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Abstract

The ranking of nodes in a network according to their “importance” is a classic problem
that has attracted the interest of different scientific communities in the last decades.
The current COVID-19 pandemic has recently rejuvenated the interest in this problem,
as it is related to the selection of which individuals should be tested in a population of
asymptomatic individuals, or which individuals should be vaccinated first. Motivated by
the COVID-19 spreading dynamics, in this paper we review the most popular methods
for node ranking in undirected unweighted graphs, and compare their performance in a
benchmark realistic network, that takes into account the community-based structure of
society. Also, we generalize a classic benchmark network originally proposed by Newman
for ranking nodes in unweighted graphs, to show how ranks change in the weighted case.

Introduction

Motivation

The recent outbreak of COVID-19 and the various attempts to find effective
non-pharmaceutical interventions to mitigate the impact of this virus have highlighted
both the potential value of network science, and also the pressing need to further
understand complex interaction networks to support the development of efficient
machine learning techniques for graphs. Several diverse scientific communities have
already developed different techniques to better analyze and understand complex
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networks of interactions, and some examples are listed below.

• In the study of electrical grids, a graph with its vertices (system components) and
links (interactions or dependencies among components) can, for example,
represent a power system. Analyses of this grid using graph theory can assess the
vulnerability of grid components during cascade failure (a model called extended
betweenness combines network structure with electrical characteristics of the
power grid [1]) or help to integrate renewable energy sources (for example,
networks with the small-world property might be more resistant to small
variations in load and generation [2]).

• In neuroscience, networks may represent, for example, connections between
neurons and help to understand the architecture and development of the brain. In
this context, detection of communities and bridges, help to “separate functionally
related neural elements” and to study the flow of neural signals and
information [3].

• Another common application of graph theory arises in the context of social
networks where several applications have been developed, including that of
understanding the propagation of epidemics over graphs [4].

There are many other research areas in which the application of graph theory has
played an important role. However, despite such a great interest from different
communities, COVID-19 has illustrated both the importance of graph theory and its
enormous potential, but also its limitations in the eyes of policy makers. For example,
as we write this note, there are more than 7000 results for the combination of
“COVID-19” and “graph theory” on Google Scholar. Yet few of these results, to the best
of our knowledge, have actually influenced policy in response to COVID-19. This is
despite the fact that all networks arising in studies prior to the pandemic share many
important features with networks in which disease propagates. All are “driven by
common organizing principles” and obey fundamental laws [5], and in fact common
mathematical methods can be applied to these. A natural question arises in this context
why is this the case?

Answering the aforementioned question is not trivial. One feature of COVID-19,
that certainly limited the usefulness of graph theory, is the lack of proper debate on the
tradeoff between network utility (saving lives) and the right of individuals to cast-iron
guarantees of privacy. Many (but not all) techniques for analyzing networks suffered in
this context due to the fact that they rely on a centralized knowledge of community
structure, and thus, of personal acquaintances. Another important factor is the fog that
surrounds this area. As we have mentioned, the field of network science has benefited
from the fact that it is applicable in many research areas. Consequently, overlapping
contributions have been made in diverse areas. This is both good and bad; good as
progress has been fast, but also bad as it makes parsing available results difficult, both
from the perspective of understanding how they connect with each other, and from the
perspective of applying these results to real world problems. Our objective in this paper
is to try to partially address this latter issue. Motivated by our interest in the spread of
COVID-19, and building on our recent paper on this topic [6], the specific objective of
the present manuscript is to review the many existing indicators that have been
proposed to rank nodes in graphs, and to compare them in terms of their effectiveness
and efficiency (i.e., in terms of the required computational effort for large-scale graphs)
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in the specific context of COVID-19. While we start with the classic case of undirected
unweighted graphs, we also provide an interesting comparison for the weighted case as
well, for which fewer results can be found in the literature.

Contributions

This paper provides the following main contributions:

1. First, we review the most popular centrality measures that have been used in the
existing literature to rank nodes in networks. While many other review papers
have been published on this topic (see [7–9]), in our review we also include some
ranking methods which are not particularly popular, but have been recently
proposed for epidemiology applications; for instance the Kemeny index [6];

2. Second, we propose a benchmark case study which can be used for comparison
purposes. This includes a description of how to create a realistic network of
contacts, which is taken from a work on epidemiological studies [10], and a
simplified model to mimic the COVID-19 spreading dynamics;

3. We compare many different indicators, taken from different scientific communities
(e.g., epidemiology, operations research, graph theory, control theory,
communications and computer science communities) and rank them on their
ability to mitigate the spreading of the virus in the same network. Moreover,
indicators are also compared in terms of their required computational burden.
This is particularly important to predict their scalability in real-world large-scale
social networks;

4. Finally, we revisit the classic undirected unweighted network that had been
proposed by Newman to support the need for new ranking algorithms (namely,
Random Walk Betweenness [11]), and we extend it to the weighted case. Such an
example allows us to observe what indicators may be more appropriate to use in
the case of weighted networks (in the context of COVID-19, this may be useful if
not all only contacts are registered, but also their duractions).

Organization of the paper

The paper is organized as follows: firstly, we review the state of the art and briefly
describes the indicators that will be later considered in the comparisons. In the
following section we present the benchmark case study of undirected and unweighted
network and the indicators’ comparison. Next, we describe the revisited network to
compare indicators in the weighted framework, and show the corresponding obtained
ranks of the nodes. Finally, we conclude our manuscript.

Review of the state of the art

In this section we review methods of ranking nodes by how ‘central’ they are to the
network. While many surveys of this type exist (see, for example [7–9]), the aim of the
current work is to compare and contrast these and their effectiveness in the context of
disease spread in a contact network. Furthermore, we consider alternative methods for
ranking node centrality by considering how much each node’s removal contributes to a
change in some global measure of connectivity of the network. As such, we also review
some network connectivity measures, and their interpretation in the context of disease
spread.
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Some mathematical preliminaries

A simple undirected graph is denoted G = (V, E), with vertex set V = {1, . . . , N} and
edge set E ⊆ {{i, j} | i, j ∈ V}. We say that i and j are adjacent, and denote this as
i ∼ j, if there is an edge between i and j (i.e. {i, j} ∈ E). If i ∼ j, we say that j is a
neighbour of i. The number of neighbours of i is referred to as the degree of vertex i,
and denoted deg(i). The adjacency matrix of G is the matrix A defined entrywise as:

aij =

{
1, if i ∼ j;
0, otherwise.

A directed graph with vertex set V as above is one in which the edges are ordered
pairs of vertices (i, j); i.e. E ⊆ V × V. The edge (or arc) (i, j) is considered to represent
a connection from i to j, sometimes denoted i→ j, to indicate that the arc’s initial
vertex is i and terminal vertex is j. The adjacency matrix is defined in the same way as
above, though aij = 1 if and only if (i, j) ∈ E , and aij 6= aji in general.

A weighted graph arises when each edge {i, j} is assigned a weight wij . This is taken
into account in the adjacency matrix by simply allowing the (i, j) entry of the matrix to
be the weight wij .

Directed and weighted graphs provide generalizations of the simple undirected graph
which may be very useful in the context of disease spread in a contact network.
Differing weights of edges may account for differing strengths of transmission between
pairs of individuals, due to, for example, different circumstances of the
interaction—length of time, distance, etc. Asymmetric values allow for transmission to
be more likely in one direction than the other between two individuals, for reasons more
pertinent to the individual; for example, different levels of susceptibility, preventative
measures, waning immunity, age differences, etc.

Many centrality measures and connectivity measures are defined for simple
undirected graphs, and while some definitions may allow extensions to the weighted or
directed case, they may lose some aspect of their interpretation; some do not generalize
at all. In what follows, we attempt to indicate for each metric listed whether or not
they do generalize in this way. The ones which extend most naturally, we find, are those
which are derived from random walks, and so we include some mathematical
preliminaries pertaining to these here.

A random walk on a connected graph G (and here we shall consider strongly
connected graphs in the directed case) is a discrete-time stochastic process in which, at
any given time, a “random walker” occupies one vertex of the graph, and in a
subsequent time-step, moves to an adjacent vertex j of his/her current vertex i,
according to some transition probability pij . For a simple random walk on an
undirected graph, the transition probability pij is simply 1

deg(i) ; that is, the random

walker chooses his/her next position uniformly at random from among the neighbours of
his/her current vertex. This process is a Markov chain whose state space is the vertex
set of G, since the state in any time-step depends only on the state of the chain in the
previous time-step. The probability transition matrix P = [pij ] for this Markov chain is
easily determined from the adjacency matrix A by normalizing the rows so that they
sum to 1. In the case of weighted graphs, the transition matrix is determined exactly
the same way from the weighted adjacency matrix; it follows similarly in the case of
directed graphs, although one runs into trouble if there are any vertices with no
outgoing edges and the random walk is no longer well-defined.

For an ergodic Markov chain with states indexed 1, . . . , n and n× n transition
matrix P , the stationary distribution vector of P , denoted w, is a left eigenvector of P
corresponding to the eigenvalue 1, normalized so that the entries of w sum to 1 and thus
represents a probability distribution across the states. In particular, wi represents the
long-term probability that the Markov chain occupies the ith state. Note that in the
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case of a simple random walk on a connected undirected graph, the stationary
distribution vector entries are proportional to the vertex degrees;

wi =
deg(i)∑
k deg(k)

.

For any two states i and j, the mean first passage time from i to j, denoted mij , is the
expected time it takes to reach the jth state, given that the chain starts in the ith state.

Node centrality measures

Degree centrality

The first and simplest proposal for ranking nodes in a network is by considering each
node’s degree (sometimes called valency), or the number of neighbours of each node.
The degree of node i can be easily computed via the ith row sum of the adjacency
matrix:

deg(i) =

N∑
j=1

aij . (1)

The degree is a simple centrality measure for undirected networks, where it identifies
the most connected nodes, in the sense that highly-ranked nodes under this metric will
have the most neighbours. In the context of disease spread in a contact network, these
highly-ranked nodes correspond to individuals with the most contacts; as such, a
high-degree node infected with the disease has more opportunity to spread the disease
to other individuals.

In the case of directed graphs, one has to distinguish between incoming and outgoing
edges, defining the in-degree and out-degree, respectively, as

deg−(i) =
∑
j

aij

deg+(i) =
∑
k

aki.

Given this dual definition, it is more difficult to consider degree as a measure of
centrality in the directed case; some options are to consider the sum or the average of
the two (as in [7]).

For weighted graphs, the degree of a vertex is easily extended by defining deg(i) as
the sum of the weights of incident edges. This is sometimes referred to as the strength
of a vertex (see, for example [12]).

Closeness centrality

The distance between nodes i and j, denoted dist(i, j), is defined as the minimum
number of consecutive edges needed to move from node i to j or, equivalently, as the
length of a shortest path between them. The closeness centrality of a node i is
computed by taking the inverse of the average distance from i to any other node:

CC(i) =
N∑

j dist(i, j)
. (2)

The larger the value of CC(i), the more central node i is in the network, in the sense
that it is, on average, close to many other nodes.

As with degree centrality, the definition of closeness centrality can be extended to
directed networks, though a distinction must be made on whether the distances are
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computed from, or to, the reference node i, respectively. Note also that “distances” are
not symmetric in directed networks. For weighted graphs, one could consider the
edge-weights as a “cost” to traversing the edge, and thus define shortest-distance
between u and v as the minimum weight of any path from u to v (where the weight of a
path is the sum of the weights of edges in the path). With such a definition for distance
in hand, it is reasonable to generalize the closeness centrality for weighted graphs;
see [13] for some limited discussion.

In a disease spread context, ranking vertices in a contact network by their closeness
centrality would, in theory, highlight individuals for whom there is (on average) low
degree of separation between the individual and all other members of the community. If
this individual were infected, then, it takes fewer secondary infections on average to
infect others.

Betweenness centrality

The betweenness centrality of a node i is computed in terms of how many shortest paths
pass through that node [14,15]. In particular, fix a source node s and target node t
(distinct from i), and let σst denote the total number of shortest paths from s to t (or
geodesics, i.e. paths of length dist(s, t)). Letting σst(i) denote the number of those
paths that include node i, we take the ratio of these and then average over all choices
for s, t 6= i:

BC(i) =
1

(N − 1)(N − 2)

N∑
s,t=1
s,t6=i

σst(i)

σst

=

N∑
s=1

(
N∑

t=s+1

σst(i)

σst

)
.

(3)

Accordingly, the betweenness centrality of a node corresponds to the fraction of
shortest paths that pass across that node, and this expression is valid for both directed
and undirected networks. In principle, betweenness centrality is expected to rank highly
the nodes that behave as bridges between clusters in the network [7]. In the context of
disease spread, these highly-ranked nodes would correspond to individuals who bridge
multiple communities.

We encounter similar difficulties with the extension of betweenness centrality to
weighted and directed graphs as with closeness centrality. Some limited work exists; see
for example [16], that focuses on the betweenness centrality of an edge in a weighted
network, rather than betweenness centrality of nodes, and [17], that discusses several
possible extensions to directed graphs and their limitations.

PageRank centrality

The PageRank algorithm computes a ranking for every web page based on the graph of
the World Wide Web. PageRank has applications in search engines and traffic
estimation [18]. The PageRank algorithm is best understood via a random walk on the
network.

PageRank can be thought of as a model of a “random surfer” who starts on a
random webpage and keeps clicking on links randomly, never hitting “back”; that is,
he/she takes a random walk on the World Wide Web, a directed graph in which (i, j) is
an edge if webpage i has a hyperlink to webpage j. At any point, the surfer may get
bored and “teleport” to a random page in the network. The long-term probability that
the random surfer occupies webpage i in this stochastic process is its PageRank—this
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corresponds to the stationary distribution of the corresponding Markov chain. Note that
the transition matrix for this Markov chain is

P = αD−1A+ (1− α) 1
N J,

where D is the diagonal matrix of vertex out-degrees, A is the adjacency matrix, and J
is the N ×N matrix of all ones [19]. The parameter α is referred to as the damping
factor and represents the probability at each step that the “random surfer” will get
bored and request another random page [20]. This is usually, as a matter of convention,
set to 0.85. We note that in the case of the World Wide Web, the underlying directed
graph is not strongly-connected; indeed, there may be many webpages with no outgoing
hyperlinks. This causes immediate problems with the random walk being well-defined,
but is usually fixed by replacing any zero row of the adjacency matrix with a row of all
1s. Thus when the random surfer ends up on a webpage with no outgoing links, he/she
chooses a webpage uniformly at random in the next step. This allows computation of
the PageRank vector in the setting that some nodes have outdegree 0.

The interpretation of this measure of centrality is interesting in the context of disease
spread. In the case that we work with a simple undirected graph, if the damping factor
is set to α = 1 (i.e. a simple random walk with no teleportation), then the PageRank
centrality ranking corresponds exactly to the node degree centrality ranking. However,
including a damping factor may allow for the possibility that a person contracts the
disease not from another individual they have contact with, but rather by chance (e.g.
touching a surface with traces of the virus), or by some mechanism not accounted for in
the contact network model. PageRank centrality ranking of the nodes can essentially be
thought of as strongly related to the node degree ranking in this context, with some
relaxation that may actually reflect the features of the disease more accurately.

If one wishes to consider a weighted or directed graph, PageRank centrality is a
measure which extends naturally along with its interpretability, simply by considering a
random walk on the given weighted or directed graph.

Random walk betweenness centrality

A measure of betweenness centrality based on random walks, called random walk
betweenness (RWB) was introduced in [11]. The idea is to calculate the centrality of a
given node i by the proportion of random walks that pass through node i. This is very
similar to betweenness centrality, but does not consider shortest paths. In particular,
the author of [11] describes it as “the expected net number of times a random walk
passes through vertex i on its way from a source s to a target t, averaged over all s and
t”. This measure was shown to better rank the importance of nodes in graphs with
existing communities, and to be less correlated with vertex degree in most networks [11].
Interestingly, the method for computing this measure is strongly dependent on
considering the graph in question as an electrical network and considering current flow
through a vertex. The author then proves that this is equivalent to the “flow” of a
random walk; however, this means that this particular definition of random walk
betweenness does not extend to directed or weighted graphs, and there is no literature
which attempts this.

Random-walk betweenness centrality is obtained by averaging the current flow

(f
(st)
i ) through vertex i over all possible origins (s) and destinations (t),

RWB(i) =
2

N(N − 1)

N∑
s,t=1
s6=t

f
(st)
i . (4)

See [11] for further information on how this quantity is calculated.

July 21, 2021 7/25



While it is not necessarily evident from the electrical network description above, this
value does indeed compute the expected net number of times a random walk would pass
through node i before reaching a target t, given that it starts at a source s, averaged
over all pairs s, t. This intuitively seems like exactly the metric we are looking for when
considering “pivotal” individuals in a contact network in which a disease is spreading,
and as we will see in the next section, this metric is one which is particularly effective in
controlling the disease when used exclusively to determine testing protocols. It is also
known that in networks with strong community structure, immunization interventions
targeted at individuals bridging communities (e.g., using random walk betweenness) are
more effective than those simply targeting highly connected individuals [10].

Note that the definition that can be directly applied only to simple undirected
graphs; there does not exist a generalization to weighted or directed graphs.

Random walk centrality (RWC)

Random walk centrality is introduced in [21], and is said to “quantify how central a
node i is located regarding its potential to receive information which is randomly
diffusing over the network”. Given a graph G, consider a random walk on the graph
with transition matrix P . The stationary distribution vector for P is denoted w, and
the kth entry of w is denoted wk. The characteristic relaxation time of vertex k is
introduced as τk ≡

∑∞
j=0((P j)k,k − wk). This quantity converges whenever the

transition matrix P is primitive, which is the case for a random walk on a connected
non-bipartite graph. The random walk centrality [21] of vertex k is then calculated as:

Ck ≡
wk

τk
.

In [22], the author observes that the random walk centrality is the reciprocal of the
measure of centrality known as the accessibility index. For a given vertex k, the
accessibility index of vertex k is defined

αk =
∑
j 6=k

wjmjk,

where mjk is the mean first passage time from j to k. This definition allows the
interpretation of the accessibility index as the expected time to reach vertex k for the
first time, given that we start in any randomly-chosen initial state. It is shown in [22]
that Ck = 1/αk. This is particularly useful as it admits a definition of this as a measure
of centrality not just for simple undirected graphs (as is introduced in [21]) but for any
Markov chain, as a measure of state centrality. In particular, this is a useful metric for
both weighted and directed graphs. Further work on estimating the accessibility index
may be found in [23].

In the disease spread context, this measure ranks highly the vertices which are
“easily accessed” from other vertices of the graph. This is a useful way to consider how
“central” an individual is in a community. However, in the context of the spread of
disease, and in particular when considering testing protocols in order to control the
disease, this may not be appropriate. Controlling the disease in our simulations means
determining individuals who are most instrumental in the disease spreading through the
whole graph, and while those individuals with high random walk centrality may have
increased likelihood of being infected, this may not coincide with individuals who ought
to be tested and isolated as quickly as possible.

Network connectivity measures

Many criticality measures exist which provide a single, numerical value describing the
“connectedness” of a network in some way. Such measures can be easily extended to
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measure the criticality of a single node i in a graph G by inferring the criticality of the
ith node from the change in criticality of the network after the ith node is removed from
the network. This is described as follows in [24]: given some graph invariant cr(G)
measuring the connectedness of the graph G in some manner, define

cri(G) := cr(G)− cr(G \ i).

We include several such measures of node centrality here for consideration in later
simulations.

Effective graph resistance (Kirchhoff index)

The effective graph resistance is interpreted as a “robustness measure” of a network [25].
To formulate the effective graph resistance (also known as the total graph resistance, or
the Kirchhoff index of the graph), the (undirected and connected) graph G is seen as an
electrical circuit, where an edge {i, j} corresponds to a resistor of rij Ohm, and the
effective graph resistance is the sum of the effective resistances over all pairs of vertices.
These effective resistances Rst can be computed using the Laplacian matrix of the
graph.

The Laplacian matrix of a graph is defined as the adjacency matrix subtracted from
the diagonal matrix of vertex degrees: L = D −A. Note that in the context of the
electrical network, an undirected, unweighted graph is considered to have resistors of
rij = 1 Ohm on each edge. However, this can be extended to weighted networks, where
resistors have rij = 1/wij , where wij denotes the edge weight between vertices i and j.
In this case, the weighted Laplacian matrix can easily be defined, and used to extend
the following results.

Through applications of Kirchhoff’s current and circuit laws, one can show that the
effective resistance Rst between vertices s and t may be calculated using a
pseudoinverse of the Laplacian matrix of a graph:

Rst = (es − et)TL†(es − et),

where ei denotes the standard unit vector, i.e., a vector consisting of all zeros except a
single 1 in the ith position. Given this expression for the effective resistance between
two vertices, the total graph resistance can be expressed in terms of the sum of the
reciprocals of the nonzero eigenvalues of the Laplacian matrix [26]:

RD(G) =
1

n

n∑
j=2

1

ρj
. (5)

As previously mentioned, this measure can be easily extended to weighted graphs,
though it is not clear that a generalization for directed graphs is possible.

Kemeny’s constant

Given an ergodic Markov chain with transition matrix P , stationary vector w, and
mean first passage times mij , one can define the following quantity:

κi =

n∑
j=1

mijwj .

This can be interpreted as the expected time to reach a randomly-chosen state j, given
that the chain starts in state i. Astonishingly, this quantity is independent of the initial
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state i [27]. Thus the Kemeny’s constant, denoted as K(P ), can be computed as

K(P ) =

n∑
j=1

mijwj . (6)

An interpretation of this result is that the expected time to reach a randomly-selected
destination state j from a fixed initial state i (where state j is selected randomly
according to the stationary distribution w) does not depend on the starting point i [28].
Furthermore, since the wj sum to 1, we can write Kemeny’s constant as a double-sum:

K(P ) =

n∑
i=1

n∑
j=1

wimijwj ,

admitting the interpretation of Kemeny’s constant as the expected length of a random
trip in the chain, where both initial and destination states are chosen randomly
according to the stationary distribution. Therefore, Kemeny’s constant is an intrinsic
measure of a Markov chain. If the transition matrix P has eigenvalues λ1 = 1, λ2, ..., λn,
then another way of computing K(P ) is [29],

K(P ) =

n∑
j=2

1

1− λj
. (7)

Note that this expression furnishes a computationally useful method for determining
K(P ) in practice; K(P ) is computed as the trace of a given generalized inverse of the
singular matrix I − P .

Kemeny’s constant is a proxy for the global “connectedness” of a network, given the
interpretation as the expected length of a random trip between states in the chain.
Thus, networks characterised by small values of Kemeny’s constant should be more
efficient in terms of flow [30]. In a contact network, small values of Kemeny’s constant
for the random walk on the graph indicate that the individuals in the network are
well-connected, while large values of Kemeny’s constant may be indicative of clustered
behaviour, and that it is difficult to traverse the graph. If one can identify the vertex
whose removal causes the largest increase in the value of Kemeny’s constant, this could
be interpreted as a “central” vertex.

Since Kemeny’s constant can be computed for any ergodic Markov chain, it extends
most usefully to weighted, directed graphs.

Subdominant Eigenvalues

For an ergodic Markov chain with transition matrix P , the eigenvalues may be listed
λ1 = 1, λ2, . . . , λn, and by Perron-Frobenius theory, |λj | ≤ 1 for all j = 2, . . . , n. As is
evident from our discussion of Kemeny’s constant above, much information regarding
the dynamics of the Markov chain may be extracted from these eigenvalues. We are
frequently interested in the eigenvalue λj for which |λj | has second-largest modulus
(SLEM) after 1. Without loss of generality, suppose this is λ2. We outline here several
ways in which the value of λ2 can be used to infer how well-connected the states of a
Markov chain are (or the vertices of a graph; where the chain in question represents a
random walk on a graph). In general, if λ2 is bounded away from 1, the states of the
Markov chain are considered to be “well-connected”.

For a Markov chain with transition matrix P , the probability distribution after k
time-steps is given by uTk = uT0 P

k, where u0 is the initial probability distribution vector.
It is well-known that if the Markov chain is ergodic (i.e. the matrix P is primitive),
then uTk converges to the stationary distribution vector wT of the chain as k →∞,
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independently of the initial distribution. The asymptotic rate of this convergence is
clearly dictated by the moduli of the eigenvalues of P . If all eigenvalues have modulus
bounded away from 1, convergence happens quickly. This convergence is often referred
to as the “mixing rate” of the chain, and is framed in terms of how quickly the initial
information is lost.

In the context of a random walk on an undirected connected graph, there is the
following bound on the total variation distance after k time-steps have passed (see [31]):

‖uT0 P k − w‖ ≤ max
j 6=1
|λj |k

maxi

√
deg(i)

minj

√
deg(j)

.

As P has real eigenvalues, issues arise when λj is close to 1 or close to −1. We note that
there is some difference in the dynamics of the Markov chain in these cases—a
subdominant eigenvalue close to 1 in value is indicative of clustering behaviour, or of
near-decoupling [30,32,33], while −1 occurs as an eigenvalue of P if the undirected
graph is bipartite, causing periodic behaviour in the Markov chain. For this reason, in
the context of disease spread in a network, we are more interested in a subdominant
eigenvalue whose value is close to 1 (not whose modulus is close to 1). See [33] for more
discussion.

For a connected graph G, the transition matrix for the random walk on G is
P = D−1A; denote its eigenvalues by 1 ≥ λ2 ≥ · · · ≥ λn. The subdominant eigenvalue
λ2 and its relationship to graph structure is well-studied in the context of the
normalized Laplacian matrix, defined as

L = D−1/2(D −A)D−1/2

when G has no isolated vertices. It is easily seen that L is similar to the matrix
I −D−1A, so that the normalized Laplacian eigenvalues 0 ≤ µ1 ≤ · · · ≤ µn−1 are in
one-to-one correspondence with the eigenvalues of D−1A, where µj = 1− λj+1. In
particular, the eigenvalue µ1 = 1− λ2 is often referred to as the algebraic connectivity of
the graph [31] (not to be confused with Fiedler’s algebraic connectivity, defined in the
next section as an eigenvalue of the combinatorial Laplacian L = D −A).

The eigenvalue µ1 (or the spectral gap 1− λ2) is well-known to be related to
isoperimetric numbers of the graph. In particular, we have the following relationship
with Cheeger’s constant h(G) [31]:

h(G)2

2
≤ µ1 ≤ 2h(G).

The Cheeger’s constant is a measure of how much a vertex set can expand in the graph;
formally,

h(G) = min
S⊂V (G)

vol(S)≤ 1
2 vol(G)

e(S, S)

vol(S)
,

where vol(S) is twice the number of edges between vertices in S, and e(S, S) denotes
the number of edges in the graph between vertices in S and vertices outside S. We note
that graphs with low values of Cheeger’s constant typically have “bottleneck” vertices,
or clusters/communities with very few edges between them. Finally, the quantity 1/µ1

is referred to as the relaxation time of the random walk, and is studied in itself as a
measure of the asymptotic rate of convergence to the stationary distribution (see [34]).
Note that the relaxation time 1/(1− λ2) is the first and largest term in the expression
(7) of Kemeny’s constant.

In the context of disease spread in a graph G, the value of the second-largest
eigenvalue λ2 of the transition matrix for the random walk (and how close it is to 1)
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may be used to indicate how quickly the disease may disperse through the graph, as a
measure of clustering behaviour in the graph, or as a stand-in for Cheeger’s constant,
indicating whether the graph has good expansion properties (which would imply that
the disease spreads quickly).

Since subdominant eigenvalues can be calculated for any Markov chain, this measure
is easily extended to weighted and directed networks. We remark that in the case that a
subdominant eigenvalue is a complex number, some work has been done in that area to
show how clustering behaviour may be derived from the value of λ2 in that case [33].

Algebraic Connectivity (AC)

The eigenvalues of the Laplacian matrix of a graph G, L = D −A, can be listed
ρ0 = 0 ≤ ρ1 ≤ · · · ≤ ρn−1, and the second-smallest eigenvalue ρ1 is referred to as the
algebraic connectivity of the graph, and denoted a(G) [35]. This eigenvalue is strictly
greater than 0 if and only if G is a connected graph. The magnitude of this value reflects
how well connected the overall graph is. It has been used in analysing the robustness
and synchronizability of networks. There are many papers and results relating the value
of a(G) to many other structural quantities in the graph, such as vertex- and
edge-connectivity, diameter, minimum degree, isoperimetric constants, and many others.
For an overview, see the excellent survey by De Abreu [36]. There is some research in
the area of extending the definition of algebraic connectivity to directed graphs [37].

The Basic Reproduction Number (R0)

The basic reproduction number R0 is perhaps the most popular indicator in the
epidemiology community, and it may be defined as the expected number of individuals
that a randomly infected individual can infect during his/her infection period in a
fully-healthy susceptible population [38]. This value depends on the specific disease (e.g.,
its intrinsic infectivity), and on the topology of the network of contacts. In particular, it
can be shown that in a network-SIS model (a susceptible-infected-susceptible model) R0

is proportional to λmax, where λmax denotes the dominant eigenvalue of the adjacency
matrix, and it is equal to its spectral radius [38]. Accordingly, in this paper we shall use
the dominant value of the adjacency matrix as a proxy for R0, with the ultimate goal of
testing individuals whose removal gives rise to the lowest value of R0

Modularity

The last measure we discuss here is the modularity of a network, which is considered to
quantify the degree of community structure of the network. In order to define this
measure (as defined in [39]), we assume there exist some pre-determined communities to
which the vertices of a graph G belong, and partition the vertex set accordingly; say
V (G) = S1 ∪ S2 ∪ · · ·Sr . We define eij to be the fraction of all edges in the network
that join vertices from Si with vertices from Sj , with eii considered as the fraction of
edges within the community Si (i.e. vol(Si)/ vol(G)). Define ai =

∑r
j=1 eij , considered

as the fraction of edges that connect to vertices in Si. Then the modularity is defined

Q =

r∑
i=1

eii − a2i .

This quantifies the degree of community structure in the network by comparing the
fraction of all edges that are within a community to the fraction of the edges connecting
that community to the other communities, and observing that if there was no
community structure, one could expect that eij = aiaj , giving a modularity of Q = 0.
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In this present manuscript we do not consider modularity as one of our criticality
measures used to rank nodes by the effect of their removal on this quantity. Instead,
modularity plays a more vital role in our simulations, as we construct contact networks
with varying levels of community structure as described by modularity. We follow the
method outlined in [10] to construct these; see section Case study: Creation of the
network of daily contacts.

Comparison for the COVID-19 case study

Case study: Creation of the network of daily contacts

Our case study is created according to the procedure outlined in [10], and later reused
also in [6]. The procedure to create the network can then be summarized in the
following steps:

1. 6 small-world communities of 40 nodes are first created using the Watts-Strogatz
algorithm [40], so that each node has exactly N0

d edges connecting to nodes of the
same community;

2. We then add 30 ·N0
d edges in a random way to connect different communities;

after this step, the average node degree becomes Nd = 5
4N

0
d ;

3. We then rewire between-communities edges (i.e., edges that connect nodes
belonging to two different communities) so that they become within-community
edges (i.e., edges that connect nodes belonging to the same community). In doing
this, the modularity of the graph increases, and we stop the procedure once a
desired level of modularity M is achieved.

In particular, we compare the different indicators for different values of Nd, that
correspond to the number of daily contacts of individuals, and for different values of
modularity M , that allows one to evaluate what happens for societies with milder or
stronger community structures. Thus, every day we create a new graph according to the
procedure previously given, and we assume that it corresponds to a network of daily
contacts.

Case study: simulation of epidemic spread on a graph

The previously described procedure had been proposed to mimic the network of contacts
of individuals in a society, with the final objective of evaluating the impact of different
testing/vaccination campaign, to better mitigate the spreading of epidemics. While such
networks could be only guessed in that context, contact tracing applications are now
giving the unprecedented advantage of indeed knowing when individuals meet at a close
distance for a sufficient time to infect a new individual (e.g., at least 15 minutes at a
distance of 1 meter). An implicit assumption here is that individuals allow the sharing
of the information of their daily contacts to some centralized data center that aggregates
this kind of information and knows the network (e.g., in terms of an adjacency matrix).

We then model the spreading of the virus, and the testing procedure in the following
simplified way: On the first day, we randomly label two individuals as “infected”, and
they correspond to our initial condition. Every single day, we assume that a susceptible
individual who gets in contact with an infectious individual, has a probability of 10 % of
being infected. Also, every day, we test Ntest individuals according to the different
indicators introduced in the section Review of the state-of-the-art : if a tested individual
is found infected, then he/she is quarantined for the following 14 days, after which we
assume the individual is fully recovered and not susceptible anymore (i.e., they can not
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be infected again). Also all his/her contacts of the same day are further tested (but not
those of the previous days). During the quarantine, we assume that the individual is
fully compliant with the rules, and does not have contact with any other individual. It
may also happen that infectious individuals are never tested, and obviously may infect
other individuals as well as they are not quarantined, and we assume that they also
recover after 14 days, after which they are not susceptible anymore.

The previous model is obviously a simplification of the COVID-19 dynamics, and
may be seen as a simplified agent-based SIQR model, where each individual in the
population may belong to only one of the disjoint compartments of Susceptible –
Infected – Quarantined – and Recovered individuals. Since we only test individuals on
the basis of the topology of the network, depending on the specific indicator of interest,
this method may be applied in practice to target-testing individuals in a population of
asymptomatic individuals, and should be obviously complemented with the good
practices of testing individuals who, independently from the topology of the network,
exhibit COVID-19 symptoms.

Discussion of the simulation results

Simulation results are described in Fig. 1, where the final number of susceptible
individuals at the end of the simulation (i.e., after 30 days) is shown. Note that due to
the adopted COVID-19 spreading model, the final number of susceptible individuals
corresponds to 240 (size of the considered population) minus the number of infected
individuals (so a larger number of susceptibles individuals corresponds to a smaller
number of infected individuals). Due to the stochasticity of the considered model,
results shown in Fig. 1 are averaged over 100 simulations, and every time two randomly
chosen individuals are supposed to be infectious. The evolution of the number of
infected individuals throughout the 30 days of simulations is shown in Fig. 2.

In the simulations we have considered networks of modularity equal to 0.8, average
node degree Nd equal to 7.5 and the possibility of testing 20 different individuals every
day. In particular, Fig. 1 shows how performances of different ranking algorithms
change if one of the previous quantities is slightly changed. In particular, from the
figure above it is possible to appreciate that better results can be obtained if networks
with stronger community structure are considered (values of modularity greater than
0.8). However, as from the second panel of Fig. 1, it is possible to appreciate that the
most relevant quantity is the average node degree Nd. This could be expected since it
corresponds to the number of daily relevant contacts. Finally, the last panel shows the
obvious result that as the number of daily tests is increased, then a reduced number of
individuals gets infected.

Computational burden for different indicators

With the increase of the network size, the computational burden could become too high
for some indicators, and thus limit their scalability. Table 1 reports the computation
time for the different indicators with a personal computer, equipped with a 6-core
i7-8700 CPU @ 3.20GHz, RAM 16 GB. The values correspond to an average time for
ten runs of the whole 30-day simulation and are sorted accordingly.

The indicators that can be computed fastest are those measuring the node centrality,
i.e., Page rank, Closeness centrality, Node degree, Betweenness centrality, and RWC. As
expected, node connectivity measures are more resource-demanding and result at least
one order of magnitude slower. Among them, the most computationally expensive are
Second Largest Eigenvalues in Modulus (SLEM) and Kemeny constant. Finally, it is
noteworthy that although RWB still measures the node centrality, it is the most
burdensome measure among all indicators (almost 300 times slower than Page rank).
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Fig 1. Final number of susceptible individuals at the end of the simulation, for
networks of different modularities (above), different average node degree (middle), and
for different values of daily tests.
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Fig 2. Daily number of infected individuals for different indicators. The shaded area
corresponds to 95% confidence interval.
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Indicator Average
computation
time in sec-
onds for 30
days

Computation
method

PageRank
centrality

3.3 Matlab function
(centrality, ‘pager-
ank’)

Closeness
centrality

3.5 Matlab function
(centrality, ‘close-
ness’)

Node degree 3.6 Matlab function
(degree)

Betweenness
centrality

3.8 Matlab function
(centrality, ‘be-
tweenness’)

Random
walk central-
ity (RWC)

8.3 Based on general-
ized inverse (Theo-
rem 1.1 in (a) [22])

Algebraic
connectivity
(AC)

102.5 Second small-
est eigenvalue of
Laplacian matrix

R0 111.2 Highest eigenvalue
of adjacency matrix

Resistance
distance RD

154.8 Based on eigenval-
ues of Laplacian ma-
trix - Equation (5)

Kemeny’s
constant

179.5 Based on general-
ized inverse

SLEM 194.8 Second largest
eigenvalue modulus
of a Markov chain
transition matrix

Random
walk be-
twenness
(RWB)

944.0 Equation (4) (the
complete algorithm
to compute it is de-
scribed in [11], sec-
tion 2.2)

Table 1. Computational burden to compute each indicator. Also, for replicability
purposes, we explain which equations, or which Matlab function, has been used to
compute it.

Case study: simulation on weighted graphs

The primary contribution of this article is the survey and comparison of various node
ranking procedures in the control of disease spread in a contact network. However,
throughout the review in Section II of existing centrality indicators, we have stressed
the importance of considering metrics which generalize to weighted or asymmetric (i.e.,
directed) graphs. This is motivated in no small part by the nature of the current
pandemic and the emphasis on increased risk of transmission caused by a lengthier
interaction, or a contact event with no personal protective equipment. In this section,
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Fig 3. Newman’s classic example to indicate the shortcomings of shortest-path
centrality measures; node 6 receives the lowest centrality ranking.

we present a small example to motivate further consideration of this issue.
In Newman’s 2005 paper (see [11]), the idea of random walk betweenness was

introduced, but first motivated by the example shown in Fig. 3. This example indicates
that while a node may not sit on any shortest path, intuition would still indicate that it
is still somehow more “central” than others. Finding existing measures of centrality
(which depended largely on shortest paths) falling short in appropriately categorizing
such nodes, Newman introduced the idea of random walk betweenness. Inspired by this
key example, and its natural appeal to the reader’s intuition, we present a comparable
example here which highlights the importance of considering the weights of connections
between nodes; first by an intuitive argument, then backed up by computations.

In Fig. 4, we have a network consisting of 10 nodes, and edges of different weights.
The weights are given by the following matrix:

W =



0 0.3 0.3 0.3 0.1 0 0 0 0 0
0.3 0 0.3 0.3 0.1 0 0 0 0.95 0
0.3 0.3 0 0.3 0.1 0 0 0 0 0
0.3 0.3 0.3 0 0.1 0 0 0 0 0
0.1 0.1 0.1 0.1 0 0.1 0 0 0 0
0 0 0 0 0.1 0 0.1 0.1 0.1 0.1
0 0 0 0 0 0.1 0 0.3 0.3 0.3
0 0 0 0 0 0.1 0.3 0 0.3 0.3
0 0.95 0 0 0 0.1 0.3 0.3 0 0.3
0 0 0 0 0 0.1 0.3 0.3 0.3 0


.

For our purposes, we will interpret the edge weight wij as the probability of
transmission from individual i to j (or vice versa) based on their contact time and
conditions, if one of them is already infected. Note that in Fig. 4, the weights are
represented proportionally by thinner or thicker lines. It is a reasonable argument that
based on these infection probabilities, nodes 2 and 9 should play a larger role in the
spread of the disease through the entire community than nodes 5 and 6. However, if we
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Fig 4. A weighted network on 10 vertices, where weights correspond to varying
probabilities of infection between individuals.

were to assume that the graph is unweighted, or that all infection probabilities are
equal, then we would assume that all four nodes (2, 5, 6, and 9) have equal importance.
If testing/quarantine strategies are based on this assumption, we may fail to prevent or
slow the spread of the disease.

For the remainder of this section, we analyse this example in a few ways. First, we
compare the rankings of the nodes of this example according to each centrality indicator
from the previous section, where we consider the network to be unweighted (i.e. all
weights of contacts/edges are either 0 or 1). Then we will compute rankings when the
weights of the edges are taken into account. To do so, we will need to elaborate further
on how these will be computed in the weighted case. Finally, we run some simulations
to compare the effectiveness of each indicator (both unweighted and weighted) in
controlling the disease. These simulations differ from those in the previous section since
this network is too small for those same simulations to be sensible.

For unweighted indicators (node degree, betweenness centrality, random walk
betweenness, second-largest eigenvalue, and Kemeny’s constant), we compute as before,
taking the weight of every edge to be 1, and working with either the 0− 1 adjacency
matrix A, or the simple random walk on the graph with transition matrix D−1A. For
weighted indicators, we make a few adjustments:

• For weighted node degree, we use W as the weighted adjacency matrix, and
determine the weight of node i as the sum of the weights of incident edges, or the
sum of row i.

• In computing betweenness centrality of a node in a weighted graph, typically the
edge-weights correspond to a “cost”, and minimum distance corresponds to paths
or walks of minimal cost. As such, it does not make sense in this context to
compute betweenness centrality using infection probabilities as weights, since if
the value of wij is high, it is easier for the disease to spread, not harder (which we
would associate with high cost). We choose to simply replace the weight wij of
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Fig 5. The transition matrix for the adjusted random walk on the weighted network
given in Fig. 4.

the edge between i and j by the cost 1− wij , and then compute betweenness
centrality for each node in the usual way.

• There is no known formulation of random walk betweenness for weighted graphs,
so we do not include a weighted version here.

• For the second-largest eigenvalue of a probability transition matrix, and for
Kemeny’s constant, there are a few choices we could make for how to represent a
random walk on the weighted network. One option is to simply normalize the rows
of the matrix W , producing a stochastic matrix. However, in the disease-spread
context, this may not be appropriate. Instead, to account for individuals with
less-risky contacts overall, we implement an adjusted random walk, in which for
certain nodes, there is a nontrivial probability that the random walker stays in
place in the next time-step (in our application, this would correspond to assuming
that an infectious individual will not infect another individual). To do this, we
find the maximum row-sum of W , and normalize the entire matrix by that value.
Then we replace the diagonal entry in each row by the difference between 1 and
the ith row-sum to produce a stochastic matrix. See Fig. 5 for the stochastic
matrix representing the adjusted random walk for this example with these weights.
The advantage of this normalization is that all contacts having the same duration
are eventually associated with the same probability of spreading the virus in the
transition matrix, while without the diagonal correction this is not guaranteed to
occur, due to the normalization steps required to make transition matrices
row-stochastic. With this transition matrix in hand, we compute the weighted
versions of these indicators using this representation of the Markov chain. For the
sake of comparison, we also compute Kemeny’s constant for the weighted random
walk (without the diagonal correction).

All ranking indicators group the nodes of this network into at most four groups:
{2, 9}, {5, 6} and {1, 3, 4, 7, 8, 10}, where nodes in the same group receive the same rank.
The results are as follows:

• All unweighted indicators group {2, 5, 6, 9} together as being equally the most
critical nodes, while the remaining nodes rank second.

• Both weighted node degree and the weighted version of Kemeny’s constant for the
adjusted random walk rank {2, 9} as most critical, {1, 3, 4, 7, 8, 10} next, and
{5, 6} as least critical.

• The weighted betweenness centrality measure ranks {2, 9} as the most central
nodes in the weighted network, and weights all other nodes equally.

July 21, 2021 20/25



• The second-largest eigenvalue measure for the adjusted random walk ranks {2, 9}
as most critical, then {5, 6}, then the remaining nodes {1, 3, 4, 7, 8, 10}.
Interestingly, Kemeny’s constant for the weighted random walk without the
diagonal correction ranks the nodes the same way.

Intuition and visual inspection of the graph are sufficient to determine that
unweighted indicators fail to properly rank nodes because nodes {2, 9} are more critical
than {5, 6} (the virus is spread more likely from one community to the other through
the {2, 9}-link as the duration of their contact is longer than that of {5, 6}). Indeed, all
indicators based on the weighted graph reach a consensus on indicating nodes {2, 9} as
the most critical. Conversely, there is a discrepancy on which one should be the second
most critical set of nodes (i.e., Kemeny’s constant indicates {1, 3, 4, 7, 8, 10} , while the
weighted betweenness centrality measure indicates {5, 6}).

Accordingly, we run disease-spread simulations with this network so to establish
which one is the correct response. As mentioned already, this network is too small to
obtain meaningful results from the heuristic outlined in the previous section. Instead,
we do the following: For each node, remove it from the network, infect one other node
chosen at random, and run an infection simulation according to the probabilities given
in W . Take note of the number of days it takes for the disease to spread to all the
remaining 9 nodes in the network. Run this same simulation 1000 times and record the
average number of days for the disease to spread to the entire network. Thus for each
node in the network, we have a simulated measure of how “critical” it is in the spread of
disease through the network - the higher the number of days for the disease to spread
with node i removed, the more critical node i must be to the spread in the underlying
network shown in Fig. 4. The average numbers of days are shown for each node as
follows:

Node Avg. days
1 7.55
2 17.41
3 7.39
4 7.39
5 6.84
6 6.83
7 7.63
8 7.63
9 17.37
10 7.39

Note that in 1000 simulations on the full weighted network, the average number of days
for the disease to spread to all ten nodes is 7.86 days. Removing some nodes might
either speed up or slow down the spreading of the disease.

Discussion of the Results for the Weighted Case

If we assume that the averages of the 1000 stochastic simulations of the epidemic
spreading in the network provide the “correct” ranking of the nodes, then it is evident
that indicators that were very convenient in the unweighted case, most notably those
based on betweenness centrality, fail to correctly rank the nodes in the weighted cases.
If we further consider that extensions of other indicators to the weighted case are not
straightforward (e.g., random walk betweenness), it appears that when weighted graphs
may be reconstructed (i.e., when a contact tracing app is able to store relevant
information such as the durations of contacts, or the distances at which contacts occur),
indicators based on the adjusted random walks such as the Kemeny’s constant appear
to be the most convenient choice.
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Conclusions

Inspired by the recent problems arising in the context of the COVID-19 pandemic, and
most notably in terms of who should be tested, and who should be vaccinated first, this
manuscript reviews some of the most popular ranking methodologies to identify the
importance of nodes in networks of individuals. While the dynamics of the COVID-19
have been simplified, still it is possible to observe that significantly different results may
be obtained if different ranking methods are adopted to select the most suitable
individuals for tests or vaccination. In particular, while the actual effectiveness one
strategy depends on a number of variables (most notably, the modularity exhibited by a
network of individuals; by the average number of daily contacts; and by the number of
available tests), it is possible to appreciate for some combinations of such variables,
indicators like the algebraic connectivity, betweenness centrality, second largest
eigenvalue modulus, Kemeny’s constant and random walk betweenness, may actually be
twice as effective than other indicators in abating the number of infected individuals
(i.e., with respect to PageRank or node degree).

The comparison becomes even more interesting under the assumption that durations
of contacts may be measured and shared, when weighted graphs can be considered.
Indeed, not all the aforementioned indicators can be generalized to work in this context.
In addition, indicators that appeared to perform very well in the unweighted case, most
notably, betweenness centrality and the second largest eigenvalue, fail to correctly rank
nodes in the proposed simple network, which is a weighted revisitation of the classic
Newman’s network. Other indicators that explicitly take into account the (weighted)
transition matrix, as the Kemeny’s constant) appear to be the most suitable in correctly
ranking the nodes.

As mentioned in the introductory section, the problem of ranking nodes according to
their “importance” arises in a number of different contexts, and different solutions have
been proposed, and have become common practices, in different communities.
Motivated by the recent concerns of COVID-19, this manuscript attempted at fairly
comparing some of the most popular methodologies in a single application, with the
ultimate objective that this comparison may inspire more work and more discussion in
the field of graph theory, and ultimately provide a valuable support for testing and
vaccination policies.
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