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ABSTRACT Automatic voice pathology detection enables objective assessment of pathologies that affect
the voice production mechanism. Detection systems have been developed using the traditional pipeline
approach (consisting of the feature extraction part and the detection part) and using the modern deep learning
-based end-to-end approach. Due to the lack of vast amounts of training data in the study area of pathological
voice, the former approach is still a valid choice. In the existing detection systems based on the traditional
pipeline approach, the mel-frequency cepstral coefficient (MFCC) features can be regarded as the defacto
standard feature set. In this study, automatic voice pathology detection is investigated by comparing the
performance of various MFCC variants derived by considering two factors: the input and the filterbank
in the cepstrum computation. For the first factor, three inputs (the voice signal, the glottal source and the
vocal tract) are compared. The glottal source and the vocal tract are estimated using the quasi-closed phase
glottal inverse filtering method. For the second factor, the mel-frequency and linear-frequency filterbanks
are compared. Experiments were conducted separately using six databases consisting of voices produced by
speakers suffering from one of four disorders (dysphonia, Parkinson’s disease, laryngitis, or heart failure)
and by healthy speakers. Support vector machine (SVM) was used as the classifier. The results show that by
combining mel- and linear-frequency cepstral coefficients derived from the glottal source and vocal tract,
better overall detection accuracy was obtained compared to the defacto MFCC features derived from the
voice signal. Furthermore, this combination provided comparable or better performance than four existing

cepstral feature extraction techniques in clean and high signal-to-noise ratio (SNR) conditions.

INDEX TERMS Voice disorders, glottal inverse filtering, support vector machine, cepstral coefficients.

l. INTRODUCTION

OICE pathologies arise either due to physical changes
Vin the voice production mechanism (e.g., in the res-
piratory system, vocal folds, and vocal tract) [1], [2] or
due to improper vocal use when the physical structure of
the mechanism is normal (e.g., vocal fatigue or ventricu-
lar phonation) [3]-[5]. Examples of voice pathologies are
dysarthria [7], dysphonia [8], vocal polyp [9], and develop-
mental dysphasia [13]. Voice pathology may also indicate
early neurodegenerative disease such as Parkinson’s disease
(PD) [10]-[12], [14]. Voice pathology detection refers to a
technology to automatically distinguish normal voices from
pathological voices by computer using the recorded voice
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signal. Existing voice pathology detection systems can be
divided into two categories: traditional pipeline systems and
modern end-to-end systems [15].

The traditional pipeline system consists of two compo-
nents [15], [16]: the feature extraction part and the detection
part. The feature extraction part tries to capture discrim-
inative information from acoustic voice signal waveforms
by representing this information in compressed forms using
a set of pre-defined features. The feature sets reported in
the literature for voice pathology detection can be grouped
into four categories: (1) perturbation measures (such as jitter
and shimmer); (2) spectral and cepstral measures (such as
mel-frequency cepstral coefficients (MFCC), linear predic-
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tive cepstral coefficients (LPCC), cepstral peak prominence
(CPP) and perceptual linear prediction cepstral coefficients
(PLPCC)); (3) complexity measures (such as the Hurst ex-
ponent, approximate entropy, and sample entropy); and (4)
glottal source measures (such as time-domain and frequency-
domain glottal source parameters) [11, 15-26]. The detection
part includes a machine learning (ML) classifier to label
the input voice as healthy or pathological. For the classifier,
most of the previous investigations have used support vector
machines (SVMs) [5], [13], [16], [22]. In addition to SVMs,
other algorithms such as artificial neural networks, decision
trees, and variants of recurrent neural network (RNN) have
also been used as classifiers in the study area [13], [28], [32]-
[34]. A review of various techniques considered for both
parts is given in [5]. Recently, a few studies have investigated
pathological voice detection using end-to-end systems [15],
[35]-[37]. In end-to-end systems, deep neural networks are
trained to predict labels directly either from the raw time-
domain voice signal or from the mel spectrogram [15].
However, unlike in many speech technology areas such as
audio tagging [30] and speech synthesis [31], end-to-end
systems have not been widely used in the field of voice
pathology detection due to the lack of sufficient data. The
data scarcity is an inherent problem in the study area of
pathological voice because data is collected from patients
whose condition might be so weak that only short recordings
are possible. Hence, due to the lack of vast amounts of
training data that is needed to train end-to-end systems, the
traditional pipeline system is still a valid choice in voice
pathology detection.

In the traditional pipeline system, cepstral features, partic-
ularly MFCCs, are most popular and they have been shown
to perform comparably to or better than many other feature
types [16], [44], [45]. The cepstral domain representation has
the advantage that the features are less correlated, which is
advantageous in the efficient implementation of ML classi-
fiers. In addition, cepstral features can be computed with-
out estimating the fundamental frequency (F{y) of the voice
signal, which is beneficial compared to many perturbation
features, complexity features, and glottal features where the
extraction of Fy is needed. Moreover, cepstral features do
not need the extraction of glottal closure instants, which is
needed, for example, in parameterizing voice pathologies
with glottal measures. Among various existing cepstral fea-
tures, MFCCs can be regarded as the defacto standard feature
set in the area of voice pathology detection. MFCCs have also
been widely used as default reference features in many areas
outside pathology detection (like speaker recognition [38],
speech spoof detection [39], speech mode classification [40],
etc.). Moreover, MFCC features are widely included in larger
generic feature sets (such as the openSMILE feature set [41],
GeMAPS feature set [42], and ComParE feature set [43])
to capture vocal tract information from speech and voice
signals. Previous studies in voice pathology detection have
computed MFCCs almost exclusively from the default acous-
tic input, the voice signal (i.e., the pressure signal recorded by
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the microphone), to effectively capture vocal tract informa-
tion [5], [13]. In a few recent studies, however, an alternative
way of computing MFCCs has been investigated by first
separating the voice signal into the glottal source and vocal
tract using glottal inverse filtering (GIF) and then computing
the MFCC feature set from the time-domain glottal source
signal [16], [17]. Since the latter way of computing MFCCs
focuses on the glottal source, this way to compute MFCCs is
justified for use as a feature extraction method, particularly
in the detection of voice pathologies, such as vocal nodules
and dysphonia, which affect the vocal folds. In [16], the two
ways of computing the MFCC feature set were compared in
the detection of voice pathologies. The results showed that
the best detection performance was achieved by combining
the MFCCs computed from the voice signal with the MFCCs
computed from the glottal source signal. It should be em-
phasized, however, that the second component estimated by
GIF, the vocal tract transfer function, has not been used in
the MFCC computation in any of the previous experiments
reported in [16], [17].

MFCCs are computed by filtering the input signal with the
perceptually motivated mel filterbank [48]. When the mel
filterbank is replaced with a linear filterbank, the cepstral
coefficients are termed linear-frequency cepstral coefficients
(LFCCs). Despite the popularity of the MFCC features in
most voice and speech classification studies, LFCCs have
been shown to perform better than MFCCs in areas such as
speaker recognition and the detection of spoofing [38], [39].
However, to the best of our knowledge, there are no previous
studies reporting how LFCCs perform in voice pathology
detection compared to MFCCs.

In the current study, a systematic comparison between
different cepstral coefficient (CC) feature sets in the detection
of pathological voices is investigated. Given the recent results
reported in [16] indicating that combining the MFCCs com-
puted from the voice signal with the MFCCs computed from
the glottal source improves performance of voice pathology
detection, the first aim of the current study is to understand
how CCs extracted separately from both the glottal source
and the vocal tract perform in the detection task compared to
the CCs, which are extracted in a conventional manner from
the voice signal. We hypothesize that by first separating the
acoustic voice signal into the glottal source and vocal tract
and by extracting CCs separately from both components,
voice pathologies can be detected with better accuracy com-
pared to extracting CCs from the voice microphone signal
where contributions of the source and tract are merged [50].
In order to study this topic, voice signals need to be separated
prior to the computation of CCs into glottal source signals
and digital filters representing the vocal tract. In the current
study, this source-filter separation is conducted using a GIF
algorithm called the quasi-closed phase (QCP) method [47].
The QCP method was selected as the GIF method since
its performance was shown in [47] to be better than that
of four state-of-the-art techniques, for both modal and non-
modal phonation types. The second aim of the study was to
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investigate the effect of using the mel-spaced vs. the linear-
spaced filterbank (referred to in brief as the mel and linear
filterbanks, respectively) in the CC computation. This aim
is justified because despite the fact that the use of the mel
filterbank is well motivated in areas such as automatic speech
recognition [48] where modeling of human sound perception
is essential, the involvement of a perceptually motivated mel
filterbank in the CC computation might be questioned for
signals such as the glottal source where phonemic vocal
tract cues are absent. The experimental evaluations were
conducted using voice signals representing the vowel /a/ from
six databases (described in Section III-A). The detection
performances were separately evaluated with SVM, which is
the most popular classifier in voice pathology detection. As
per our knowledge, this is the first voice pathology detection
study investigating in detail the effect of extracting CCs
separately from both the voice source and the vocal tract
(rather than from the voice signal alone) and comparing the
effect of the filterbank (mel vs. linear) in the CC computation.

The paper is organized as follows. Section II describes the
extraction of cepstral features from the acoustic voice signal
and from the glottal source and vocal tract computed by GIF.
Section III describes the pathology databases studied and the
classifier, which was used in the detection experiments. The
results are reported in Section IV by also including compar-
isons with existing techniques. Finally, the conclusions of the
study are drawn in Section V.

Il. FEATURE EXTRACTION

In order to achieve the two aims of the study described in the
previous section, six different cepstral feature sets were first
computed as shown in Figure 1. The computational details of
these CC feature sets are described in this section by dividing
the presentation into two parts according to the first aim
of the study: Section II-A describes the CC sets that were
computed using the conventional approach, where the input
to the cepstral computation is the voice signal, and Section II-
B describes the CC sets that were extracted from the glottal
source signal and from the vocal tract estimated by the QCP
method. In order to achieve the second aim of the study,
cepstral feature sets described in Section II-A and Section
II-B were built using both the mel and the linear filterbank.

A. CCS COMPUTED FROM THE VOICE SIGNAL

In order to parameterize the voice signal, 13-dimensional
cepstral vectors (including the 0" coefficient) were com-
puted using 30 ms Hamming-windowed frames with a 5
ms shift. From static coefficients, delta (A) and double-
delta (AA) coefficients were also derived resulting in a 39-
dimensional cepstral feature vector. Both the mel filterbank
and the linear filterbank were used and the corresponding
CC feature sets are referred to as the voice. MFCC and
voice_LFCC, respectively.
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B. CCS COMPUTED FROM THE OUTPUTS OF GIF

GIF refers to the technique of estimating the glottal volume
velocity waveform from the voice/speech (pressure) signal
recorded by microphone. Several GIF methods have been
proposed in literature (for a review of GIF, see [46]). As men-
tioned earlier, this study utilizes the QCP algorithm [47] as
the GIF method. In the QCP method, a parametric vocal tract
model is first computed using an all-pole modeling method
called weighted linear prediction (WLP) [47], [49] (More
details will be described in Section II-B.1). Then, the input
acoustic speech signal is inverse filtered with the computed
vocal tract transfer function to obtain the estimate of the
glottal flow waveform. Figure 2 shows the two outputs of
QCP for a healthy speaker and a speaker with dysphonia. In
this work, CCs are computed from both the estimated glottal
flow and from the estimated vocal tract filter as described
next in Sections II-A.1 and II-A.2 respectively.

1) CCs computed from the glottal source

The estimated time-domain glottal source signals were pa-
rameterized using the similar cepstral computation as de-
scribed for the voice signal in Section II-A, except that the
input was the glottal source. The CC feature sets obtained
by using the mel and linear filterbank are referred to as the
source_ MFCC and source_LFCC, respectively.

2) CCs computed from the vocal tract

When cepstral features are computed from the acoustic
voice signal or from the glottal source waveform using the
MFCC/LFCC pipeline, the fast Fourier transform (FFT) is
used as the spectral estimation method. While the CCs com-
puted from the glottal source (i.e., the source. MFCC and
source_LFCC described in Section II-B.1) represent infor-
mation which originates from the voice excitation generated
by the vocal folds, the CCs computed from the voice signal
(i.e., the voice_MFCC and voice_LLFCC described in Section
II-A) carry information that is brought about by both the
glottal excitation and the vocal tract [50]. This means that the
FFT-based CCs computed from the voice signal might not be
able to capture the vocal tract characteristics effectively in the
case of voice pathologies that affect the vocal tract system.
Therefore, it is justified to extract cepstral feature sets that
focus on the vocal tract alone by computing the cepstrum
using the parametric WLP all-pole spectrum of the vocal tract
model estimated by QCP. WLP is a modified LP method
that has been proposed to downgrade the prominent effect
of the glottal source in the computation of the vocal tract
transfer function [47], [49]. The effect of the glottal source is
downgraded in WLP by using a specifically selected tempo-
ral weighting function, called the attenuated main excitation
(AME) function [49]. The AME function decreases the effect
of voice samples in the vicinity of glottal closure in the com-
putation of the autocorrelation function in all-pole modeling.
Hence, the use of WLP removes the source information from
the cepstrum, which leads to a better representation of vocal
tract information. The bottom panels of Figure 2 compare the
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FIGURE 1: A flow diagram depicting the extraction of different cepstral feature sets studied in this article. Top path: extracting
cepstral features from the voice signal. Middle path: extracting cepstral features from the glottal source signal estimated by
QCP analysis. Bottom path: extracting cepstral features from the WLP vocal tract spectrum computed by QCP analysis. DCT

represents discrete cosine transform. Two filterbanks (mel vs. linear) are used in each path.
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FIGURE 2: An illustration of GIF outputs for a healthy speaker (left panels) and a speaker with dysphonia (right panels).
The top panels show the time-domain voice signals of the vowel /a/, the middle panels show the corresponding glottal flow
waveforms, and the bottom panels show the corresponding WLP spectra of the vocal tract. The FFT spectra of the voice signals

are shown as reference in the bottom panels.

FFT spectra computed from the voice signal and the WLP
spectra of the vocal tract computed using the QCP method.
The spectrum estimated with FFT displays a harmonic struc-
ture, which is conventionally smoothed by the perceptually
motivated mel filterbank. However, the perceptual smoothing
is only partially efficient at removing the harmonic structure
present in voice signals [52]. On the other hand, the WLP
method computes a parametric spectral envelope model of
the vocal tract without modeling the harmonic structure.
The WLP model order was chosen to be p = 24, which
(according to [47]) is a valid vocal tract filter order when
data is sampled with 16 kHz as in the current study. 39-
dimensional CCs were computed in a similar way as in
Section II-A except that the FFT magnitude spectrum of the
voice signal was replaced with the WLP all-pole spectrum
of the vocal tract. The resulting CC features sets are referred

to as tract. MFCC and tract_ LFCC when the mel and linear
filterbank was used, respectively.

lll. EXPERIMENTAL PROTOCOL
A. CONSIDERED VOICE PATHOLOGY DATABASES

The accuracy of the different cepstral feature sets constructed
was evaluated in pathological voice detection using voice
signals representing the vowel /a/ from six voice databases:
the Hospital Universitario Principe de Asturias (HUPA) [51]
database, the Neurovoz [53] database, the PC-GITA [54]
database, the hyperkinetic dysphonia (HkD) and laryngitis
subsets of the Saarbriicken Voice Disorders (SVD) [55], [56]
database, and the heart failure (HF) database [57]. Most
previous studies in voice pathology detection are based on
voice recordings of sustained vowels, particularly represent-
ing the vowel /a/ [5], [58], [59]. All the pathology detection
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experiments conducted in the current investigation also focus
on voice signals representing the vowel /a/ from the above
databases. The popularity of using recordings of signals
representing the vowel /a/ in the study area is explained
by the fact that this vowel sound is easy to pronounce for
patients of all languages. Moreover, the acoustical analysis
of voice signals representing the vowel /a/ is easy because
the vowel’s formants are clearly distinguishable and peaks
are prominent [58]. In addition to the general justifications
above, studying recordings of the vowel /a/ in the current
study was motivated by the use of GIF in this study. It has
been shown namely that the high value of the first formant
(F1) in the vowel /a/ makes the estimation of the glottal flow
waveform with GIF more accurate [60].

1) The HUPA database: This database contains sustained
phonations of the vowel /a/ by 439 adult Spanish speak-
ers (239 healthy and 200 pathological). Pathological
voices contain a wide variety of organic pathologies
such as nodules, polyps, oedemas, and carcinomas. The
data was recorded using the Kay Computerized Speech
Lab Analysis station 4300B with a sampling frequency
of 50 kHz and with a resolution of 16 bits. A detailed
description of the database can be found in [51].

2) The Neurovoz database: This corpus consists of voice
signals representing the vowel /a/ produced by 110
Parkinsonian patients and by 93 healthy speakers
whose mother tongue is Castillian Spanish [53]. The
signals were recorded with a sampling frequency of
44.1 kHz. More details about the Neurovoz database
can be found in [53].

3) The PC-GITA database: This corpus contains voice
signals collected using a variety of speaking tasks
by 50 Parkinsonian patients and 50 control speakers
whose native language is Colombian Spanish [54]. The
data was recorded using a dynamic omni-directional
microphone (Shure, SM 63L) and sampled at 44.1 kHz
with a resolution of 16 bits. For the purpose of this
study, we considered voice signals representing the
vowel /a/ from the database. There are three repetitions
of the vowel for each speaker. Hence, a total of 150
healthy and 150 PD voice signals were taken from this
dataset to be used in the current experiments.

4) The SVD-HkD database: The SVD database [55], [56]
is a large repository of pathological speech compris-
ing recordings of sustained phonations of the vowels
/a/, /i/, and /u/ in normal, high, and low pitches, as
well as with rising-falling pitch. In addition, the data
contains recordings of the sentence “Guten Morgen,
wie geht es Thnen?" (“Good morning, how are you?").
The database was recorded from 2225 German speak-
ers, of which 869 are healthy and 1356 pathological.
The entire database contains a total of as many as
71 different pathologies including both functional and
organic pathologies. The data was recorded with a
sampling frequency of 50 kHz. For the current study,
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we used a part of the SVD database by selecting
voices representing the vowel /a/ produced with normal
pitch by patients suffering from hypokinetic dysphonia
(HKD). The selected subset of the entire SVD database
is referred to as the SVD-HKD database in the current
study. In the SVD-HKD database, there are 213 healthy
utterances and 213 utterances produced by dysphonic
patients, respectively.

5) The SVD-Laryngitis database: We also created another
subset of the SVD database for the purposes of the
current study by choosing laryngitis as the second
voice pathology from the voices of the SVD database.
This data will be referred to as the SVD-Laryngitis
database in the current study. The SVD-Laryngitis
database consists of 140 healthy and 140 disordered
voice signals of the vowel /a/ produced at normal pitch
by all the speakers.

6) The HF database: This is a new speech database which
was recorded in Finnish by the authors as part of a
previous study [57]. This database includes speech
recordings from 20 speakers with HF and 25 healthy
controls. The patients were hospitalized for HF of
any etiology, regardless of the left ventricular ejec-
tion fraction. Each speaker read the same Finnish text
three times (the text-reading task) and produced one
spontaneous speech. The speech data, sampled at 44.1
kHz, was recorded in doctor’s practice rooms using a
headset condenser microphone (DPA 4065-BL) and an
AD converter (RME Babyface Pro). A linear phase FIR
filter (cut-off frequency: 60 Hz) was used to remove
the low-frequency noise picked up by the recording
microphone. For the purpose of this study, for each
speaker, we considered four segments of the vowel /a/
extracted from the middle recitation of the text-reading
task. Hence, in total, the HF database consists of 100
healthy utterances and 80 HF utterances.

The databases were recorded using different sampling
rates. In order to maintain uniformity, we re-sampled all the
voice signals to correspond to the same sampling rate of 16
kHz.

B. SVM CLASSIFIER

Support vector machine (SVM) is the most popular classifier
for voice pathology detection. In this study, we used SVM
with a radial basis function (RBF) kernel. Experiments were
conducted separately with each database by considering data
from 2/3 of the speakers for training and remaining for test-
ing. This was repeated for 20 iterations, each time building
different train and test data. In each iteration, there was no
overlap between speakers used in training and testing. The
CC feature vectors extracted from all the frames of an utter-
ance were averaged, yielding 39-dimensional utterance-level
feature vectors. The training data were z-score normalized
and the testing data were normalized by subtracting the mean
and dividing by the standard deviation of the training sets
for each feature. The detection accuracy was used as the
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performance measure. The accuracy was computed as the
ratio of the number of correctly classified voice signals to the
total number of voice signals. From the detection accuracies
obtained at all iterations, the mean and standard deviation
were computed as the final performance measures to be used
in comparing the different feature sets.

IV. RESULTS

The experiments were carried out using the SVM classifier
with the individual cepstral feature sets described in Section
IT as well as combined feature sets which were obtained by
merging the CCs computed from the glottal source (described
in Section II-B.1) and from the vocal tract (described in
Section II-B.2). The latter analysis was included to study
the potential existence of complementary information be-
tween the source-based and the vocal tract-based cepstral
feature sets. Since the individual source-based and tract-
based cepstral feature vectors were all of the same dimension
of 39, their combinations yielded in principle cepstral feature
vectors whose dimension was doubled, that is, 78. Therefore,
the feature selection was used for the combined feature sets
(as will be described in Section IV-B) and the accuracy
is reported both with and without feature selection for the
combined sets. Tables 1 and 2 show the results separately for
the individual and combined feature sets. The main results
reported in these tables are discussed in this section by
separating the treatment in two sections: the results obtained
using the individual CC feature sets are discussed in Section
I'V-A and the results obtained using the combined source/tract
CC feature sets are discussed in Section IV-B.

A. DETECTION ACCURACY OBTAINED WITH THE
INDIVIDUAL FEATURE SETS

By first comparing the mel filterbank-based individual fea-
ture sets, the following observations can be made from Ta-
ble 1: voice_ MFCC gave better accuracy compared to both
source_ MFCC and tract_ MFCC only in one database (PC-
GITA) whereas in the remaining databases, voice_ MFCC
was outperformed by either source_ MFCC (HUPA and SVD-
Laryngitis) or tract_ MFCC (Neurovoz, SVD-HkKD and HF).
The source_ MFCC gave the highest accuracy among all the
six individual feature sets for HUPA and SVD-Laryngitis.
In case of the Neurovoz and HF databases, the tract. MFCC
gave better accuracies compared to all other individual fea-
ture sets.

By similarly comparing the linear filterbank-based fea-
ture sets, it can be seen from Table 1 that the accu-
racy of voice_LFCC was comparable or better than that
of both source_ LFCC and tract_ LFCC for all databases
except for the SVD-HkD and SVD-Laryngitis databases.
The tract_LFCC and source_LFCC gave the highest accu-
racy among the six individual feature sets for SVD-HkD
and SVD-Laryngitis, respectively. By comparing between
the two filterbanks (mel vs. linear) used in the computa-
tion of voice-based, source-based, and tract-based feature
sets, the following observations can be made. The accuracy
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achieved with voice_LFCC was better than or comparable
to that of voice_ MFCC in three databases (Neurovoz, SVD-
HkD, SVD-Laryngitis). However, the accuracy obtained with
source_LFCC was inferior to that given by source_MFCC
in all databases except for the PC-GITA database. The
tract_LFCC set gave comparable or better accuracy than
tract. MFCC in three databases (HUPA, SVD-HkD, SVD-
Laryngitis). Overall, for the considered databases, the results
indicate that the use of the linear-frequency filterbank has
a comparative advantage over the mel-frequency filterbank
in extracting CCs from the voice signal and from the vocal
tract for detecting voice pathologies. In the case of the glottal
source, however, the CCs extracted using the mel filterbank
gave better accuracies than those extracted with the linear
filterbank. It is worth emphasizing that the voice_ MFCC
set, which represents the defacto feature set in the study
area, gave the best accuracy among the six individual CC
feature sets only in one database (PC-GITA). However,
voice_MFCC provided the best performance (76.09%) in
terms of mean accuracy averaged over all six databases (as
seen from the last column in Table 1). In the next section,
the CC sets computed separately from the source and vocal
tract are combined and the combined sets are compared to
the voice-based CCs which, in principle, carry mainly vocal
tract information but also some source information.

B. DETECTION ACCURACY OBTAINED WITH THE
COMBINED FEATURE SETS

The glottal source-based and the vocal tract-based CCs were
combined to analyze complementary information among
these feature sets, and to compare their performance with the
voice signal-based CCs reported in Section IV-A. It should
be noted that both the combined CCs (i.e., the combination
of source_ MFCC and tract. MFCC and the combination of
source_LFCC and tract_ LFCC) and the individual voice-
based CCs (i.e., voice_MFCC and voice_LFCC) carry vocal
tract as well as glottal source information. The dimension of
the individual voice signal-based CC sets is 39 and that of the
combined CC set is 78. Therefore, to perform a fair compar-
ison between the CC feature sets of different dimensions, we
reduced the size of the combined CC sets to 39 by using the
non-parametric neighborhood component analysis (NCA)
feature selection technique [61]. The NCA was implemented
in the current study using MATLAB. The results obtained for
the six databases with combined CCs are shown in Table 2.
From the first column (HUPA), it can be seen that the combi-
nation source_ MFCC and tract_ MFCC/tract_LFCC and their
reduced versions provided better accuracies compared to any
of the six individual sets discussed in Section IV-A. The
results shown in the fourth column (SVD-HKD) indicate
that the combined sets (source_MFCC + tract. MFCC and
source_MFCC and tract_LFCC) and their reduced counter-
parts perform comparably to or better than the best individ-
ual feature sets. This indicates that the reduced sets of the
combinations of MFCC extracted from glottal source with
MFCC/LFCC extracted from vocal tract (estimated using
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TABLE 1: Comparison of detection accuracies obtained with the defacto MFCC feature set (voice_MFCC) and its variants.

Accuracy (in (%), mean =+ std)
Feature set HUPA Neurovoz PC-GITA SVD-HkD SVD-Laryngitis HF Overall

voice_ MFCC | 72.89+250 | 74.39+294 | 78.64 +3.53 | 72.41+1.35 69.48 +2.35 88.76 £2.82 | 76.09 + 2.58

source_MFCC | 75.85+1.52 | 62.10+£3.02 | 68.67+3.29 | 70.57 +2.23 71.80 + 2.08 8521 £2.50 | 72.36 £2.44

tract_MFCC 67.97 £3.13 | 75.98 +3.62 | 75.38 +2.39 | 72.91 £2.09 68.76 +2.27 91.43+3.12 | 75.40+2.77

voice_LFCC 71.69+2.83 | 7473+ 1.88 | 75.72+2.75 | 72.35+1.88 69.41 +2.37 84.40+2.63 | 7471 £2.39

source_LFCC | 70.80+1.80 | 60.77 +3.15 | 71.11 £2.85 | 69.65 +2.93 70.29 +3.02 83.66 +2.49 | 71.04 +£2.70

tract_LFCC 68.44+2.80 | 73.44+238 | 73.17+3.23 | 74.76 + 1.54 68.63 +2.35 84.82 +4.60 | 73.87 +2.81

TABLE 2: Detection accuracies obtained with combined feature sets.
Accuracy (in (%), mean =+ std)
Without feature selection
Feature set HUPA Neurovoz PC-GITA SVD-HKD SVD-Laryngitis HF Overall
source_MFCC + tract_ MFCC | 7625+ 1.77 | 71.97+4.08 | 81.47+2.63 | 75.77 £+1.37 68.12 +3.42 93.85+2.01 | 77.90 +2.55
source_ MFCC + tract_LFCC 7735+3.06 | 7541+£295 | 79.17+2.23 | 73.81£1.95 67.73 £ 3.45 93.08 +1.67 | 77.75+2.55
source_LLFCC + tract_LFCC 73.13+£2.12 | 73.62+3.13 | 81.09+1.70 | 72.16 £2.35 70.04 +2.67 94.13+2.45 | 77.36+2.40
source_LFCC + tract MFCC 7425+190 | 72.46+3.45 | 81.28+2.03 | 72.82+2.87 71.52 +2.07 9352+ 1.84 | 77.64 +£2.36
With feature selection

source_MFCC + tract. MFCC | 77.11 £1.46 | 69.95+2.59 | 82.03+2.67 | 75.66 +2.48 70.49 £ 2.17 9544 +2.74 | 78.44 +2.35
source_ MFCC + tract_LFCC 78.86 £2.15 | 77.04 +3.61 | 77.57+394 | 7473 +1.34 74.79 + 2.90 91.57+2.23 | 79.09 +2.70
source_LLFCC + tract_LFCC 75.52+£2.23 | 72.89+£3.37 | 78.13+£294 | 72.01 £2.18 69.22 £ 1.79 89.29+2.54 | 76.17 £2.51
source_LFCC + tract_ MFCC 7237 +1.62 | 74.60+234 | 81.97+1.95 | 72.62+2.49 72.83 +£2.28 90.91 + 3.41 77.55+2.35

TABLE 3: Detection accuracies for four existing feature extraction techniques (MFCC, LPCC, CQCC and PLPCC) and for the
combination source_MFCC + tract_LFCC (denoted by Comb-CC). The four existing feature sets were all computed using the
voice signal as input to the cepstral computation. Two classifiers (SVM and 1-D CNN) were used and the test data was either
clean or corrupted by traffic noise using three SNR categories.

SVM 1-D CNN
10dB | 20dB | 30dB | Clean | 10dB | 20dB | 30dB | Clean
MFCC 7222 | 76.09 | 80.31 | 8237 | 74.22 | 77.39 | 83.31 | 88.37
LPCC 68.44 | 71.52 | 7422 | 7991 | 7044 | 7352 | 79.22 | 8491
CQCC 65.76 | 69.58 | 71.14 | 74.66 | 67.76 | 70.58 | 74.14 | 78.66
PLPCC 7311 | 75.84 | 79.78 | 83.65 | 73.11 | 76.44 | 84.78 | 89.15
Comb-CC | 69.33 | 74.76 | 82.62 | 85.83 | 70.33 | 75.76 | 84.52 | 90.43

GIF) are more effective than the CCs extracted from the
voice signal in the detection of dysphonia. The second and
the third columns show the results obtained for the two PD
datasets (Neurovoz and PC-GITA). In this case, the reduced
versions of the combinations source_ MFCC + tract_LFCC
and source_LFCC + tract. MFCC perform comparably or
better than voice_ MFCC or voice_LFCC. The results ob-
tained for the SVD-Laryngitis dataset (the fifth column)
indicate that the highest accuracy was achieved by combin-
ing source_LFCC with tract MFCC. However, among the
reduced feature sets, the combination of source. MFCC and
tract_LFCC gave the best detection accuracy. The reduced
sets of all the combinations performed comparably or better
than the voice signal-based CCs. In the case of the HF
database (the sixth column), the results indicate that the
full combined sets of the source-based and tract-based CCs
as well as their reduced versions outperformed the voice-
based CCs. The overall mean accuracy (average accuracy
across all the databases) of the combined sets and their
reduced versions is better than that of the individual voice
signal-based CCs. Finally, the following important observa-
tion related to the two aims of the study can be made by
comparing accuracies obtained with the defacto CC feature
set (i.e., voice_MFCC shown by the first row in Table 1)
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to those obtained with the reduced CC set, which combines
source_MFCC and tract_LFCC (i.e., the accuracies shown
by the sixth row in Table 2): the latter feature set was shown
to give better detection accuracy in all the databases except
for PC-GITA. Furthermore, this feature set also gave the
highest overall mean accuracy (79.09%) compared to other
individual and combined feature sets.

C. COMPARISON WITH EXISTING TECHNIQUES

In the previous sub-sections, we compared the source-based
and vocal tract-based cepstral features and their combina-
tions using the voice-signal based cepstral features as the
reference. The results in Table 2 show that the combination
source_MFCC + tract_LFCC yielded the best overall detec-
tion accuracy. In this sub-section, this best feature combi-
nation will be compared to other existing feature extraction
techniques. The combination source_ MFCC + tract_LFCC
will be shortly referred to as Comb-CC. Since different
feature extraction techniques have been developed in many
studies over the past decades, a large number of poten-
tial reference techniques is available. These include, for
example, perceptual linear prediction features (used, e.g.,
in [62]), discrete wavelet transform features (used, e.g., in
[63]), empirical mode decomposition features (used, e.g., in
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[64]), and non-negative matrix factorization-based features
(used, e.g., in [65]). For more details about various existing
feature extraction methods, the interested reader is referred
to the following tables in three reviews in voice pathology
detection: Table 1 in [67], Table 2 in [5], and Table 1 in
[66]. For comparison, we selected four existing features
extraction techniques which have been widely used in the
study area of pathology detection and which are all based
on the computation of cepstral features. The selected four
cepstral feature techniques are MFCCs, linear prediction
cepstral coefficients (LPCCs), constant Q cepstral coeffi-
cients (CQCCs), and perceptual linear prediction cepstral
coefficients (PLPCCs). It is worth emphasising that all the
selected four existing techniques use the voice signal as input
to the cepstrum computation whereas Comb-CC uses both
the glottal source and the vocal tract as inputs to the cep-
strum computation. In addition, the detection experiments are
computed in this section using two classifiers: SVM and one-
dimensional convolutional neural network (1D-CNN). The
same SVM used for experimentation in the previous section
is considered. The 1D-CNN architecture consists of 5 layers
in total: two convolutional layers with 16 filters of length 3,
alternating with max-pooling layers of pooling size 2, and
one fully connected layer comprising 256 units. The input
length of this model is 39 samples, which corresponds to
the dimension of the CC feature vector. We adopted rectified
linear units as the activation function in all layers. Note that
all the convolutions and pooling operations used are one-
dimensional. The voice samples from the six databases are
combined to form a single dataset by considering only one
voice sample per speaker from all the databases. Data from
70% of speakers is used for training and the remaining data
is used for testing. The data from the test speakers is unseen
during the training phase. To increase the training data, we
corrupted the clean training data with additive noise in three
different signal-to-noise (SNR) conditions (10 dB, 20 dB and
30 dB) using realistic non-stationary traffic noise. The (clean)
training data was then augmented with the corrupted data.
This procedure gave a 4-fold increase in the amount of the
training data and may help to incorporate noise robustness
of the model. The test data was also corrupted in the similar
manner.

The results of comparing Comb-CC with the four existing
techniques are shown in Table 3. From the table, it can be
seen that the CQCC set showed the lowest detection accuracy
both with the SVM and 1D-CNN classifier. The accuracy
given by Comb-CC is lower compared to PLPCC and MFCC
at the lowest SNR level (SNR = 10 dB). This is due to the
sensitivity of GIF analysis to noise [46]. At the higher SNR
levels (20 dB and 30 dB), the performance of Comb-CC is
comparable or better than that of PLPCC and MFCC. The
Comb-CC features outperform all other considered features
in the case of clean voice signals for both the SVM and 1D-
CNN classifier.

Figure 3 shows the t-distributed stochastic neighbor em-
bedding (t-SNE) visualization plots of various cepstral fea-

8

tures for 100 pathological and 100 normal voices randomly
selected from the clean test data. The t-SNE is a non-linear
dimensionality reduction algorithm used for exploring high-
dimensional datasets by mapping to two or more dimensions
suitable for human observation [68]. In Figure 3, the t-SNE
displays the 39-dim cepstral features using two dimensions.
From the figure, it can be seen that the two classes are
clustered much better with the proposed Comb-CC features
compared to the other features.

V. CONCLUSIONS

In the automatic detection of voice pathology, traditional
pipeline systems based on using a separate feature extraction
stage and a separate classification stage is still a valid system
architecture, despite the fact that modern end-to-end systems
provide excellent detection accuracy. One of the strongest
benefits of traditional pipeline systems, particularly those
based on the SVM classifier, is their good performance in
scenarios where only little training data is available. Further-
more, it is difficult for the user (e.g. the clinician) to gain
knowledge about the underlying reasons why a certain detec-
tion decision was made by the end-end network. Therefore,
many studies have been published in automatic detection of
voice pathologies by using SVM-based traditional pipeline
systems [13], [16], [17], [58], [59]. These studies have almost
exclusively used MFCC features as the method to express
the voice signal in a parametric form, either alone or as the
defacto reference method. Moreover, a few recent works [16],
[17] have shown that the detection of certain pathologies
benefits from combining the traditional voice signal-based
MFCCs with the MFCCs computed from the glottal source
waveforms estimated by GIF. However, none of the previous
works in the study area have investigated the possibility of
also using the other output of GIF, the estimated vocal tract
filter, in the computation of cepstral features. In addition,
there are no studies in automatic detection of voice patholo-
gies comparing the detection performances between CCs
derived using the mel and linear filterbanks. Therefore, the
aims of the current study were to compare the performance
of different cepstral feature sets in the automatic detection
of voice pathologies by varying both the input of the CC
computation (the voice signal vs. the glottal source vs. the
vocal tract) and the type of filterbank (mel vs. linear). A
total of six voice pathology databases were used and this
data represented four pathologies (dysphonia, Parkinson’s
disease, laryngitis and heart failure).

The experiments showed that the voice signal-based CCs
provided better results than the other individual feature sets
only for one database (PC-GITA). For the other databases,
the CCs computed from either the glottal source or vocal
tract performed better than the voice signal-based CCs. The
results also indicate that the use of the linear filterbank has
an advantage over the mel filterbank in the computation of
CCs particularly from the vocal tract. Most importantly, the
results indicate that the best detection accuracy averaged over
all six databases was obtained by applying feature selection
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FIGURE 3: 2-D t-SNE visualization results plotted with 100 healthy and 100 pathological voice samples randomly selected

from the clean test data set.

to the combination of the mel filterbank-based CCs com-
puted from the glottal source and linear filterbank-based CCs
computed from the vocal tract. This combination of CC fea-
tures gave an improvement of 3% in overall accuracy when
compared to conventional MFCC features. Furthermore, the
results obtained with the combined dataset show that the
combination of CCs gave comparable or better performance
than the existing features for clean speech and for speech
of high SNR. This result was obtained by both the SVM
and 1D-CNN classifier. Hence, this study shows encouraging
results which indicate that the accuracy of the traditional two-
stage system based on the defacto cepstral feature extraction
method, the computation of MFCCs from the voice signal,
can be improved with a proper combination of the glottal
source-based and vocal tract-based cepstral features. In the
future, the study can be extended to other voice pathologies
such as dysarthria and vocal nodules. Furthermore, in order to
improve the detection accuracy given by the proposed source-
based and tract-based cepstral features in noisy conditions,
the use of noise-robust GIF methods (e.g. [69]) in the pro-
posed cepstral computation approach will be studied.
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