
QUARTERLY OF APPLIED MATHEMATICS
VOLUME XLIX, NUMBER 2
JUNE 1991, PAGES 373-396

A COMPARISON OF CERTAIN ELASTIC DISSIPATION MECHANISMS
VIA DECOUPLING AND PROJECTION TECHNIQUES

By

DAVID L. RUSSELL

Virginia Polytechnic Institute and State University, Blacksburg, Virginia

Abstract. In this paper we study the Euler-Bernoulli elastic beam model, mod-
ified in a variety of ways to achieve an asymptotically linear relationship between
damping rate and frequency. We review the so-called spatial hysteresis model and
then introduce the thermoelastic/shear diffusion model, which is obtained by coupling
the originally conservative elastic equations to two different diffusion processes. We
then use a decoupling/triangulation process to project the coupled system onto the
subspace corresponding to the lateral displacements and velocities and show that the
projected system agrees in many significant respects with the spatial hysteresis model.
The procedure also indicates some possibly desirable modifications in the elastic term
of the spatial hysteresis model.

1. Internal damping mechanisms in elastic beams. Energy dissipation in elastic
systems results from a wide variety of sources, both internal and external with respect
to the systems themselves. It is the internal dissipation mechanisms which are of the
greatest scientific interest both theoretically, because they reflect the basic structure of
the medium in question, and from the point of view of projected applications, such
as some proposed space structures, which do not interact with a supporting medium
and are thus expected to exhibit energy losses in which internal damping should be
dominant. In this article we will be concerned exclusively with internal dissipation
mechanisms in the context of the Euler-Bernoulli beam equation

d2w d2 ( r,rd2w2 ^—2 —t 1—0 (i.oi;
dt2 dx2 \ dxA

for which, in the absence of additional dissipative terms, the energy

•(-•mi:dw\2 „r (d2w+ EI
2'

dt J lax2 dx (1.02)

is conserved.
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From many studies (see, e.g., [2, 9]) it has long been clear that simple "viscous"
damping models such as

d2w „ dw d2 (^rd2w
+ 2y^7 + 7 7 EI— j - 0,

dt2 dt dx2 V dx1 j

which produce uniform damping rates, are inadequate if experimentally observed
damping properties are to be incorporated in the model. The recognition that elastic
damping rates tend to increase with frequency goes back at least to Lord Kelvin in
Britain and Robert Voigt, a distinguished German physicist, both working toward
the end of the last century. The Kelvin-Voigt approach may be applied, in principle,
to the vibrations of any linear elastic system. The Kelvin-Voigt hypothesis is that,
whatever may be the linear operator describing the elastic restoring forces in an elastic
body, the internal damping forces may be described with a positive multiple of that
operator, but acting on the system velocity rather than displacement. Incorporated
into the Euler-Bernoulli beam model, this approach yields an equation of the form

d2w di ( d2w\ d2 f d2w\
P T + 2yp 2 EI 2 +  2 E1 2 = 0dt2 dtdx2 V dx2 J dx2 V dx2 J

with appropriately modified conditions at boundary points. If the fourth-order elas-
ticity operator is denoted by

1 d2 ( d2w\Aw = ^ EI-
Pdx2 \ dx2

then the corresponding form of Eq. (1.03) is

d2w „ dw, + 2 yA^+Aw = 0. (1.04)
dt2 dt K '

If the eigenvalues of the positive selfadjoint operator A are ?.k , so that the natu-
ral frequencies of the undamped system are cok = i^k)^2, then the damped system
(1.04) may be seen to have exponential solutions e"k'(pk, where <pk is the corre-
sponding eigenvector of A , and ak satisfies the quadratic equation

°l + 2y°i°k + = o.
Thus ak is given by

2 I t 2 4 V/2 / 1 AOak = -ya)k ± {y cok - (ok) . (1.05)
Assuming y to be small, we see that the ak are complex for some finite number
of values of k with the damping rate proportional to the square of the frequency.
Critical damping occurs for a> = 1 /y; for cok larger than this the modes are over-
damped with one of the values given by (1.05) going to -oc and the other tending to
-1/2y as wk tends to infinity. For very small values of y all we would expect to see
would be the quadratic dependence of the damping rate on the frequency. Whether
the overdamping predicted by the model has ever been observed in the laboratory is
unknown to this author but it seems, on the face of it, to be unlikely.
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There is no difficulty in obtaining ad hoc mathematical models exhibiting struc-
tural damping, i.e., a linear damping-versus-frequency relationship. Representing an
arbitrary linear oscillator, without damping, by

d2w + Aw = 0,
dt2

the simplest mathematically viable example of a system exhibiting structural damping
behavior, treated extensively by the author and G. Chen in [3], is provided by the
so-called square root model

d2w . .i/idw . n ..—y + 2yA —7—i-Aw = 0, (1.06)
dr dt

where Ax/1 denotes the positive square root of the positive selfadjoint operator A
and y > 0. Attempting a solution of the form e"kt(pk again, we find, assuming
|y| < 1, that

ak = {-y±i( 1 -y2)1/2)cok

so that the ak lie on the pair of rays in the left half-plane making an angle

a = tan (y/\J 1 - y2)
with the imaginary axis.

In [10], in the constant coefficient case, the set of natural boundary conditions is
shown to be divisible into two classes with boundary conditions from the first class,
consisting of the so-called trigonometric cases, being those for which the nonnega-
tive square root of the fourth derivative operator is • Redefining y, the
modified Euler-Bernoulli equation in this case takes the form

PjT2~2y-^2 = (1-07)dt dtdx dx
In this equation the damping term is rather easy to understand from the physical point
of view—it is a lateral force acting on the beam which is negatively proportional to
the bending rate at the point where that force is applied. If at either of the endpoints
of the interval [0, L] the fourth-order operator is assigned boundary conditions from
the second class, constituting the so-called exponential cases in [10], which includes
the special instances of clamped or free endpoints, corresponding, respectively, to

w(0,t) = 0, |^(0,0 = 0,
or

£7^4(0,0 = 0, -EI^(0,t) = 0,
dx dx

for example, the positive square root of the fourth-order operator is not the negative
second-order operator and the nature of the damping term in (1.06) is such as not to
admit a ready interpretation in physical terms. The apparent necessity of discarding
this model for this reason is a real disappointment because the system (1.06) has very
attractive mathematical properties, as outlined in [3].
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The difficulties outlined in the previous paragraph led to the development of an
approach which, with rather questionable accuracy, has been named the spatial hys-
teresis damping model [9] (a similar model, developed independently, appears in [6]).
Assuming for the moment that the function w(x, t) describing the evolution of the
beam displacement is smooth, an easy calculation shows that, with % as in (1.02),
we have

o)-f dw d2w „rd2w d3w+ EI-
dt dt2 ' * dx2 dtdx2

(integrating the second term in the integrand by parts)

dx

-fJo
dw d2w d ( ^Td2w\ d2w
dt Qt2 dx I dx2 / dtdx

dx + EI d2w d2w
dx2 dtdx : 1 -08)

The presence of the angular velocity expression in the underlined term indicates
that its coefficient, -j^{EIjp-), should be interpreted as a restoring torque, arising
due to spatially variable bending of the beam. The recognition that this coefficient
represents a torque aids us in interpretation of the damping term which we now
introduce into the system via the definition

rh(x, t) = 2 [ h{x,£)
Jo

d2w , . d2w
Jtdx^X' ^ ~ dtdx(<°' ^ d£. (1.09)

We think of rh as a torque acting on the beam at the point x due to the differential
rotation, as compared with the rotation at x, of the beam at points £ "near" x.
In many cases the support of the interaction kernel h(x, £) would be restricted to
a thin strip in the plane, centered on the line x = £, or h would be small outside
such a strip. Application of Newton's second law dictates the symmetry condition

h((,x) = h(x,e). (1.10)

Additionally, we require that h(x,£) should have continuous partial derivatives
with respect to x and ^ for 0 < x, £ < L. In constant coefficient applications it
is convenient to replace h(x, £) with a function yh(x - £), where y > 0 is used
to parametrize the strength of the damping effect and h{r\) satisfies the normalizing
condition

rS
h(rj)dtj =1 (1-11)

/:

and the evenness condition h{rj) = h{~T])
We add the term

LL d2w
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to both sides of (1.08) so that, with a further integration by parts,

d m , dw, A fL d2wl))+ j\^dx

-I1 dw ( d2w d
~Jt \P~d7 + d^ ~ (eI^{\ -rhdx I dx2 h

[ „Td2w d2w+ < EI-
dx2 dtdx

d_ (Frdjw\ _
dx [ dx2 j h

dw
~dt

dx

L

(1.12)

o
Equating the separate parts of (1.12) to zero (a procedure which can be made rigorous
by the principle of virtual work) yields the integro-partial differential equation

d2w d
P dt2 + dx

d_ (PT^w\ _
dx ( dx2 J T/!

f) d2w , s d2w
(*> 0-o^:(<f,-0dtdx dtdx

d2w d fL=V *<*•
+ 4(£/2M=0

dx2 V dx2 J
and the requirement that, at x = 0 and x = L,

dw

d£ (1.13)

r,Td2w d2wh I 
dx2 dtdx

d (rjd2w\
dx I dx2 ) T/! 0. (1.14)

Various beam configurations now lead to different sets of boundary conditions. For
example, in the case where the beam is clamped at x = 0 and free at x = L (i.e.,
the cantilever case) we obtain

u>(0,/) = 0, 1^(0,0 = 0, |Jf(L,0 = 0, (1.15)°x dx
d_ / aV

dx I dx2
! [lh(L,
Jo

+ 2 I h(L,t)
x=L

d2w ,r , d2w
dtdx ' dtdx d£ = 0.

(1.16)
Equation (1.12) now becomes

d a, ( . . dw, ,\
2j«-(»<•.<). aj-O.Oj

= -2 [L f' htx.S,
Jo Jo

d2w . d2w , .
dtdxdtd^{X' l)

d2w . , ,d(3^{x'')dx =

(since the roles of x and £ are symmetric and h(x, £,) = h{£, x))

fL [Lh(x,$)
Jo Jo

d2w , d2w .
dtdx^' ~ didx^'

2

d£dx< 0, (1.17)
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provided we insist that

h(x,£)>0, 0 <x,£<L. (1-18)

Clearly (1.17) becomes an equality for motions with constant, i.e., the inertial
motions. Thus the energy is strictly decreasing whenever the bending rate is not
identically zero and is conserved when the bending rate, , vanishes identically.

In [9] we have studied a constant coefficient, infinite length beam, for which the
convolution form h{x - g) of the interaction kernel is appropriate. It is shown that
the spectrum of the generator of the related semigroup on the energy (Hilbert) space
consists of complex numbers, indexed by the spatial frequency parameter r,

° = ff(t) = T-[-g{t) ± \fgtjf^pE~I], (1.19)

wherein, with h(i) the Fourier transform of the kernel h{r]),

g(r) = y(l -A(t)). (1.20)

In this context we should require h(rj) to be integrable on (-00, oo) with derivative,
h'{rj), at least square integrable there (see [5]). From the integrability of h(ri) we
know that h(r) is continuous and

lim h(r) = 0. (1-21)
|r|—oo

2For a relatively low level of damping we may assume y < pEI. Then it may be
seen that for large values of r, to first-order in h(x),

-,(1 - AM) ± iJTe7^7 (I + +
2 , 

z-[-y±l^pEI-y2] 1 T

pEI -

iyh(T)

\jpEi-y1.

Thus, asymptotically, as |t| —> oc , a{t) lies along the rays

R+ _ = {z\z = r(-y ± i\JpEI - y2), r > 0}
in the left half complex plane.

Further analysis shows that as |t| —> 0,
2

<7(7) - T—[-7J?t2 ± i\JpEI - y2], (1.22)

where d is given by
1 f°° 2= - / t] h{t])dti,

J — OO

provided this integral exists.
From (1.22) it is clear that, as t —» 0, there is a quadratic dependence of damping

rate on frequency, in agreement with the Kelvin-Voigt model, while, as we have
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seen earlier, at the high end of the spectrum there obtains a linear damping rate
versus frequency relationship of the sort provided by the square root model. In his
dissertation [4] Hansen has shown, for a variety of different configurations, that the
mathematical properties of the model are essentially those of the square root model
as well. Additional work along these lines has been reported by Huang [5].

Nevertheless, it is only fair to add that the spatial hysteresis model bears its share
of criticism. A serious objection, perhaps persuasive from the point of view of
classical continuum mechanics, is that the damping term is not local and hence is
not a property of the material of which the beam is composed as opposed to the
particular configuration of the material in the beam. Granting the validity of that
objection in the context in which it is made, we nevertheless state unequivocally that
our interest lies in modelling the damping behavior of particular bodies rather than
of materials.

The damping mechanisms reviewed in this section are direct in that they involve
direct insertion of supplementary dissipation terms into the original conservative
equations governing the elastic system. The methods to be studied in the sections to
follow are indirect in the sense that they involve coupling the mechanical equations
governing beam motion to related dissipative systems with additional dynamics, re-
sulting in an overall system in which mechanical energy is dissipated. Two types of
coupled dissipative systems are discussed, the overall processes being described as the
Euler-Bernoulli beam with thermoelastic damping and with shear diffusion damping.
Our main result pertains to the situation wherein both types of damping are simul-
taneously present. These are introduced in Sec. 2 and their eigenvalue distributions
are studied, for certain cases, in Sec. 3.

The mechanisms referred to above enjoy the advantage that they are motivated
and derived from simple physical considerations, a project which is carried out in a
separate paper [8]. The resulting coupled systems are not excessively complicated but
they are of higher order, or dimension, than the original undamped systems are, with
states which include temperature and shear distributions as well as displacements of
the beam itself. Such a model may be excessively complicated for use in many types
of simulations. A second objective, described in Sec. 4, is to introduce and study
a decoupling process which projects the dynamics of the coupled system onto the
subspace of lateral displacements and velocities. Notably, and fortuitously for the
future of the spatial hysteresis model, this projection, applied to the combined ther-
moelastic/shear diffusion process in certain of the constant coefficient cases, yields a
system with damping term consistent with spatial hysteresis for a particular choice of
the interaction kernel h(x -<![), as we demonstrate in Sec. 5. The projection process
also results in modification of the elastic term of the system; the implications of this
modification are discussed in Sec. 6.

2. Combined thermoelastic/shear diffusion dissipation in an elastic beam. The mod-
els which we will introduce here are indirect in the sense that they involve coupling
of the mechanical equations governing beam motion to related dissipative systems
with their own dynamics, resulting in an overall system in which mechanical energy
is dissipated. The "derivations" which we offer here are of an ad hoc character to be
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used for information and motivation only; more rigorous derivations will appear in
[8], We will restrict attention to constant coefficient cases here.

x - h x x»h

Fig. 1. Schematic representation for thermoelastic and shear diffu-
sion damping.

We begin by discussing thermoelastic dissipation in an elastic beam. Starting again
with the Euler-Bernoulli model for beam motion (cf. (1.01)), we ask the reader to
consider a cross-section of the beam as shown in Fig. 1. A curvilinear trapezoid is
bounded by the lines orthogonal to the elastic axis at x-h and x + h , where h is a
small positive number, and by the upper and lower lateral surfaces of the beam. That
curvilinear trapezoid is, in turn, divided into upper and lower halves by the elastic
axis itself. For this expository treatment it is enough to suppose that the absolute
temperature in the upper trapezoidal region can be adequately approximated in mean
by a function T+(x, t) and in the lower region by T~(x, t), neglecting any more
complex variations in the transverse direction. We probably should call the difference
ST(x, t) but, for notational simplicity, let us just write

T(x, t) = T+{x, t) - T~(x, t).
In the absence of other influences, and assuming the beam to be sufficiently thin so
that transverse conduction occurs much more rapidly than that due to any longitudi-
nal variations in T to be considered, we should expect such a temperature variation
to decay according to the simple law

t) = -kT(x, t).

However, the laws of thermoelasticity indicate a coupling of this conduction process
with the purely mechanical processes taking place in the beam, which we now proceed
to elucidate.

Taking the thickness of the beam to be 2d, d > 0 but small, we may assume
that for small h the volumes of the upper and lower trapezoids are represented by
V+(x,t)dh and V~(x,t)dh. From the elementary principles of thermoelasticity,
as presented in [1], e.g., where further references are indicated, we conclude that in
adiabatic deformation in the absence of conduction we should have a relationship

1 1T{x, t) = K
V+(x,t) V~(x,t)
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Letting V(x, t) = V+(x,t)- V~(x, t) and supposing the variations in V+(x, t)
and V~(x, t) to be very small relative to their mean values, which we take to be
very nearly constant both in space and time, we can see that we should have an
approximate relationship

dT. , ^dV,

Now allowing for this thermoelastic effect and conductivity at the same time, the
complete relationship becomes

^(x,t) = -kT(x,t)-K^(x,t). (2.01)

But, for small h, V(x, t) is nearly proportional to -f-r(x, t), so we may replace
(2.01) by

^(x,t) = -kT(x,t) + K-^j{x,t). (2.02)
dt dtdx2

Complementary to these temperature effects of mechanical motion, we now sup-
pose that the total force couple about the elastic axis is modified from its usual Euler-
Bernoulli value of EIj^-(x, t) to EIj^-(x, t) + 0KT(x, t), for some 6 > 0. The
appropriate modification of the Euler-Bernoulli energy expression (1.02) is now

# («•■ w ■T) - (" (w)2+1E' (0)1+er') <2 03'

Proceeding in the usual way, we see that if we assume (2.02) and the equation of
motion for the beam,

d2w d^w n„d2T nASp—7—\- EI —j + 6K —y — 0, (2.04)
dt2 dx4 dx2

we will obtain, for smooth solutions of these coupled equations, the energy dissipation
relation

JQP rL

= -6kJ T(x, t) dx (2.05)

provided that the boundary form

[EIt^L + _ (E,^ + ^
\ dx2 ] dtdx y dx3 dx J dt

vanishes.
The second indirect mechanism which we will study here is the shear diffusion

process. It takes as its starting point the Timoshenko model [12], We choose here,
in our expression of that model, to use as variables the lateral deflection w and the
shear angle, /?, rather than w and the local rotation angle y , because the dissipation
mechanism to be developed is particularly dependent on y? . In the variables w and
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/? the Timoshenko beam energy is

(2.06)
(cf. [13] for definition of the (positive and constant) coefficients introduced here),
from which we obtain a modified form of the Timoshenko equations

= 0, (2.07)

(2.08)

In (2.08) all terms except the first can be regarded as shearing forces to which the
shear angle /? responds dynamically. Now suppose that a further viscous force affects
the evolution of /?:

. (d2p d3w \ . dp 0 T,T(d1p d3w\ nI —Y ^ 2  ) + ZP ~ EI (  T  T I — (2.09)
p\dt2 dt2dx) di ^ \dx2 dx3 J

We now further assume / to be small relative to the other constants present and we
neglect the first term. What then remains is a diffusion process for /?,

(2'10)

thus the name shear diffusion for the process. Combining (2.10) with the similarly
modified Eq. (2.07), i.e.,

d2w r/a3/! d4w\ n
P—T + EI —T + 4 =0' 2-Udr \dx3 dx J

taking / = 0 in (2.06) to obtain y , and assuming the vanishing of an appropriate
boundary form ((2.16) below with K = 0), we have

<2A2)

The shear diffusion model is not simply a special case of the classical model of
linear thermoelasticity. The natural extension of our model in that direction would
result from including the effects of thermal conductivity in the longitudinal direction
of the beam in Eq. (2.02). That is not done here because we believe those effects
should be small in comparison to those due to transverse conduction and the shear
effects. The shear diffusion model differs from the thermoelastic model in a very
significant mathematical respect; namely, the shear rate equation (2.10) couples to
the beam equation via (a spatial derivative of) the beam displacement rather than
via the beam velocity as in the case of (2.02) or any other similar equation based on
thermoelastic considerations. This is discussed further in [12].
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While it is not entirely obvious, it will be plausible that the combined effect of
thermoelastic and shear diffusion dissipation acting simultaneously corresponds to
a system involving all four of Eqs. (2.02), (2.04), (2.10), (2.11), ((2.04) and (2.11)
combined in one equation):

d2w r/a3/! d4w\ ab2T A
pW + E'{o? + J7)+eK^? = ̂

?l + lcT-K-^1=0, (2.13)
dt dtdx2

dt \dx2 dx3)

A more formal derivation of these equations will appear in [8].
Using (2.13) we may verify that if we define (cf. (2.03), (2.06))

^=y!U%)z+^2+E,{64+M+eT2)dx- (2'i4>
and assume smooth solutions, we have

^ = -fQ (^kT(x, t)2 + 2cr (j£-(x, t)j j dx (2.15)
2^

provided that the boundary form

(dp d2w
+ EI hr^ + —i\ dX f) r

(2.16)

vanishes.
In much of the work to follow we will be concerned with those cases in which

the boundary conditions used to annihilate (2.16), along with the system equations
(2.13), admit solutions of the form e^'ewx{w{v), T(v),j3(v)) for a certain set of
values of the wave length parameter v . This corresponds, e.g., to the trigonometric
cases discussed in [10], the case of periodic boundary conditions on a finite interval
and the case of an infinite interval with conditions at infinity sufficient to imply that
the expression (2.16) has limit zero as |x| —» oo.

The bending equation, i.e., the first equation in (2.13), and the thermal equation,
which is the second equation there, clearly decouple as K —► 0. In what follows
we will be assuming that K is positive but sufficiently small. The shear equation,
the third member of the triple (2.13), becomes independent of w if we assume that
a and /? are large relative to EI and we can expect /? to be small, and thus a
relatively insignificant term in the first equation of (2.13) if /? is large relative to a .
Assumptions of this form will be made in the sequel without further discussion.
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3. Eigenvalue/eigenvector analysis of constant coefficient, trigonometric cases. We
again consider the coupled system (2.13). As already noted in the previous section,
with the assumptions indicated there, we may look for solutions of the form

w(x, t) = w(v)eX{p)tewx,

T{x,t) = f{u)eMv)'eivx, (3.01)

fi(x,t) = P(u)ellv)teivx,

for various values of v depending on the spatial interval involved and the specific
form of the boundary conditions. Substituting these solution forms into (2.13) we
obtain an eigenvalue problem for A, parametrized by u (in which we suppress v as
an argument):

pX2w + Eli-ipv3 + wv4) - 6KTv2 = 0, (3.02)

XT + kT + KwXu2 = 0, (3.03)

2a pX + t/? + EI(fiv2 + iwv3) — 0. (3.04)

Solving (3.03) and (3.04) for T and fi , respectively, in terms of w , we have

f = -(X + k)~lKwu2,

/? = ~{2aX + t + EIv2)~xEIww\

Substituting these into (3.02) and removing the common factor w from the resulting
equation, we obtain

pX2 + EI{vA - (2aX + t + EIv2)'XEIub) + (X + k)'XQK2Xv4 = 0. (3.05)

Proposition 3.1. If K, Elp/a2, and o/i are sufficiently small, (3.05) has two
negative real solutions and a conjugate pair of complex solutions for every nonzero
real v . Moreover, the complex solutions have asymptotic representations

X(i/) = {-EI/4a ± i^EI/p - {EI/4o)2 + (?{K2))v2

+ tf( 1), v2 —> oc ,

1 \ 2a6K2 4 ^0/ 6,

(3.06)

AW= +<f(" 1 (3.07)

± i(2(EI/p)xl2v2 +tf(v4)), c2-0.

Remark. Thus for small values of u the damping exponent is proportional to
the square of the frequency, in agreement with both the Kelvin-Voigt and "spatial
hysteresis" models. On the other hand, as i/ —► oo, (3.06) shows the (negative) real
part of X to be, asymptotically, a multiple of the imaginary part so that the damping
exponent is proportional to frequency at that end of the spectrum, in agreement with
the "square root" and other "structural damping" approaches. The negative real roots
correspond to thermal and shear relaxation modes of the coupled system.
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Proof. We observe, first of all, that we can rewrite (3.05) as

2a p 3 / , pEI 2\ ,2 , 2oEI 4.
—-A + \p + L—v A h vX

.j774,/2<7 .E72\ A „ 2 4 n+ EIv + (- + !+_„ j =0.

Dividing by the leading coefficient, we have
.3 / T EI 2\ 32 EI 4. Ely 4
A + hr- + ^-I> A +—V X  V\2a 2a J p 2a p

+ (? + 1 + E7"2)xTiWfV-0-
Setting <5 = EI/4a , a = EI/p, and e = t/2ct we obtain the form

A3 + 25V1}1 + qVa + e(A2 + aV)
(, 1 2<S 2\ A .„2 4 n (3.08)+ 1 + - + — v —r6K v =0,
V P P )

2where all coefficients shown are positive. Letting A = Xv and dividing the resulting
equation by v4 , Eq. (3.08) may, in turn, be replaced by

,2 , ^ , 2 2JeA (, i I i 2d 2\ 6K2Xv1X +2 SX + a = —t-z 1 H h—v ^^ . (3.09)
is2x + e V P P J {Xv + e)(Xv + k)

Since the coefficients of S and K on the right-hand side of (3.09) are uniformly
bounded for 0 < v < oo, it is easy to see that there are solutions having the form,
again uniformly for 0 < v < oc ,

X = ±ia + (?{S) + &{K1),

X = Xv2 = ±iav1 + v2(<f(d) + (?{K2)).

The energy dissipation results of the preceding section guarantee that the real part of
A is negative in all cases. For large values of v we can obtain more information by
noting that (3.09) takes the asymptotic form, as v —> oo,

X3 + 2SX2+ a2X + 2S6K2/p = \f(X, v2), (3.10)
v

where / is uniformly bounded and has uniformly bounded partial derivatives with
respect to A and v2 for i
that (3.10) has a solution

2respect to A and v for all large v and A bounded away from zero. We conclude

provided that

A = -d ± i\/a2 - d2 + cK1 + &{v 2) + &(K4)

= L + cK2 + &(v~2) + &(K4),

-236 56 S2di
' p(3X2Q + 45XQ + a2) pa2 pa2(a2 - 52)1'2' ( '
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For small values of A, on the other hand, we can see that

2<5 eX 25v2X2 2dv*X3
—t-z  — Id k H ~ h ■ ■ •
v X + £ e e2

~ 2dv2X2 4 ,= 2SX -— + v g{X,v),

and

, 1 25 i\ 0K21v2 / 1\ OK2, 2 4./! ,1 H 1 v I ——~ z—x — ( 1 -t- — ] —v h(X, u),
P P J [Xv2 + e){Xu2 + k) \ p) zk

where g(X, v) and h(X, u) are uniformly bounded with bounded partial derivatives
as long as v and X are bounded. Thus (3.09) becomes

^1 + —j—^ A2 + ^1 + ^ + ® = ^))

and consequently, as v" —► 0,

A = Lv2 = - ^1 + ^5L„4 + <?(i/6) ± i(2av2 + ^(^4)), (3.13)

where both terms are real. Going back to the original coefficients, (3.11) and
(3.13) give us (3.06) and (3.07), respectively.

Now let us rewrite (3.05) in the form

2oX + r + EIu2 (1 7 T EIv , T —1 = 0.
pXz + £7^4 + OK Xv /(X + k) t

Setting X = p/o we obtain

1 , , zrr 2 (y 02EIv4 )2jU + T + EIv 1 = = 7 5 5—7  =0,
\ pp + o EIv + o 6K pv /(p + ok))

which we can rewrite as

{2p + t + 2EIv2){pp2(p + ok) + o2EIu4(p + ok) + o2QK" pv*)

- o2(EI)2u('(p + ok) = 0.

Let us agree to restrict attention to the case t > 2ok. Then (3.14) is negative for
each v ^ 0, when p = -ok. But it clearly must become positive as p -* -oo. It
follows that for each v/0 there is some real p(v) < -ok , clearly reducing to -ok
when v = 0, for which (3.14) vanishes. Consequently (3.14), and therefore also
(3.05), has a negative real solution X{v) = p(y)/o < -k when r > 2ok. Since we
have already seen that there is a pair of complex conjugate solutions when a2 > d2,
i.e., when EIp < 16cr2, it follows that there are two real solutions, both negative in
view of (2.18). With this the proof is complete.
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4. Projection onto the space of lateral beam motions. Taking I = 6K/(pEI)l/2,
r = K(p/EI)^2, a = (EI/p)l/2, s = p/2a, e = x/2a, A to be the nonnegative
selfadjoint operator (EI/p)-^ , and A1/2 to be its nonnegative square root, as in
the previous section, an elastic beam incorporating thermoelastic and shear diffusion
effects may be represented in 4 x 4 matrix operator form as

fx \\
x2

3>i
\y2J

( o i o o \ fx.\
-A 0 IA1'2 aA1'2
0 -rAl/1 -kl 0

V sA 0 0 -el - saA^2 J

x2

y\
V y2J

(4.01)

(4.02)

wherein xl and x2 stand for w and dw/dt, and y{ and y2 for T and dfi/dx.
The system (4.01) belongs to a general class of coupled systems which we can write

in the form
'x\ - (A (Xs
Y J ~ ©J V7,

Our primary interest, let us say, lies in the " X " part of the state, which would
satisfy X = AX were it not coupled to the second system involving Y. We are
really interested in how the coupling of the X system to the Y system affects the
X dynamics. To explore this, we make the transformation

•-n n owx-, {iM)
YJ \Q If\Z

wherein Q is as yet indeterminate. Then we can easily see that the resulting system
in the X, Z variables is

X\ ( I 0\ /A I\ / / 0\ fX
J\Q i-Q IJ \C By \Q I) \z

A + BQ ® \
BQ-QA-QMQ + C D-<2®/\z,

If we can find a solution Q of the quadratic operator equation

BQ-QA- QBQ + C = 0 (4.04)
and use that solution in (4.03), we clearly achieve a system in upper triangular form

fX\ f A + MQ B \ (X\
{z)'{ 0 D-aBjU)- (405)

A particular class of solutions is obtained for which Z = 0, i.e.,

Y = QX, (4.06)
and the X dynamics, conditioned on this restriction, are described by

X = {k + MQ)X. (4.07)

With appropriate care (the solution Q of (4.04) is not unique in general) we can
interpret (4.07) as describing the coupled behavior of X, with Y entrained to X
via (4.06). The "appropriate care" just referred to involves the question of which of
the eigenvalues of the operator matrix appearing on the right-hand side of (4.02) are



388 D. L. RUSSELL

to be assigned to the operator A + BQ of the "decoupled" system (4.07) and which
are to be assigned to the operator D - (?B. This done, we observe that if <p is an
eigenvector of A + BQ corresponding to the eigenvalue A, then

<P\ ( <P
I ~ \ n / (4-08)¥ J \Q<P J

is an eigenvector of the operator in (4.02), also corresponding to the eigenvalue A.
Returning to (4.01), we introduce a transformation of the form (4.03), now written

in the expanded form

f xi\
x2

( I 0 0 0\
0/00
Px p2 I 0

/ xl \
x2
zi (4.09)

V\ , X
\y2J VGi Q2 0 U \z2)

An elementary, but rather lengthy, computation shows that if we define the operator
expressions E, F, G, H by

E(Pl , P2) - P2A - IP2A1,2P{ - kPx , (4.10)

F(Pl , P2) = -P, - rA1'2 - IP2AU2P2- kP2, (4.11)
GiQ^ , Q2) = Q2A + sA - aQ2Al/2Q, - (el + saAl,2)Ql , (4.12)

HiQ, , Q2) = -Q} - aQ2Al,2Q2- (el + saAl,2)Q2, (4.13)
the new system in the x,, x2, z. , and z2 variables becomes

/ o / o
/x, \ 1 ■

X2

\z2J

—A + /A,^2Pi /a'/2P2 IA"2 aA{'2
E(P\,P2) \ (f(pi - p2) \ ,, jp ,1/2 „ .1/2
-aP2Al'2Ql) \-aP2A^Q2) ~kI ~ lP>A ~aP2A

ix!2(G(Q]tQ2) \ (H(Q,,Q2) \ 1/2 -«Q2A
\\-IQ2Al/2Pj \-IQ2a'/2P2) Ql ^_e/-Ja/4'/2

( X\ \
x2
z.

\Z2J

(4.14)
A decoupling of the lateral deflection variables x, and x2 from the variables z, and
z2 is effected by setting the operator expressions in the j , 2 , j , and \ positions
equal to zero. With the resulting equations listed in that order, if the values for Px
and Q, obtained from the second and fourth are substituted into the first and third,
respectively, we obtain two operator equations:

and

P2A + r{lP2AU2 + k)A1/2 + (IP2AU2 + k)2P2

+ a{lP2A1'2 + kI)P2Al,2Q2

+ aP2Al,2{aQ2Al/2Q2 + {el + saAl,2)Q2 + IQ2A1/2P2)

= B(Pj, Q2) = 0,

Q2A + sA + (aQ2A'/2 + e + saAX/2)2Q2

+ l{aQ2A1'2 + (el + saAl,2))Q2A]/2P2

+ lQ2Al/2(rA]/2 + IP2Al,2P2 + kP2 + aP2A^/2Q2)

= C(P2, Q2) = 0.

(4.15)

(4.16)
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Once we obtain solutions for these equations, values for Px and Qx are obtained
from the \ and 4 equations, as indicated previously.

Under our standing assumptions for this paper (restriction to "trigonometric"
cases, cf. Sec. 1) all operators shown commute; they are scalar operators on the
coefficients of the expansion of the state in the eigenfunctions wk(x) = eWkX of A ,
or on the Fourier transform (series) of w(x, v) in the infinite interval and periodic
cases, respectively. In that context we can represent P. and Q} by scalar functions
Pj{v) and Qj{v), respectively, A by v4, and AI/2 by v2. Making these modifi-
cations in (4.15) and (4.16) we arrive at the following algebraic equations for p2(v)
and q2(v) (in which we suppress v as the argument of p2 and q2):

v4p2 + r(lv2p2 + k)v2 + (lv2p2 + k)2p2 + a(lv2p2 + k)v2p2q2
2 2 2 2 2+ av p2(av q2 + (el + sav )q2 + Iv p2q2) = b(p2 , q2 , v) = 0,

442 22 2 22
v q2 + sv + (av q2 + e + sav ) q2 + (av q2 + (e + sav ))lv p2q2

2 2 2 2 2+ lv q2(rv +lv P2+ kp2 + av p2q2) = c(p2 , q2 , v) = 0.

(4.17)

(4.18)

Strictly speaking, it is not necessary to show that these equations have the desired
real solutions. This already follows from the eigenvalue/eigenvector analysis of the
preceding section. The 4x4 matrix M(v) obtained from (4.01) by replacing A
with v4 and Awith v2 is reduced to upper block triangular form via a similarity
transformation involving the 4x4 matrix obtained from (4.09) by replacing P} by
Pj(v) and Qj by q^v), j = 1,2. Results on matrix quadratic equations proved in
[7] and redeveloped in [11] show that if the real and imaginary parts of eigenvectors
corresponding to the complex eigenvalues of M(v) (a pair of such eigenvalues was
shown to exist, under our assumptions, in the preceding section) are used to form
the columns of a 4x2 matrix (XJy\), thenv Y(u) ' '

Q\iy) q2^)J

However, a more precise analysis is required for our purposes. We will prove

Proposition 4.1. Under the assumptions of Proposition 3.1, the equations (4.17),
(4.18) have solutions p2(v), q2(v) for all real values of v which have the asymptotic
forms (wherein the repeated factor A has the value 6K2/EI + (pEI)l/2/2a)

px(v) = A0(v4), v^O,

?i(f) = (p/t)^4 + A(f(v6), v —> 0,

p2(v) = -(KpX/2/kEIl,2)v2 + A(f(v4), v - 0,

q2(v) = -(2op/x2)v4 + A(f(v6), v —» 0.

(4.19)
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px(v) = -K{p/EI)1/2 v2 v2 00,

q{(v) = Pt/{4g2+ Z2v~4)+0(A), u2 ^ oo,

p2(v) = (-kK(pEI)1'2/(EI + 6K2))v~2 + A(f(u~4), v2 -» oo,

q2(v) — -p(4o2 + X2V 4) + A&(v~2), V2 —y 00.
2Remark. The hypotheses of Proposition 3.1 as regards K and EIp/o* are clearly

equivalent to the condition that A should be sufficiently small.
Proof. If we set p2 = rp2, q2 = sq2, and divide the first equation by r and the

second by 5 , elementary calculations show that, as v —> 0,

kv2 + (i/( 1 + Ir) + k2)p2 + (Ir + sa)(f(\p2\2 + \p2q2\) = 0, (4.21)

vA + [vA + (e + sav2)2)q2 + (Ir + sa)<f(\q2\2 + \p2q2\) = 0. (4.22)

Comparing with the notation of the preceding section, we see that

Ir = 6K2/EI, = 2(3/a) = (pEI)l,1/2a,

both of which were assumed small in the hypotheses of Proposition 3.1. Since Ir+sa
appears repeatedly in the formulae to follow, we economize notation by setting

A = Ir + sa,

in agreement with the value assigned to A in the statement of the proposition.
The terms indicated by " tf " are sufficiently regular, with respect to v as v —> 0,

so that standard iterative techniques allow us to see that there are unique solutions
p2 and q2 with

p2(v) = —k Xi>2 + A&(v*), v —► 0,
4

V 6sq2(v) = r + A@(v ), v -» 0.

From this we have
£

-12, . 4np2(v) — -rk v^ + rAtf(v), v—yO, (4.23)

q2(v) = -suA/e2 + sA(f(u6), v —» 0. (4.24)

To carry out the analysis as u2 -> oo Eqs. (4.17) and (4.18) are divided by z/,
after which we set p = . Then setting

p2 = rpp2, q2 = s(-1 + p2q2),

2and dividing both resulting equations by p , we arrive at
4 2p2 + (lrp2 + k) + u (lrp2 + k)"p2
2 2 2 2+ sap2(-\ + p q2)(2lrp p2 +sap"q2 + (k +e)p ) = 0,

q2 + pl(sotq2 + e)2(-1 + p2 q2) + lrp2(-1 + p2 q2)
2 2 2x (2sap q2 + lrp'p2 + (k + e)/T + r - sa) = 0,

(4.25)

(4.26)
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from which we obtain solutions of the form

p2(v) = —A:/(1 + Ir) + A&{p2) , p~2 - v2 oo,

„ . -klr/{\ +lr)(r - sa) + p2 e2 , 2, -2 2q2(v) = 7;   4 VT, + &f(p), H =v ^ 00.
(1 - 2sa8p + p s )

Then
P2(") = r((~k/(l + lr))p2 +A0{p4))

= -(kr/(l + lr))u 2-\-A@(v 4)), p 2 = i/2—>00,
(4.27)

(4.28)
's{jT7^V)+m,,~2))'

Equations (4.21) and (4.22) also allow us to see that if A is sufficiently small then
there are unique solutions of the form

, x ( kEIv2 _/A.\pJv) = -r —7 , y- + <f(A) ,
2 y(v (EI + 6K ) + k ) J

q2(u) = -s (    yi + I >
2 \vA + (e + 2(S/a)u2)2 J

valid on any compact z/-interval. These solutions match up continuously with the
solutions (4.23), (4.24) and (4.27), (4.28) as u —► 0 and as u —+ 00.

If we now substitute the asymptotic values for p2{v) and q2{v) shown in (4.23)
and (4.24) into the equation for p{(v) resulting from setting the \ entry of (4.14)
equal to zero we obtain

P\iy) = -rv2 - kr(-k~lu2 + A0{v4)) - lu2r2p2{u)2 - Irsv2p2(v)q2(v) ^ ^

- rA&(v*), v —* 0.
On the other hand, if the indicated asymptotic values for p2(y) and q2(v) are
substituted into the equation for qx(v) resulting from setting the \ entry of (4.14)
equal to zero we obtain

<?i (") = -zv"q2(y)2 - (e + sav2)q2(u) - ei 2p2(v)q2{v) ^ ^

= se~lv4 + A@(v6)), v —► 0.
The expressions (4.27) and (4.28), substituted into the equation for pl(u), give

Pi(v) = ~r[v2 + ^(1)]> v->oc, (4.31)
and, substituted into the equation for qx{v),

<h(")= ,t '-4 2+^)' (4'32)(1 + v e )
Expressing the coefficients which appear in the equations shown here in terms of
the original coefficients, we have the stated results (4.19), (4.20) and the proof is
complete.
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5. The projected lateral motion equations. From (4.07) and (4.14), the projected
equations of mechanical motion, expressed in terms of the spatial frequency variable
v, are

=(("I'Jif) ($"))• (5'01)
Using the formulae for Pj{v) and qj{v) developed in Sec. 4, we are now able to
show the asymptotic forms taken by this system as v —> 0 and as y —> oo . All work
in this section is carried out under the assumption that A (cf. (4.22)ff.) is sufficiently
small.
Proposition 5.1. Expressed in terms of the spatial frequency variable v , the system
(5.01) assumes the following asymptotic forms.

As v —> 0:

<fi(t, v)\ _ / 0 1
-z/+ (/>£/)17 V/t\ (~6K2v4/kEI

+AV(i/6) J V -2a(pEI)l,2is6/r2 + A2
«fi(*> v)
Z2{t,u)

As v2
(5.02)

Ylt "!)=[(-^ + dK2'EI)v* \(-2a(pEI)l/2u2/4cj2 + rV
<.2( » )/ U +r(pEI)ll2v2/4a2 + AS?{\))\ -k8K2/{EI + 8K2)+A2(?{1)

Zi(t> VY

(5.03)
Proof. Substituting the formulae of Proposition 4.1 into the system (5.01), we see

that the asymptotic forms of this system are

| / 4 , ^-1 6 \ / ; ; -1 4 -2 6£ , s J = I / —v + sae v \ /-Irk v - sae v
' VV + (/r + tt*)V(i/6),/ ^ + (/r + *a)V(i/6) 77 (5.04)

0,

0 1
+ + ESal/2 \ f -sau2/{\ + V \2) - lrk/{\ + lr)'

\ ^ +(/r + Ja)^(i) J ^ +(/r + sa)V( 1)
i/-oo.U2c.")/

(5.05)
We then use the coefficient relationships introduced at the beginning of Sec. 4 and
the definition of A in Sec. 4 to obtain the formulae (5.02), (5.03). This completes
the proof.

Now we are in a position to demonstrate a degree of consistency with the "spatial
hysteresis" model, introduced in Sec. 2, at least in the periodic and infinite interval
cases where the meaning and properties of the convolution operator are clear.
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Theorem 5.2. The interaction kernel h(x - £) of the constant coefficient spatial
hysteresis model on (-00, 00) can be selected so as to agree with the term in the
2 position of (5.04), (5.05). If the resulting kernel is used in the spatial hysteresis
model, the Euler-Bernoulli energy is monotone decreasing.

Proof. The spatial hysteresis model on (-00, 00) is embodied in the integro-
partial differential equation

d2w d f°° . , „ / d2w . . d2w \ , „ Td4 vo1—Y ~ 2 y— ' h(x-£) I —— (x. t) —(t. t) I da + FJ T-
dt2 ' dx ]_

f°° , , / d W . 8 W , 1 , r*rd W n tcdS+E,J7 = 0- (5'06)

With r] = x - £, and taking into account the earlier assumption h(rj)drj = 1fOO
-OO '

we have

d2w d r°° ,, .p1?-lyirxLm d2w , . d2w , N\ , ^rd4w(*> 0- 0 drj + EI-dtdx dtdx J QX4

d2w d3w [°° d3w ,.d4w
= P—t ~ 2y ? + 2y / h(l) 7 (x -1>t) drj + EI—r = 0.

dt2 dtdx2 J-00 dtdx2 dx4
(5.07)

Defining

£,(*, v) = w(t, v) = J e~iavxw{x,t)dx, i2(t, v) = ^{t, v),

wherein a = (p/EI)1^4, the transformed equations constitute a i/-parametrized set
of ordinary differential equations

2 2dw 2ya 2., t. .. diju 4. „ ,,—j- + v (1 - h(v))—j— + 1> w - 0. (5.08)
dt2 P dt

In first-order, two-dimensional form, these become (• = d/dt)

0. . 1, . \(tl(t,u)
Z2{t,v)J \~V4 -2ya2p-lu2(l-h(u))J \Z2(t', v)) ' (5"°9)

Comparing with (5.01), the damping terms agree just in case

-2ya p~\\ - h(v)) = lp2{u) + aq2{v). (5.10)

Using (1.11) and (1.20) along with the definition of the constant a and the fact (cf.
(4.20)) that p2(v) = tf(v~2), v2 —► 00, we conclude that (5.10) requires

2y = pEI/Ao2, (5.11)
which establishes a simple relationship between y of the spatial hysteresis model and
the parameter a of the shear diffusion process. Equation (5.10) is equivalent to

h{y) = 1 + {6K/2y)p2(u) + (4a2 / p)q2(u). (5.12)

Since p2(v) and q2{v) are even, negative for all v, and of orders v2 and u4,
respectively, as u —> 0, h(v) is even and less than 1 for all v ± 0, with h(0) = 1 .

Using (5.11) with Proposition 4.1 we see that

h(v) = (4 a2 / p)p2(u) + Atf(v 2) + /f(u 4) = d?(v~2), v2 —► 00. (5.13)
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From this it follows that h(rj) and h'(rj) are square integrable on the interval -oc <
rj < oo . To show that h(tj) is integrable on that interval it is enough to prove h(v)
and h\v) square integrable on -oo < u < oo. The first is evident from (5.13).
From (4.25) and (4.26), along with the immediately preceding material, p2(u) and
q2(v) satisfy equations

(1 + lr)p'2{v) + -^-(v~2f{p2{v), q2(v),v)),

q2(v) - lr(r - sa)p'2(v) + g{P2(") > qfo) > ")) >

where / and g have continuous and bounded derivatives with respect to all ar-
guments as v~ —> oo. From this we obtain the boundedness of p'2(v) and q2(y)
as v2 —> oo and then the square integrability of h'(v) follows from (5.12) and the
formulae

p'2(u) = v~2p2(v) - 2v~3p2(v), q2{v) = v~2q2{y) - 2v~3q2{i>).

From the Plancherel theorem the Euler-Bernoulli energy expression for the system
(5.07) is a positive multiple of

rJ —c
j-w(v, t)

2
+ iy4\w{v , /)|2 dv.

The standard computation with (5.08) shows that this is strictly decreasing with
increasing t if 1 - h(v) >0, v ± 0, which is ensured by the result h{y) < 1 ,
v / 0, already obtained. This completes the proof of the theorem.

Remark. We cannot show h(rj) > 0, -oc < t] < oo , at this writing.

6. Concluding remarks; the modified spatial hysteresis model. Comparison of
(5.09) with (5.02) and (5.03) reveals that we continue to have some loose ends match-
ing the two systems in the infinite interval case which is the subject of Theorem 5.2.
The additional terms added to -v4 in (5.02), (5.03) have no counterpart in (5.09).
The originally postulated spatial hysteresis model [9] made no provision for modi-
fication of the elasticity term EI, but the thermoelastic/shear diffusion model
does result in such modification in addition to introducing the damping terms which
we have already studied.

The change from -v4 in the lower left-hand corner of the matrix in (5.09) to
the asymptotic, as v2 —► oo, term -(1 + 6K2/EI)v4 in (5.03) may be described as
thermal stiffening—a familiar phenomenon in thermoelasticity. Its effect is stronger
at high temporal (and hence spatial) frequencies because less time is available from
one part of a vibration cycle to another in which the temperature differential can be
dissipated by lateral conduction. Perhaps more disconcerting are the positive terms
((pEI)^2/t)v6 and (r(pEI)l/2/Ao2)v4 in (5.02) and (5.03), respectively. These
terms, which correspond to reduction of the bending stiffness of the beam due to
coupling with the shear deformation process, can be explained by noting that for a
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2given value of ||u;||L2[0 L] the minimum value of

L2[0 ,L]
q2„(cf. (2.14)) is smaller than the minimum value of ||£7(|^j)||£2[0 L]; the addition

degree of freedom represented by the shear displacement allows a given degree of
bending to be achieved with a smaller applied force (or resultant restoring force,
however one chooses to regard it).

The elasticity modifications just discussed in connection with the thermoelas-
tic/shear diffusion model can be matched, admittedly in a rather ad hoc manner,
in the spatial hysteresis framework by a fairly natural modification of the latter. In
place of (5.06) we use the integro-partial differential equation

d2w _ d f°° , . (d2w . . d2w \h(x "f) '<> - m^{l■" jdi

f j-,T nr^2.dAw ,d f°° .. r. ( dw . , dw A+ {EI + 6K

(6.01)
where /, the elastic interaction kernel, has many of the same properties as does
the earlier dissipation interaction kernel h . We thereby introduce spatial nonlocality
into the elastic term as well as the dissipation term. Equation (5.07) is then similarly
modified and -v4 in the lower left-hand corner of the matrix in (5.09) becomes

(, 6K2\ 4 Sa2v2,, , ..~ 11++_7~(1 (6-02)

where / is the transform of the elastic interaction kernel / in the same sense as
h is the transform of the dissipation interaction kernel h . Comparing with (5.01),
(5.02), (5.03) we must have

6K~ 4 da~v2 j. 2 , \ i i \~ + ———{\-f{y)) = lvpl{y) + av qx(v)
<603)

\ -6K2/EIv4 + z(pEI)[l2/4o2 v2 -+<x>.

The required integrability of / necessitates

da2 t{pEI)l/2 . rpV2EI112
— = 2—, i.e., 8 = ——2 2 '

P 4(7- Aa"a"
from which it is then clear that

/(") = 1 - ~ri (W"' + lP\(v) +

4eo-K^v/Tpl,zEr'A+(?{v), u-> 0,
-2\ 2 00.
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From this formula and the properties of p{(v) and qx(v) as developed in Sec. 4 the
square integrability of f(rj), /'(rj), f(u), and f (u), and, in particular, the resulting
integrability of f(tj) on (-00,00) can be obtained by essentially the same arguments
as were applied to h(ri), h'(rj), h(y), and h'(v) in Sec. 5.

From the form (6.03) of the terms added to the transformed elasticity operator, the
definition of A following (4.22) and the formulae (4.29)-(4.32) for px(v) and qx{v)
it is clear that if A is sufficiently small and if the thermoelastic coupling parameter
K is also sufficiently small (in fact, this is needed to ensure A small; cf. Sec. 4)
then the added terms will be dominated by the original EIv4 so that (cf. (6.02)) the
quantity

(, , 0K2\ 4 da1:'2 ,(1 +ttJ" -—(>-/("»
will be positive for all v ± 0. Thus the form (cf. (5.14))

rj —<\d t\
\j-tw{v, t)

2 ( / n ysI \ r _2 2, , , 8K \ 4 8a v ,, \ . A. ,.2 ,+ 1 ( ~eTiu ——] 1^(^-01 dv

is positively proportional to an energy form comparable to (5.14) and the Euler-
Bernoulli energy and represents an "energy" form which is monotone decreasing for
the modified thermoelastic/shear diffusion model (6.01). However, we are not able
to assign a physical meaning to this form at the present time.
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