Step 1. Compute uk and vk by solving the linear system (18).
Step 2. Set 0¿"ax = min{0¿ , 02} , where

dk = min < —^: i = 1, ... , n and uk < 0 > ,

6k = min< —j: i = 1, ... , n and vk < 0 > .

Set 6k = 0.99995 x 0™ax .
Step 3. Let pk be given by (20). Compute the direction (zk , wk) by solving

(19).
Step 4. Set 0j¡nax = min{0¿ , 0|} , where

Í   xk )
6k - min < —'■£: i = 1, ... , n and zk < 0 > ,

Q\ = min < —j : i = 1, ... , n and wk < 0 > .

Set dk = 0.99995 x 0™ax and (x^1, yk+x) = (xk , yk) + dk(zk , wk).
Step 5. If (xk+x)Tyk+x < TOL1 and \\ATAxk+x -ATb-yk+x\\2 < TOL2 stop:

x* = xk+x is an approximate solution of the problem NVLSQ. Other-
wise set k := k + 1 and return to step 1.
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As before, it is important to note that the solution of the linear systems (18)
and (19) can be stated in terms of unconstrained linear least squares problems.
In fact, (18) is equivalent to

(21)

and

.    1min -
w*eR" ¿ {Xk)-l'2(Yk)l>2

'b-AXke]
0

(22) vk = -Yke-(Xk)~xYkuk.

In a similar way, the linear system ( 19) reduces to the following ULSQ problem:

(23)    min x
z*€R" ¿

and

(24)

rxkylßtykyß
Zk- b - AXke

(Xk)-xl2(Yk)~xl2(pk - UkVk)e

wk = -Yke + (Xk)~x(-Ykzk + pke - UkVke).

It follows from the description of the predictor-corrector algorithm that each
iteration of the procedure requires the solution of two ULSQ problems with the
same matrix. Hence the computational effort of this algorithm per iteration is
larger than that required by the simple version of Newton's method. However,
as stated in [14], the number of iterations is usually smaller for the predictor-
corrector algorithm, and this compensates for the larger computational effort
of each predictor-corrector iteration. Furthermore, the solution obtained by
the predictor-corrector strategy is usually more accurate. This explains why we
have chosen the predictor-corrector algorithm in our experimentations. Finally,
we note that the predictor-corrector algorithm is also capable of dealing with
rank-deficient linear least squares problems with nonnegative variables.

4. Implementation issues
In this section we discuss the implementations of the three algorithms in-

troduced in the previous sections for the solution of large-scale linear least
squares problems with nonnegative variables (NVLSQ). The implementation
of the active-set method has been discussed in [2]. In the first step of this pro-
cedure, a so-called analyze phase is performed in which a permutation of the
columns of the matrix A is found by applying the minimum-degree strategy to
the matrix ATA [8]. Hence, the algorithm seeks a solution of the NVLSQ prob-
lem whose matrix A contains the columns of the original matrix in the order
achieved by the minimum-degree procedure. This phase is important, since we
are able to control the amount of fill-in that occurs during the so-called factor
phase. After the analyze phase, the permuted matrix A is stored by rows in a
collection of vectors scheme. Each iteration of the active-set method requires
the computation of the vectors xF and yG that are given by the formulas (7)
and (8). Y ne factor and solve phases are to find these vectors. In the factor phase,
the QR factorization of AF is computed. Since in the active-set algorithm the
set F is modified in exactly one element in each iteration, it is advisable to
update the QR factorization instead of computing it from scratch. As stated
in [2], there are efficient procedures to perform this task when an index is taken
or added to the set F . In the solve phase the corrected seminormal equations
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(CSNE) method [3] is applied to find the vector xF , that is, xF is computed
by
(25) RTRxF = ATFb,

where AF = Q[R]. As stated in [3], a step of an iterative refinement procedure
is included in this method. We also note that the orthogonal matrix Q does
not have to be stored, and this leads to important storage savings. The solve
phase terminates by computing the vector yG according to the formula (8). It
is important to notice that yG only requires the data structure of the matrix
A , the vector b, and the vector xF that has been previously computed in this
phase.

The formulas (7) and (8) are also required to get the information that is
necessary in each iteration of the block principal pivoting algorithm. However,
in this case modifications of more than one element are allowed in the set
F. So it may be better in many cases to compute the QR factorization from
scratch according to the scheme described in [7], instead of updating it from
the previous iteration. Extensive computational experience reported in [18] has
led to a heuristic rule for deciding whether an updating or a computation of the
QR factorization should be made. In this rule we compute the quantity

\HxUHi\_
\F-HXUH2\'

where Hx and H2 are the sets mentioned in §2. If X > 0.2, then it is cheaper
to compute the QR factorization from scratch. Otherwise an update of the
factorization is advisable. This update consists of performing \HX UH2\ mod-
ifications of one element. Apart from this difference, the implementation of
the block pivoting algorithm is similar to the active-set method. Hence, the
implementation contains three phases, namely analyze, factor, and solve with
purposes similar to those presented before.

It is also possible to design another implementation of the block pivoting
algorithm that is based on the method of normal equations. As before, an
analyze phase is first applied, where a permutation of the columns of A is
found by using the minimum-degree procedure for the matrix A. Then the
permuted matrix A is stored by rows in a collection of vectors scheme. In
the factor phase the Cholesky decomposition of ATFAF is computed, that is, an
upper triangular matrix R is found such that A FAF - RTR. Then this matrix
R is used to find the vector xF according to the formula (25). The formula (8)
is used to compute the vector yG in the same way as described before. These
two calculations constitute the solve phase.

It is nowadays widely accepted that the method of normal equations is
cheaper than the CSNE method, but the latter procedure is able to find solutions
with better accuracy. If we look cautiously at the block pivoting method, we re-
alize that precision is not too important in all the iterations but the last. In fact,
it is only necessary to known whether x,, i e F, and y¡, j G G, are negative
or not in each iteration of the algorithm. So, it seems that the implementation
based on the normal equations is more appropriate for the block algorithm.
A switch to an implementation based on the CSNE method is easy to perform
and may be interesting in the last iterations, particularly for ill-conditioned least
squares problems. In the last section of this paper we present computational
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A
(Xk)~x'2(Yk)x'2

experience with both the implementations of the block algorithm which will
support these claims.

A last implementation issue for the block method is concerned with the choice
of the permutation set a that has to be defined a priori. The choice of this set
is not important for the modifications of more than one element, but has an
important effect on the number of iterations when many modifications of one
element take place in the set F. Extensive computational experience has shown
that this type of modifications occurs rarely in practice. Hence the permuta-
tion given by the minimum-degree algorithm is sufficient for our purposes. We
suggest in [18] other heuristic rules that may be worthwhile in case too many
one-element modifications of the set F take place.

To conclude this section, we briefly describe the implementation of the
predictor-corrector algorithm. The information that is required in each iter-
ation of this algorithm is found in the formulas (21)—(24). The main computa-
tional effort of this algorithm consists in the solution of the damped linear least
squares problem of the form

min \\\Bkz - ell?,
z6R"2" "2

where

(26) Bk =

and Xk , Yk are diagonal matrices with positive diagonal elements. Since
B[Bk = ATA + (Xk)-xYk,

the matrices A7A and Bj_Bk only differ in the diagonal elements. Hence, the
fill-in that occurs in the QR factorization of Bk is the same that would occur if
the QR factorization of A were computed. This suggests to apply an analyze
phase to the matrix A and find a permutation of the columns of this matrix. As
before, this phase terminates by storing the permuted matrix A in a collection
of vectors scheme.

Each iteration of the predictor-corrector algorithm contains a factor phase in
which the QR factorization of the matrix Bk (26) or the Cholesky factorization
of the matrix B7Bk is computed. These factorizations are used in the solve
phase to compute the vectors uk and zk given by (18) and (19) by using the
CSNE method or the method of normal equations, respectively. The vectors vk
and wk given by (22) and (24) are quite simple to compute after the vectors
uk and zk have been calculated.

We have briefly described two possible implementations of the predictor-
corrector algorithm. By looking carefully at the factor phases of these imple-
mentations, we immediately come to the conclusion that the gap between the
computational efforts of the two implementations is much bigger in this case
than in the block algorithm. In fact, the CSNE approach requires the com-
putation of the QR factorization of the damped matrix Bk that has m + n
rows and n columns. Recall that in the block method the matrix AF has |F|
columns and m rows, whence the number of rows and columns of the matrix
may be much smaller in this latter case. So, it seems that the use of normal
equations in the predictor-corrector is even more advisable than in the block
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pivoting algorithm. Computational experience presented in the last section will
confirm exactly this statement and will reject the use of the CSNE approach for
the predictor-corrector algorithm.

To finish the description of the implementation of the predictor-corrector
algorithm, we discuss the choice of the tolerances TO LI and TOL2. Extensive
computational experience has shown that the feasibility tolerance TOL2 should
not be too small. If Bm is the machine epsilon, then TOL2 ~ n^feü is usually
a good choice. On the other hand, the gap tolerance TOL1 may be chosen
quite small. We have chosen in our experiments TOL1 ~ mem- This choice
of TO LI usually leads to accurate solutions even when the normal equations
approach is used. This will also be confirmed by the computational results
presented in the last section of this paper.

5. Generation of test problems

In this section we propose a technique to generate large-scale linear least
squares test problems with nonnegative variables (NVLSQ) with a known op-
timal solution. Consider the NVLSQ (1) problem and its associated LCP (3).
Furthermore, assume that the vectors x and y are given, and consider the
following index sets:

F = {i:xi>0andyi = 0},
(27) G = {i:xi = 0smdyi: > 0},

£> = {/: x, = 0 and y, = 0}.
The procedure to be described in this section attempts to find a vector b eRm
such that (x, y ) is the unique solution of the LCP, where A is a given sparse
matrix of order m x n .

Let F, G, and D be the sets defined by (27), and consider the following
partition of the matrix A :

A = [AF, AG, AD],

where As g Rmxlsl is the submatrix of A containing all the columns of A
whose indices belong to the set S, and |5| represents the number of elements
of S. We can also write the vectors x and y in the form

x —
xF
0
0

0

0
Hence, the vectors x and y satisfy the following equalities:

ATz = y,
z = AFxF - b.

Therefore, the vector b can be obtained in two steps, by first computing the
vector z satisfying the system ATz = y, and then setting
(28) b = AFxF - z.

Since m > n, the system ATz = y has an infinite number of solutions.
Hence, we are satisfied with the minimum l2 norm solution of this system,
which is the unique optimal solution of the following optimization problem:

min ||z||2   subject to ATz = y.
z€Rm
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This problem is in turn equivalent to the following set of equations:

(29) ATAX = y,
(30) z = AX.

We conclude that the vector b can be found by using the equalities (28),
(29), and (30). It is now obvious that we wish to get a quite accurate vector b.
Therefore, precision is quite important in the solution of the system (29), and
we recommend the CSNE method with iterative refinement [3] to be used in
this context. By using this procedure and the formulas (28) and (30), we obtain
the following algorithm for the computation of the vector b :

Algorithm GENB.
Step 1. Compute the sparse QR decomposition of A and let P be the associ-

ated permutation matrix.
Step 2. Compute X by solving the linear systems

RTX = PTy    and    RX = X.

Step 3. Compute
r = PTy-PTATAPX.

Step 4. Compute ôx as follows:

RTÔX = r    and    RSX = ÔÀ

and ôr by setting ôr = -PTATAPôx.
Step 5. Correct X and r by

X = X + ôx,        r = r + ôr.

Step 6. If ||r||2 is not sufficiently small, go to step 4. Otherwise compute

b = AFxF - APX

and stop.

The importance of this generator lies in the possiblity of generating NVLSQ
test problems with some features that are important in the study of the efficiency
of algorithms. In fact, by simple choices of the values of the variables x, and y,
and the sets F , G, and D associated with the optimal solution of the NVLSQ
problem, we can generate test problems with the following characteristics:

(i) Badly- or well-scaled optimal solutions. This is related to the values of
the quantities

max,- |x/|     and    max,- |y,-|
min, |x,| min, |y,| '

(ii) Small or large optimal active-sets; this depends on the number of ele-
ments of the set G u D.

(iii) Nondegenerate or degenerate optimal solution (that is, strict comple-
mentarity holds or not at the optimal solution); this depends on the set
D to be empty or not, respectively.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



638 L. F. PORTUGAL, J. J. JÚDICE, AND L. N. VICENTE

6. Computational experience

In this section we report on computational experience with the active-
set (AS), block principal pivoting (BLOCK) (p = 3), and predictor-corrector
(PRECOR) algorithms on the solution of some linear least squares problems
with nonnegative variables (NVLSQ). As stated before, we have considered two
implementations for the BLOCK and PRECOR algorithms, differing in the pro-
cedure that is used to solve the required ULSQ problems in each iteration. The
versions 1 of these algorithms ( BLOCK 1, PRECOR 1) employ a CSNE approach
for the solution of the ULSQ problems, while the method of normal equations
is used in their versions 2 (BLOCK2, PRECOR2). The implementations of the
algorithms have been coded in FORTRAN 77 and have been tested on a SUN
SPARC station SLC, whose machine epsilon is e^ — 10-16 .

We have considered two types of test problems in our experiments. In the
first category (problems TP) the elements of the matrix A have been randomly
generated. The vector b has been generated according to the technique de-
scribed in the previous section, where the positive components of the solution
vectors x and y have been set equal to one. The second set of test problems
contains four least squares problems of the Harwell-Boeing collection [6]. In
these test problems, the matrix A and the right-hand side vector b are given,
whence we have only to request the values of the variables x to be nonnegative
in order to get the desired NVLSQ problems. Table 1 contains information
about all these test problems under the following headings:

m-number of rows of A ,
«-number of columns of A ,
«za-number of nonzero elements of A ,
«zr-number of nonzero elements of the matrix R of the QR factor-
ization of A.

Table 1. Test problems
m nza nzr

TP1 3000 250 6065 3602
TP2 3000 500 18970 9154
TP3 3000 750 5852 19340
TP4 3000 1000 38737 39862
TP5 500 250 2355 2366
TP6 1000 250 1999 2182
TP7 2000 250 2705 2268
TP8 3000 250 10638 2492
TP9 4000 250 12547 2305
TP10 1000 250 4006 2165
TP11 1000 250 2119 945

WELL 103 3 1033 320 4732 2261
ILLC1033 1033 320 4732 2261

WELL1850 1850 712 8758 6749
ILLC1850 1850 712 8758 6749
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Table 2. Number of iterations to solve problem TP3 for dif-
ferent values of \F\

\F\
90
195
200
285
375
550

AS
92
203
204
291
381
556

BLOCK PRECOR
26
25
22
25
21
21

We have stressed before the importance of the number of elements |.F| of the
set F associated with the unique optimal solution of the NVLSQ problem. This
value \F\ represents the number of constraints that are inactive at the optimal
solution. In our first experiment we have investigated the role that this value
plays in the behavior of the algorithms. To do this, we have used the technique
described in the previous section to generate six different instances of the test
problem TP3 differing in the value of |.F| associated with the optimal solution
of the NVLSQ problem. In Table 2 we display the number of iterations that the
algorithms AS, BLOCK, and PRECOR take to solve these six test problems. As
expected, the results indicate that the number of iterations of the AS algorithm
is always greater than \F\. The dependence on this value is the main drawback
of the active-set algorithm and discourages its use for the solution of large-scale
NVLSQ problems. In fact, since it is impossible to know a priori the number of
constraints that are inactive at the optimal solution, this number may be quite
large for large-scale NVLSQ problems with thousands of variables. In this case
the active-set algorithm takes too long to find the desired optimal solution. In
contrast, the algorithms BLOCK and PRECOR do not seem to be influenced
by this value \F\ and are much more appropriate for the solution of large-scale
NVLSQ problems.

In our second experiment, we have investigated the importance of the num-
ber of variables on the performance of the algorithms. To do this, we have
generated four test problems, where m is fixed (m = 3000) and n takes four
different values. In all these test problems the vector b has been generated by
the technique described in the previous section, where the sets F, G, and D
associated with the unique optimal solution satisfy

w-î. w-5. \D\ =

The results presented in Table 3 (next page) lead to the following conclusions:
(i) The number of iterations of the active-set method increases with n.

This confirms the results of our first experiment, since |.F| increases
with n.

(ii) The number of iterations of the BLOCK and PRECOR algorithms do
not seem to be influenced by an increase in the value of n .

(iii) The gap between the CPU time of the versions 1 and 2 of the BLOCK
algorithm increases with n. The situation is much more dramatic for
the PRECOR algorithm, where its version 1 is not by any means com-
petitive with the version 2.
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Table 3. Solution of NVLSQ problems with fixed m and dif-
ferent values of n

TP
AS

IT   TIME
BLOCK

IT TIME
BLOCK 1 BLOCK2

PRECOR
IT TIME

PRECOR1 PRECOR2
TP1 250 125 7.8 3.04 1.01 13 27.34 2.31
TP2 500 250 52.44 12.77 2.71 14 140.00 7.69
TP3 750 383 59.44 21.02 3.85 22 330.06 20.65
TP4 1000 500 235.15 51.48 22.10 16 >500 50.09

Table 4. Solution of NVLSQ problems with fixed n and dif-
ferent values of m

TP m
AS

IT   TIME
BLOCK

IT TIME
BLOCK1 BLOCK2

PRECOR
IT TIME

PRECOR1 PRECOR2
TP5 500 131 3.90 1.58 0.78 21 14.77 1.71
TP6 1000 127 4.14 1.65 0.34 23 23.47 1.71
TP7 2000 125 9.47 3.19 0.41 13 32.87 1.61
TP8
TP9

3000
4000

125
125

14.50
17.60

6.03
8.41

0.50
0.52

13
13

51.17
70.72

2.17
2.28

(iv) The version 2 of the PRECOR algorithm and both versions of the
BLOCK algorithm are more efficient than the active-set algorithm, and
the gap increases with n .

The effect of an increase in the number m of equations on the performance
of the algorithms has been studied in our third experiment. We have considered
for a fixed value of « (n = 250) five problems that differ in the value of m .
The results displayed in Table 4 indicate that the number m does not play an
important role on the number of iterations of the three algorithms. As expected,
the CPU time for the versions 2 of the BLOCK and PRECOR algorithms does
not seem to be influenced by an increase in the number m of equations. In
contrast, the versions 1 of the BLOCK and PRECOR algorithms and the active-
set method seem to be affected by an increase in the value of m. Again, the
effect is much stronger in the PRECOR algorithm.

As a final conclusion of these three experiments, we can claim that the
BLOCK and PRECOR algorithms are quite suited for large-scale NVLSQ prob-
lems if they are implemented by using the method of normal equations. The
CSNE approach can still be useful in the BLOCK algorithm, but should not be
employed in the PRECOR algorithm. The active-set method is not competitive
with the BLOCK and PRECOR algorithms when n is sufficiently large. These
conclusions are confirmed by the results displayed in Table 5 of the solution of
the NVLSQ problems taken from the Harwell-Boeing collection.

It is well known that the orthogonal factorizations usually lead to more accu-
rate optimal solutions for the unrestricted linear least squares problem than the
method of normal equations. The condition number of the matrix of the linear
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Table 5. Solution of Harwell-Boeing NVLSQ problems

641

AS
IT   TIME

BLOCK
IT TIME

BLOCK1 BLOCK2

PRECOR
IT TIME

PRECOR1 PRECOR2
WELL 1033 283 18.67 11 10.38 1.76 20 33.96 1.98
ILLC1033 201 9.99 10 6.10 0.80 18 31.07 1.74

WELL 18 50 635 88.31 10 47.43 6.98 25 209.58 7.16
ILLC1850 438 52.65 31.86 3.69 22 185.61 6.45

Table 6. Importance of condition number on the solution of
NVLSQ problems

TP cond(v4f) AS BLOCK1 BLOCK2 PRECOR1 PRECOR2
TP1 1.00E + 00 1.00E-15 2.00E-16 8.00E-14 1.00E-16 3.00E-16
TP10 1.00E + 02 1.00E-14 9.00E-15 1.00E-12 2.00E-15 2.00E-15
TP11 1.00E + 05 8.00E-11 4.00E-12 4.00E-08 5.00E-13 4.00E-13
TP6 1.00E + 06 4.00E-07 2.00E-07 8.00E-05 6.00E-12 6.00E-12

least squares problem is the most important factor for the choice of orthogonal
factorizations. In fact, the method of normal equations may run into some
numerical difficulties for ill-conditioned problems. Based on the observations,
we have decided to investigate the importance of the condition number on the
accuracy of the optimal solution found by the algorithms discussed in this paper.
To do this, we have generated problems with four different LINPACK estimates
[5] for the condition number of the submatrix AF associated with the inactive
constraints of the optimal solution of the NVLSQ problems. Each problem has
been solved by the active-set method and by the two versions of the BLOCK
and PRECOR algorithms. For each problem we have calculated the relative
error of the computed solution x*, which is given by

||x*-x||2
*  2

where x is the exact optimal solution that is fixed in the generator described
in the previous section. As before, [F| = $, \G\ = \ , \D\ = | are the sets of
indices in the generation of the test problems. The results displayed in Table 6
show that the accuracy of the solutions is adversely affected by an increase in the
condition number of AF . As expected, the version 2 of the BLOCK method,
that is based on the method of normal equations, is much more influenced by
the condition number than its version 1 that relies on the CSNE method. This
version provides a more accurate solution than the active-set method. This is
also understandable, since updatings of the QR factorization are performed,
while in general the QR factorization is computed from scratch in the BLOCK
method. However, surprisingly or not, the two versions of the PRECOR al-
gorithm have given the most accurate solutions, and we can see no substantial
difference between them. So these results support our recommendation for the
use of the normal equations in the implementation of the PRECOR algorithm.
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However, a switch from the normal equations to the CSNE approach may
be appropriate in the BLOCK method in the last iterations, particularly for the
solution of ill-conditioned NVLSQ problems.

7. Conclusions
We have investigated the use of block principal pivoting and predictor-

corrector algorithms for the solution of large-scale linear least squares problems
with nonnegative variables (NVLSQ). This study has shown that both algo-
rithms are quite efficient for this type of optimization problems. The predictor-
corrector should be implemented by using the method of normal equations for
the solution of the unrestricted linear least squares problem that are requested
in each iteration of the algorithm. This type of approach should also be used in
the implementation of the block principal pivoting algorithm, but a switch to
the corrected seminormal equations (CSNE) method may be useful in the last
iterations of the procedure.

It is possible to generalize the block principal pivoting and the predictor-
corrector algorithms for the solution of linear least squares problems with bound
constraints. The solution of this type of problems seems to be worthwhile in
the design of sequential techniques for the solution of nonlinear least squares
problems with bound constraints. These are two topics of current research.
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