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Oh, what is abroad in the marsh and the terminal sea? 

Somehow my soul seems suddenly free… 

 

--Sidney Lanier 
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ABSTRACT 

 

Channel networks in tidal marshes serve as conduits for the exchange of water 

between the estuary and the marsh surface and form the spatial structure that regulates the 

flow of organisms, materials, and energy throughout the marsh system.  Canal dredging 

creates channels with distinct linear shapes, and the artificial levee created from the 

dredged material creates ‘spoil banks’ along either side of the channel edge.  Differences 

in morphology and adjacent marsh surface elevation between natural and dredged 

channel systems have not been well quantified, but may have important implications for 

the functioning of tidal channels as habitat for marsh-dependent species.  

I used GIS methods commonly applied to terrestrial landscape patterns, Light 

Detection and Ranging (LiDAR) data, and aerial orthophotographs to examine 

differences in the shape complexity of natural and dredged channel networks and to 

compare the elevation of the marsh adjacent to natural and dredged channels and 

productive and non-productive oil and gas wells in a tidal salt marsh in Louisiana.  I 

examined the distribution of Spartina alterniflora, Geukensia demissa demissa, and 

Littoraria irrorata in relation to channel morphology, soil properties and elevation of the 

marsh edge at natural creeks, dredged canals, and open bay edges in order to correlate 

landscape patterns with ecological processes.  

Dredged canal networks were significantly less complex in shape. The elevation 

of the marsh within 30 m of the channel edge was highest along dredged channels.  The 

marsh at distances greater than 30 m from dredged canals appears to be more broken up, 

but not lower in elevation than in natural systems.  Densities of S. alterniflora and G. 

demissa were lower, and soil and leaf nitrogen were less in marsh adjacent to dredged 



 xii

canals.  The age distribution of G. demissa populations provided evidence that structural 

differences between natural creeks and dredged canal systems influence the recruitment, 

growth, and mortality of mussels.  This work demonstrates that landscape scale changes 

to tidal marshes have the potential to alter ecological processes at the microhabitat scale. 

Dredged canals may reduce the growth and productivity of plants and animals that are 

critical to maintaining coastal Louisianans marshes. 
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CHAPTER 1 

 

INTRODUCTION: LANDSCAPE CHANGES IN TIDAL SALT MARSHES 

 

 

Tidal salt marshes may be simply defined as low coastal grasslands that are 

frequently inundated by the tide. They are found on temperate shores along the edges of 

estuaries and on the inland side of barrier islands, where there is sufficient protection 

from wave energy (Chapman 1977). Although they tend to be low in species diversity, 

they are considered to be among the most productive ecosystems on earth (Mitsch and 

Gosselink 1993). Through out history, tidal salt marshes have been a somewhat 

inconspicuous and often overlooked ecosystem; today they are recognized for the 

numerous values and benefits they provide to society, including wildlife habitat, nursery 

grounds for many recreationally and commercially important fish, nutrient retention, and 

storm surge abatement. The loss of coastal wetlands both world-wide and in Louisiana is 

alarming, and there is a need for research to facilitate understanding, preservation, and 

restoration of this valuable habitat.  

The Romans “reclaimed” salt marshes for agriculture, and modification of tidal 

marshes began as early as the seventh century, when low sea walls were constructed in 

Western Europe for protection from the ocean. Since then, tidal marshes have been 

manipulated for grazing, mining, agriculture, harvest, waste disposal, land reclamation, 

wildlife management, insect control, and recreation though the use of dikes, 

embankments, impoundments, sluice gates, ditches, and direct fill (Daiber 1986). Until 

the mid-1900’s, undeveloped marshland was often considered wasteland. Government 

programs, such as the US Swamp Lands Act of 1850 and the Canadian Maritime Marsh 
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Rehabilitation Act of 1948 encouraged landowners to re-claim these “un-usable” lands 

and convert them to a useful purpose such as agriculture. 

An understanding of the functions and values of wetlands began to emerge in the 

mid-1900’s with the development of new quantitative analysis based on physics and 

biochemistry that made it possible for ecologists to calculate an ecosystem’s potential for 

converting solar energy into production (Siry 1984).  Today tidal salt marshes in the US 

are regulated under the Clean Water Act, and consultatively by the Fish and Wildlife 

Coordination Act, the Endangered Species Act, the Marine Mammal Protection Act, and 

the National Environmental Policy Act.  

This dissertation focuses on the specific issues of marsh modification in coastal 

Louisiana as an example of an extensive and important coastal wetland that has been 

heavily impacted by human actions. From the air, one of the most prominent features of 

Louisiana tidal marshes is the grid of dredged canals that cross the marsh surface. In 

many areas, this man-made system has replaced the natural creek network. In tidal 

marshes, the creek network serves as a conduit for the exchange of water between the 

open estuary and the marsh surface and creates a spatial structure that regulates the flow 

of organisms, materials, and energy throughout the system. To understand how the 

addition of dredged canals to the marsh system has impacted the functioning of the 

system, it is necessary to first devise a method of quantifying the differences in landscape 

structure of natural and anthropogenically affected tidal systems.  Habitat shape has been 

shown to affect species behavior and distribution in terrestrial systems (e.g., Hovel and 

Lipcius 2001), and channel network shape may similarly affect nekton use of tidal 

channels.  In Chapter 2, I use GIS methods commonly applied to terrestrial landscape 
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patterns to quantify the differences in shape between natural and created channel 

networks.  Perimeter-to-area ratio and measures and shape complexity of modified and 

natural tidal channel networks are compared using Patch Analyst, a GIS extension that is 

used by landscape ecologists to understand how habitat complexity affects populations of 

organisms.  The analysis of channel networks as landscape patches from a “fish’s 

perspective” may provide insight into how the movement of organisms and materials is 

affected by changing from a system of sinuous, highly complex creeks, to uniform, linear 

dredged canals. 

I use LiDAR elevation data to examine marsh surface elevation near dredged 

canals, natural channel systems, and near producing and non-producing oil and gas wells 

in Chapter 3.  ‘Spoil banks’ are created by the deposition of dredged material along either 

side of newly-built channel edges.  In Louisiana these spoil bank ridges, which may be 20 

to 30 m wide and 2 m high when constructed, block sheet flow across the marsh surface 

and may form semi-impoundment marshes in areas of high density dredging (Swenson 

and Turner 1986).  Subsurface fluid withdrawal, extracted as groundwater, oil, or gas 

during mineral recovery operations and the resulting geologic faulting have also been 

suggested mechanisms for marsh subsidence (Morton et al. 2005).  These changes to 

marsh hydrology will affect vegetative growth, perhaps lethally, and may reduce net 

organic deposition behind the spoil bank ridges.  I use three different methods of analysis 

to provided a means to distinguish the effects of dredging in the surface layer (<10 m) 

from the effects of deep sub-surface fluid withdrawal on both subsidence and on wetland-

to-water habitat change.  
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The usefulness of landscape pattern metrics becomes apparent when they can be 

related to ecological processes.  The distribution patterns of organisms across a landscape 

may provide an indicator of underlying variation in ecosystem processes.  For example, 

the growth of the saltmarsh cordgrass Spartina alterniflora may be reduced in areas 

where tidal water does not drain sufficiently due to changes in oxidation-reduction 

potentials under flooded soil conditions (Howes et al. 1981).  Spartina growth may 

therefore reflect the underlying drainage patterns of the marsh.  The ecological effects of 

canal dredging on the tidal marsh are examined in Chapter 4 though a study of the 

distribution of Spartina alterniflora, the ribbed marsh mussel Geukensia demissa 

demissa, and the saltmarsh periwinkle Littoraria irrorata, sampled at the edges of 

dredged and natural channels in Barataria Bay.  These three organisms are prevalent in 

the tidal marshes of Louisiana, and play important roles in the maintenance of marsh 

structure and the cycling of nitrogen, phosphorus, and carbon with the ecosystem.  Their 

biomass distributions reflect gradients in environmental conditions, such as inundation 

and soil chemistry, between dredged and natural marshes.  

The final step in this examination of the changing tidal marsh landscape is to link 

measurements of landscape structure to those of ecological function.  The population 

structure of G. demissa is used in Chapter 5 to provide insights into how physical and 

structural processes affect the distribution of organisms.  The structural and functional 

differences between natural and dredged channel systems are examined by comparing the 

age distribution of mussels at sites with divergent environmental conditions.  This 

information provides a starting point for the development of a conceptual model of how 

dredged systems will function as mussel habitat in comparison to natural creeks.  
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CHAPTER 2 

LANDSCAPE EFFECTS OF CANAL DREDGING: THE QUANTIFICATION OF 

MORPHOLOGICAL DIFFERENCES BETWEEN NATURAL AND DREDGED 

CHANNEL NETWORKS 

 

Introduction 

The ecological importance of natural channel systems in tidal salt marshes has been well 

documented (see Mallin and Lewitus 2004 for an overview).  Physical properties of tidal 

channels, such as edge slope and the presence of rivulets, have been shown to affect infaunal 

food availability and the rates of piscivorous predation, as well as nekton access to the marsh 

surface for foraging and refuge (McIvor and Odum 1988; Rozas et al. 1988).  The presence of 

channel bends may affect vegetation patterns on the channel bank (Fischer et al. 2000), and 

vegetation type and density may in turn affect the refuge value of the marsh edge (Minello and 

Zimmerman 1983).  The structural shape attributes of channel systems, such as the curvature of 

bends or the number of small branching channels, may significantly influence the overall 

ecological function of the channel system. 

Artificial channel networks have been dredged in many tidal marshes for the purposes of 

drainage, marsh access, navigation, and to re-establish tidal flow to restored or created salt 

marshes.  Dredged canal networks may function differently than natural creek systems; 

differences in environmental characteristics between natural and dredged systems may arise from 

how they were created and their resulting morphology.  Natural tidal creek networks are formed 

by complex tidal flows over years to centuries, and have morphologies that are adjusted by 

hydraulic discharge and sediment erosion and deposition (Fagherazzi and Furbish 2001).  

Conversely, dredged canals are typically created in a few days using heavy machinery, and tend 

to be linear and of a uniform width and depth that reflects the type of machinery used (Davis 

1973; Turner 1987). In the following text, the term “creek” refers to naturally formed systems, 



 7

“canal” to artificially constructed systems, and “channel” refers to any conduit of tidal water, 

natural or artificial. 

Dredged canals are typically straighter, deeper, and have steeper banks, higher mean 

dissolved oxygen concentrations, and lower mean salinities than natural creeks (Williams and 

Zedler 1999; Rozas and Reed 1994).  These differences may have important implications for the 

function of channels as fish habitat because combinations of environmental variables such as 

dissolved oxygen, depth and salinity define the microhabitat characteristics of the marsh edge, 

which determine habitat use within and among species of common marsh-edge fishes (Baltz et al. 

1993).  Comparisons of fish use of constructed and natural channels have shown that mean 

species richness and mean densities are similar between channel types (Williams and Zedler 

1999; Rozas 1992), but differences in abundance of individual species (Williams and Zedler 

1999; Zedler et al. 1997) and population size-structure (Talley 2000) have been observed.   

The first step towards determining differences in the function of natural and dredged 

channel systems is the development and application of suitable metrics for measuring the 

attributes of channel networks.  Landscape metrics developed to characterize riparian stream 

networks, such as bifurcation ratio (Rb), sinuosity (Rs), and stream order, have been applied to 

tidal channels (Zeff 1999; Odum 1984).  However, these metrics are difficult, if not impossible, 

to apply to dredged channel networks, which are composed of a series of interconnected through-

flowing channels lacking a defined stem channel or distal ends, rather than the system of discrete 

branching networks typical of riparian streams and natural channels for which the metrics were 

developed.  Methods applied in the field of landscape ecology for the analysis of habitat patches 

may be useful for describing the landscape changes associated with dredged channel networks.  

Habitat patches are defined by biologically significant discontinuities in environmental character 

states from their surroundings (Wiens 1976).  Patch metrics characterize the spatial character and 
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context of habitat patches (McGarigal et al. 2002).  Patch metrics such as size, perimeter, and 

shape complexity have been shown to affect the distribution of organisms (e.g. Hovel and 

Lipcius 2001) and can be measured using aerial or satellite imagery and spatial analysis software.  

This method of characterizing patch attributes could be applied across channel network types 

regardless of the presence of a stem channel.  

 This study explores the application of patch metrics to the measurement of natural and 

dredged channel networks.  It is important that the criteria used to measure landscape 

characteristics are relevant to the organisms of interest (Wiens et al. 1993).  For the purposes of 

this study, the organisms of interest are the transient and resident nekton using the marsh 

channels for foraging and refuge. It is, therefore, assumed that the marsh-water interface is a 

border defining the channel system as a habitat patch.  Several patch metrics were tested for their 

ability to discriminate between dredged and natural channel systems and examined for their 

applicability to tidal channel networks used as fish habitat. The ability to assess the structural 

shape of channel networks will aid in understanding the consequences of dredging on biological 

functions and provide guidance to marsh management plans that include the alteration, 

development, and restoration of channel networks.  

Methods 

Study Area 

 I used aerial photographs and LiDAR data (U.S. Army Corps of Engineers 2003) to 

locate five dredged canal networks and five natural creek networks in southeastern Barataria Bay, 

Louisiana (Figure 2.1). The study area is primarily a salt to brackish marsh dominated by 

Spartina alterniflora, with diurnal tides that range 30 cm; marsh inundation is controlled by tides, 

wind, and precipitation. Petroleum exploration and drilling programs in the study area began in 

the late 1930’s with the advent of equipment capable of drilling in aquatic environments, 
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resulting in a coastal plain dominated by a massive network of man-made canals (Davis 1973). 

The dredged networks examined in this study are estimated to have been dredged between 1933 

and 1969 based on the date the oil/gas well drill bit pierced the ground (SONRIS 2006). 

 

 

5 0 5 10 15 20 Kilometers

-

Figure 2.1.  The location of the 10 channel networks analyzed for shape complexity in 

Barataria Bay, Louisiana.   
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Distinct drainage networks that had little overlap with adjacent channel systems were 

chosen from the study area bounded by the coordinates 90.0342
0
 W, 29.5992

0
 N, and 89.7386

0
 

W, and 29.4029
0
 N.  A channel was considered to terminate when the width was > 200 m or < 5 

m.  The selected channel networks were isolated from the landscape by re-classifying the LiDAR 

pixels with values equal to water within the channel using the raster recode tool in ERDAS 

IMAGINE®.  The networks were then converted to vector shape files using the raster-to-vector 

utility software (Figures 2.2a and 2.2b).  Three natural and 3 dredged systems were located in 

close proximity in a marsh area of approximately 3,900 ha (land and water).  The other 4 systems 

were spaced over an area of approximately 12,000 ha (land and water), with a maximum of 34 

km between systems. 

-
0 11 2 kilometers

1 
3 5 

7 

9 

Figure 2.2a.  Vector shapes developed for five dredged (D) channel systems in Barataria Bay. 

Systems are shown approximately to scale.  Dredged systems are numbered with odd numbers 

1, 3, 5, 7, 9. 
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Figure 2.2b.  Vector shapes developed for five natural (N) channel systems in Barataria Bay. 

Systems are shown approximately to scale.  Natural systems are numbered with even numbers 

2, 4, 6, 8, 10. 

0 11 2 kilometers 

-

2 

8 

4 6 

10 
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Channel Metrics 

I used five metrics (described in Table 2.1) to examine shape differences between natural 

and dredged channel systems.  Total edge (TE), class area (CA), perimeter-to-area ratio (PAR), 

shape index (SI) and patch fractal dimension (PFD) were measured using Patch Analyst, an 

extension for Environmental Systems Research Institute's (ESRI) ArcView 3.0 GIS that 

calculates the spatial metrics of polygon files (Elkie et al. 1999).  PAR, SI, and PFD are all 

measures of shape complexity.  PAR is the simplest measure of complexity, but its use is 

problematic because it varies with patch size.  The use of SI can correct for this problem by 

standardizing the perimeter-to-area ratio to a Euclidean shape, in this case a circle.  The value of 

SI is equal to 1 when the patch is a circle, and increases without limit as the patch becomes more 

complex.  PFD relates the perimeter ‘P’ of a patch to the area by P ≈ ¶A
D
, where D is the fractal 

dimension and A = area.  For simple Euclidean shapes, P ≈ ¶A and D=1, the dimension of a line.  

The perimeter becomes increasingly plane filling as the patch shape becomes more complex, so 

that P ≈ A with D→2 (Krummel et al. 1987).  PAR, SI, and PFD were all used to compare how 

these metrics vary among the 10 different channel networks viewed as habitat patches.  

Differences between dredged and natural networks were tested using standard two-sample t-tests.  

An estimate of spatial heterogeneity within networks was made using Patch Analyst by 

creating core areas bounded at 5 m, 10 m, 20 m, 30 m and 40 m distances from the interior edge 

of each network (Figure 2.3).  This analysis provides information about how much of the within-

channel habitat area is less than 5 m from the edge, and how much of the within-channel habitat 

area is greater than each specified distance from the edge.  The proportion of the total within-

channel area within the 5m buffer was used as an indirect measure of the relative area of small 

branching channels that are <10m wide. 
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Table 2.1.  Descriptions of the metrics used to compare the shape complexity of natural and 

dredged channel systems.  

 

  description units range 

TE Total Edge Pij= perimeter of patch ij 

including any internal 

holes 

meters TE>0 without limit 

CA Class Area aij= area of habitat patch ij Square 

meters 

CA>0 without limit 

PAR Perimeter-Area 

Ratio 

Pij/ aij =The ratio of the 

patch perimeter to area 

none MPAR>0 without 

limit 

SI Shape Index 0.28Pij/ √aij=Patch shape 

adjusted by a constant to 

adjust for circle standard 

none MSI>1 without 

limit 

MSI=1 when patch 

is circular 

PFD Patch Fractal 

Dimension 

2ln Pij/ln aij = Patch fractal 

dimension 

none 1≤MPFD≤2 

  

 

  

 

Figure 2.3.  An example of core areas created using Patch Analyst.  The amount of channel 

area within each distance category from the marsh edge was used as an indicator of spatial 

heterogeneity. 

0 to 5  

5 to 10 

10 to 20 

20 to 25 

25 to 30 

Distance from edge (m) 
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A drainage density index was computed for each network by determining the landscape 

area within a buffer distance of 100 m from the outside of the channel network edge and dividing 

by the total within-channel area of the network.  Drainage density is typically measured as the 

length of channel per unit area of drainage basin, but in this case it was examined as unit area of 

channel per unit area of marsh that is within 100 m of the channel.  Four model systems were 

created to visualize the relationship between the drainage density index and channel shape 

(Figure 2.4).  The first system (A) was a simple rectangle of dimensions 1x10 units with a buffer 

distance of 1 unit. The channel complexity was increased in the second and third systems (B and 

C), by dividing the top half of the channel into two discrete channels separated by < 1 distance 

unit. The area of the landscape contained with the 1 unit buffer distance was the same in all three 

examples because the 1 unit buffer distance was greater than the distance between the divided 

channels. The perimeter and area of the system in the fourth example (D) was the same as in the 

third system (C); however a change in the configuration of the system increased the landscape 

area with the 1 unit buffer distance. The drainage density index of the Barataria channel 

networks was compared to that of the four model systems.  

Results 

The within-channel areas of the 5 dredged networks ranged from 62 ha to 169 ha, with a 

mean (± SE) of 115 ± 19 ha.  The within-channel area of the 5 natural networks ranged from 29 

ha to 345 ha, with a mean of 137
 
± 54 ha.  The mean within-channel area and total edge length 

did not differ significantly between dredged and natural networks (standard two-sample t-test; p 

= 0.71 and p = 0.16, respectively).  Means for perimeter-to-area ratio, shape index, and patch 

fractal dimension were all significantly different between dredged and natural networks, 

although the degree of significance varied by the channel metric (t-test; PAR p < 0.01; SI p = 



 15

0.03, and PFD p < 0.01).  The rankings of the ten networks based on each channel metric (Table 

2.2) demonstrate the effect of metric choice on shape complexity values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure2.4.  A conceptual example of the relationship between system shape and perimeter, area, 

and buffer-area.  The channel is shown in black above (A, B, C, and D), and a buffer area of a 

distance of 1 unit is shown in grey. 

 A B C D 

Area 10 8 8 8 

Perimeter 22 32 42 42 

Buffer-area 35 35 35 52 

Perimeter/ 

Area 

0

3

6

A B C D

Buffer-area 

/Area 

0

3

6

9

A B C D

Buffer-area/ 

Perimeter 

0

1

2

A B C D

A B C D 
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Table 2.2.  The rank order of networks (D=dredged, N=natural) based on each of three measures 

of shape complexity (MPAR= perimeter to area ratio, MSI= mean shape index, and MPFD= 

patch fractal dimension).  The indices vary notably in the ranking of network N6. 

 

 

rank PAR value SI value PFD value 

high N4 0.10 N8 35.15 N4 1.67 

 N2 0.09 N4 28.73 N2 1.65 

 N10 0.08 N2 28.28 N8 1.64 

 N6 0.07 N10 21.19 N10 1.63 

 N8 0.07 D3 17.78 D5 1.58 

 D5 0.06 D5 14.90 D3 1.58 

 D3 0.05 D1 13.97 N6 1.58 

 D1 0.04 D7 11.90 D1 1.55 

 D9 0.04 N6 10.59 D7 1.53 

low D7 0.03 D9 9.19 D9 1.52 

 

 

 

 The spatial heterogeneity analysis (Figure 2.5) showed that natural networks had a 

significantly greater percentage of channel area that was < 5 m from the marsh edge than did 

dredged networks (standard two-sample t-test, p < 0.01), but had a significantly lower percent 

area than the dredged networks that was >10 m and > 20 m from the edge (t-test; p < 0.01 for 

both > 10 m and > 20 m measures).  There was no significant difference in the percent of the 

channel area that was > 30 m or > 40 m from the edge between natural and dredged systems (t-

test; p = 0.08 and p = 0.50, respectively).  A mean (± SE) 33% ± 0.02% of the within-channel 

area of natural networks is < 5 m from the edge compared to 19% ± 0.01% for dredged networks.  

The channel area within 5 m of the channel edge increased as the size of the channel network 

increased for both natural and dredged networks.  The ratio of area within 5 m to channel 

networks area, however, was greater for natural than dredged channel networks (Figure 2.6).  
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Figure 2.5.  Results of the spatial heterogeneity analysis using measures of core area. Stars 

indicate significant differences between dredged and natural channel values, bars are ± 1 

standard error.  

 

 

 
Figure 2.6.  A comparison of the total within-channel area to the within-channel area that is less 

than 5 m from the edge. Data for natural channel system number 8 has been removed due to its 

larger size than the other systems. Linear regressions were fit to the data; natural channel 

networks (filled circles) were fit by the equation y=0.3962x-3.0188, r
2
=0.99, dredged channels 

were fit by the equation y=0.1749x+1.8839, r
2
=0.91. 
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Natural networks had a significantly higher mean ( ± SE) drainage density index than did 

dredged networks (5.13 ± 0.66 natural, 3.45 ± 0.45 dredged, p < 0.01).  The values of the 

drainage density index for natural networks fell between the values for model systems D, B and 

C, while the values for dredged channels were more similar to the model system A (Figure 2.7).  

 The perimeter-to-area ratio was correlated with total edge for natural but not for dredged 

networks (natural r
2
 = 0.73).  The shape index was strongly linearly correlated with total channel 

network edge for both natural and dredged networks (r
2
 = 0.98 for natural and r

2
 = 0.86 for 

dredged) and the patch fractal dimension was strongly correlated with the total channel network 

edge for natural systems (r
2
 = 0.92) and less strongly for dredged systems (r

2
 = 0.45) (Figure 2.8).  

The perimeter-to-area ratio, shape index, and patch fractal dimension were strongly correlated 

with natural channel network area (r
2
 = 0.57, r

2
 = 0.91, and r

2
 = 0.83 respectively).  Only shape 

index was correlated with channel area in dredged networks (r
2
 = 0.46).  The relationship of 

channel metric to network area was strongest for the perimeter-to-area metric (r
2
 = 0.97 for 

natural and r
2
 = 0.81 for dredged), intermediate for the shape index metric (r

2
 = 0.91 for natural 

and r
2
 = 0.46 for dredged), and weakest for the patch fractal dimension metric (r

2
 = 0.83 for 

natural and r
2 
< 1 for dredged) (Figure 2.9).  

Discussion 

 The mean area and total edge of the 5 dredged networks examined did not differ 

significantly from that of the 5 natural networks, but natural networks were significantly more 

complex in shape, contained more channel habitat < 5 m from the marsh edge, and had higher 

drainage area indices than dredged networks.   

Shape complexity may influence species distributions by affecting habitat selection, the 

behavior of individual organisms within the habitat, population age structure, and the movement 

of organisms through the habitat.  Ground-dwelling beetles, for example, are more likely to 
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move into rectangular than square patches (Collinge and Palmer 2002), and grizzly bears show a 

preference for clearcuts with higher perimeter-to-edge ratios (Nielsen et al. 2004).  The effects of 

patch shape on behaviors such as home range and foraging may be highly species dependent. 

The home range size of ruffed grouse increases as the irregularity of habitat patches increases 

(Fearer and Stauffer 2003), while the home range of mule deer is inversely correlated with the 

mean shape index (Kie et al. 2002).  The age structure of a population may be affectedby habitat 

patch shape if the edge-to-interior ratio is positively related to adult or juvenile mortality.  Major 

et al. (1999) hypothesize that a correlation between habitat size and/or shape and changes in 

breeding productivity and adult mortality of red-capped robins explains the significantly higher 

 

 

 

Figure 2.7.  The ratio of buffer-area/channel area for the four model channels (A,B,C,D) and the 

five dredged and four natural channel systems as function of perimeter.  Natural channel 8 was 

excluded due to its much larger size than the other 9 systems. 
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Figure 2.8.  The relationships between total edge and perimeter/area (top), shape index (middle) 

and patch fractal dimension (bottom) are overall linear, although they differs between natural and 

dredged channels. 
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Figure 2.9.  The relationships between each of the three shape metrics and channel area. The 

perimeter to area relationship is more sensitive to patch size than the shape index or patch fractal 

dimension. 
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proportions of yearling males found in linear remnant woodlands compared to those found in 

large non-linear remnants.  Finally, the movement of organisms through a habitat patch may be 

affected by the connectivity and complexity of the patch.  In a model of species invasion, for 

example, Cumming (2002) showed that habitats with more complex shapes allow organisms to 

invade them at a faster rate than in simple linear shaped systems.  

Although habitat patch metrics have been widely applied to a variety of terrestrial 

systems, they have not been examined for tidal marsh channels in a similar manner.  There is, 

however, evidence to support the hypothesis that nekton population dynamics are correlated with 

channel shape. Marsh edge, for example, has received much attention for its importance as fish 

habitat, specifically as a nursery area for juveniles that provides both food and refuge (Boesch 

and Turner 1984), and is positively correlated with the abundance and distribution of white 

shrimp (Webb and Kneib 2002).  Because the amount of marsh edge increases linearly with 

shape complexity (Figure 2.8), more complex systems would be expected to provide more edge 

habitat.  More complex channel systems may, therefore, support a greater abundance of edge 

dependent species.  Channel shape may also affect environmental conditions within the water 

column that determine habitat suitability, such as current velocity, suspended sediment, and 

dissolved oxygen.   

Natural networks have a greater degree of complexity than dredged networks relative to 

total channel network edge (Figure 2.8) and channel network area (Figure 2.9).  This result 

suggests that dredged channels change the configuration of the edge.  Although the relationship 

between edge complexity and habitat value for nekton has not been well studied, it may be an 

important consideration when linking nekton abundance to amount of marsh edge.  The physical 

properties of the marsh edge, such as erosional versus depositional structure, slope, and 

vegetative structure, may affect food availability and predation (Lewis and Eby 2002; Cicchetti 
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and Diaz 2000).  Dredged canals lack meanders and tend to have a uniform edge type and slope.  

Natural channel networks, in contrast, typically have many meanders with both erosional and 

depositional edge types and steep and shallow banks.  Nekton populations may be affected by 

channel shape on a microhabitat level if channels with less complex edges provide less 

variability in edge structure. 

The results of the spatial heterogeneity analysis support the idea that channel shape 

affects microhabitat distribution.  Compared to dredged networks, the natural networks had a 

significantly greater percent channel area that was < 5 m from the channel edge.  This result can 

be attributed to the presence of small side channels that are < 10 m wide in natural channels that 

are rarely present in the dredged channels examined in this study.  These smaller low-order 

channels provide corridors to the marsh surface during the flood tide (Rozas et al. 1988).  

Channel width and bank slope are also important determinates of species-habitat associations 

(Williams and Zedler 1999), and low-order side channels also may have steeper slopes (Williams 

and Zedler 1999), than higher order main channels.  Natural channel systems may support more 

diverse species assemblages because of the presence of more varied channel habitat conditions. 

Compared to the four test model systems (A, B, C and D;  Figure 2.4), the drainage 

density index of natural networks fell between those of the forked systems B and C, and the 

spread out system D, while the values of dredged networks fell between B and C and the un-

forked system A (Figure 2.7).  The drainage density index is not correlated with the perimeter of 

the system, but is closely related to channel shape.  Natural networks tend to have widely spaced 

branching channels more similar in geometry to system D than system C. This branching shape 

and the higher drainage density index suggests that a greater area of marsh may be accessible to 

nekton using the marsh surface during flood tide in natural channel systems, compared to 
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dredged channel systems.  This pattern has implications for how sediment accumulates on the 

marsh surface and the export of marsh materials to the open estuary. 

 Perimeter-to-area ratio, shape index, and patch fractal dimension all were useful for 

separating natural from dredged channels on the basis of shape complexity.  The perimeter-area 

ratio is the easiest metric of shape complexity to measure and to conceptualize and gave 

statistically-meaningful results.  The perimeter-to-area ratio, however, varies with size (for 

example, increasing the area of a circle decreases the perimeter-area ratio), and larger patches 

tend to be more complex than smaller ones.  The shape index and patch fractal dimension 

metrics are less influenced by patch area (Figure 2.9) and may be more useful in systems where 

there is a large amount of variability in channel network size. 

 I assumed in this study that the tidal channel network is a habitat patch for the transient 

and resident nekton using the marsh channels for foraging and refuge, and that the marsh-water 

interface is a border defining the channel system as a habitat patch.  These assumptions allows 

for the application of patch metrics to tidal networks.  As shown in this study, this type of 

analysis provides a useful starting point for examining the ecological changes in marsh function 

that occur with channel network modification.  The marsh-water interface in real tidal channels 

is not, however, a static border, and the qualities of the marsh edge are not homogenous.  Further 

studies should examine the tidal channel network, not as a single habitat patch, but as a 

landscape with a mosaic of habitat types, such as marsh edge, deep channel, and pools.  The 

application of patch metrics to tidal channel networks viewed as landscapes of habitat patches 

combined with biological sampling of species distributions within the network would provide 

useful information about the habitat values of natural tidal creeks versus dredged canals, and 

may also provide guidance to tidal marsh restoration and creation projects.  
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CHAPTER 3 

 

ELEVATION AND OPEN WATER IN TIDAL SALT MARSHES ADJACENT TO 

NATURAL CREEKS, AND DREDGED CANALS WITH AND WITHOUT FLUID 

WITHDRAWAL  
 

Introduction 

 

The movement of water through tidal marshes is largely regulated by channel bank 

elevation.  Inorganic accretion rates are usually higher at the stream side than in the back marsh 

(Craft et al. 1993), forming a natural levee at the channel edge.  Fewer tides overflow the marsh 

surface and less entrained sediment is deposited as natural levee elevation increases (French and 

Stoddart 1992), because the accretion of inorganic sediments on the marsh surface is, in general, 

a function of the relationship between the depth and period of tidal inundation and marsh surface 

elevation (Pethick 1981).  Increasing or decreasing the elevation of the marsh edge interrupts this 

natural feedback mechanism mediated by the hydrology of marshes. 

Tidal marsh hydrology can be altered by direct changes to the morphology of the channel 

network and the surface profile of the marsh edge, and possibly indirectly by subsurface fluid 

withdrawal.  The process of constructing canals creates ‘spoil banks’ of dredged material along 

either side of the newly-built channel edge.  In Louisiana these artificial levees, which may be 20 

to 30 m wide and 2 m high when constructed, block sheet flow across the marsh surface.  They 

may form semi-impoundment marshes in areas of intense dredging.  Partially-impounded 

marshes have been shown to be flooded for more hours per month, have fewer but longer 

flooding and drying events, and reduced water exchange both above- and below ground 

(Swenson and Turner 1986). These changes to marsh hydrology will affect vegetative growth, 

perhaps lethally, and may reduce net organic deposition behind the spoil bank ridges.   
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Morton et al. (2005) postulate a way for the marsh surface to subside during oil and gas 

recovery operations and to result in wetland habitat conversion to open water.  They suggest that 

some of Louisiana’s dramatically high coastal wetland loss (111.2 km
2
 yr

-1
 from 1955 to 1978; 

Baumann and Turner 1990) was the result of subsurface fluid withdrawal (as ground water, oil, 

or gas during mineral extraction operations).  They propose that a fluid withdrawal > 1 to 2 km 

belowground leads to a minimum 1- to 20- cm subsidence in the surface layer, which then causes 

plant stress, and then open water formation.  They also suggest that this fluid withdrawal induces 

geologic faulting which would also cause additional subsidence in the surface layer.  The 

proposed consequences to marsh-to-water conversions from the induced subsidence would have 

the same result as from hydrologic changes created by impeding water flow in the surface layer 

by dredged channels.  There are, therefore, two different mechanisms explaining the spatial 

coincidence of coastal landloss rates and canal density in subsections of the Louisiana coastal 

zone (Turner 1987; Turner and Rao 1990).  One directly affects the surface hydrology to cause 

land loss, and the other arises from subsidence in deep layers (< 1000 m), leads to a soil 

subsidence in the surface layers, and plant stress.   

In the following text, the term “creek” refers to naturally formed systems, “canal” to 

artificially constructed systems, and “channel” refers to any conduit of tidal water, natural or 

artificial.  Here I test whether there is: 1) a difference in marsh elevation adjacent to dredged 

canals and natural creeks, 2) a difference in the amount of open water in marshes adjacent to 

dredged canals compared to in marshes with only natural creeks, 3) a difference in elevation in 

marsh areas with producing wells or with non-producing wells, compared to natural systems, 

and, 4) if there is more or less open water formed in marsh areas with producing wells or with 

non-producing wells, compared to natural marsh systems. The results from these tests provided a 
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means to distinguish the effects of dredging in the surface layer (< 10 m) from the effects of deep 

sub-surface fluid withdrawal on both subsidence and on wetland-to-water habitat change. This 

analysis was greatly facilitated by using Light Detection and Ranging (LiDAR) elevation data in 

combination with GIS analysis tools in a novel and widely-applicable way to quantify 

differences in marsh elevation in different habitats.   

Methods 

Three different sampling methods were employed to examine the effects of dredged 

canals on the surface structure of the surrounding salt marsh. Estimates of marsh open water and 

elevation were made by: 1) sampling along 100 m transects perpendicular to dredged channels 

and natural channels, 2) sampling within 0.79 ha to 28.3 ha circular plots placed adjacent to 

producing wells, non-producing wells and natural channels, and, 3) examining marshes within a 

100 m buffer area surrounding dredged and natural channels.  

I used LiDAR data (U.S. Army Corps of Engineers 2003) and aerial photographs for 

southeastern Barataria Bay, Louisiana, to select and analyze elevation transects of marsh 

adjacent to dredged and natural channels (Figure 3.1). The flights for the LiDAR took place in 

1999, and the aerial photographs were taken in 1998. This area has diurnal tides that range up to 

30 cm and is primarily a salt to brackish marsh dominated by Spartina alterniflora.  For the 

transect method of analysis, 30 natural sites and 30 sites with dredged channels were identified 

by using a random number generator to select numbered 10 ha grid cells placed over all channel  

systems within the study area.  The locations of the transects were randomly chosen without a 

priori knowledge of the locations of active wells in the area.  Four of the 30 well sites occurred 

within 1 km of an active well. Two 100 m transects were drawn perpendicular to the channel  

bank, one on either side of the channel, at each site.  The transects started at the first pixel that 
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Figure 3.1.  The location in Barataria Bay, Louisiana, of the 60 sites used for the transect 

analysis of marsh elevation. 

 

did not have a value equal to that of the channel water, and extended 100 m in a straight line into 

the marsh at a 90
o
 angle to the channel edge.  The spatial profiler tool in ERDAS Imagine® was 

used to obtain the pixel values along each transect (Figure 3.2).  The pixel resolution (horizontal) 

for the LiDAR data was 5 m, so the marsh elevation was effectively sampled every 5 m over the 

100 m transect, with a vertical resolution of ± 0.07 m.  The cumulative study area was 

approximately 57,000 ha, and the cumulative area of the pixels included in this part of the 

analysis was 6 ha.  Mean elevations were compared between natural and dredged channels for 

each 5 m distance from the channel edge by Welch modified two-sample t-test.  Twenty-two of 

the 120 transects crossed pixels with values equal to that of pixels of water because of the 

density of channels and frequency of open water “pond” areas within the marsh. Aerial photos of 

these 22 transects were examined and it was determined that, in all cases, these values 

represented areas where open water occurred.  Water pixel values were removed from transects 
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for the analysis of marsh elevation.  The probability of water at each distance for natural and 

dredged marshes was calculated as the number of pixels that had water values divided by the 

number of replicates of each distance measure (60). 

 

Figure 3.2.  A demonstration of how the spatial profile tool was used in ERDAS Imagine® to 

obtain the values of LiDAR data points along 100 m transects perpendicular to the channel edge. 

 

The second method tested for the influence of fluid withdrawal on marsh elevation within 

45 circular sampling sites (Figure 3.3). Thirty sites were located using the mineral recovery well 

data from the SONRIS database (Louisiana Department of Natural Resources).  The 30 wells 

ranged in age from 0 to 54 years, had a modal drill date of 1957, and included 15 actively or 

formerly productive wells and 15 wells that were drilled but were never productive. All drilling 

sites were accessed through dredged channels.  The average measured depth of the wells was 1.5  

km. In addition, 15 sites from natural channel areas were randomly selected.  At each of these 45 



 33

  
Figure 3.3.  The location of the 15 natural sites, 15 productive well sites, and 15 non-productive 

well sites near Bay Batiste, in Barataria Bay, Louisiana. An example of the circular sample 

method showing the placement of the circles in relation to the channel is shown at the right. 

 

 

sites, pixel values were obtained from the LiDAR data set for land elevation within a circle of 50 

m radius adjacent to the channel edge by using ERDAS Imagine® to draw and subset the data 

within a circular area of interest (AOI) of 7,850 m
2
.  The mean elevation and percent of pixels 

with water values were calculated from the histograms for each circular subset of the LiDAR 

data.  The effect of sample area size on the results was examined by increasing the radius of the 

sample circle to 100, 150, 200, 250, and 300 m and repeating the procedure for each of the 

natural creek, productive, and non-productive well sites. 

The third method measured the elevation and percent water of the total area within 100 m 

of each of five dredged canal systems and of five natural creek systems. Buffers of 100 m from 
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the channel edge were created around the channel networks and used to subset the LiDAR data 

(Figure 3.4). The mean elevations and percent of pixels with water values were calculated from 

the histograms of the subset data, and the dredged and natural marsh values were compared using 

standard t-tests. Two of the dredged canal buffer areas also contained active wells. 

Note that the LiDAR measured elevations are in relation to the NAVD88 vertical datum, 

and tide height data is measured from mean low low water (MLLW) which is approximately 

16.5 cm above the NAVD88 datum. 

Results 

Transects 

Compared to natural marshes, the dredged marshes had a greater probability of water at 

all distances beyond 10 m from the channel edge (Figure 3.5a).  The probability of water 

occurring in dredged marshes increased between 10 and 45 m from the marsh edge, where the 

probability of water in dredged marshes (16 %;) was eight times higher than the probability of 

water in natural marshes (2 %).  When all distances were pooled, the overall probability of water 

in dredged marshes (12.3 %) was significantly higher than that of natural marshes (1.2 %; t-test, 

p < 0.01).  

The overall mean elevations for natural and dredged marsh transects were 82 cm and 76 

cm, respectively.  Marsh elevation was significantly higher in dredged marshes than in natural 

marshes from 10 to 30 m from the channel edge, but there was no significant difference at 

distances greater than 30 m (Figure 3.5b). The results from the transect analyses indicate that 

there was more open water in marshes that were dredged than in natural marshes, that the 

marshes > 30 m from natural creeks had the same elevation as the marshes that were not 

dredged, and that a spoil bank significantly increases the height of the marsh within 30 m of the 

channel edge. 
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Figure 3.4.  The location of the 5 natural and 5 dredged channel networks used for the buffer 

analysis of elevation. An example showing a 100 m buffer around a dredged system is shown 

below. 

 

 

 

 

 

. 
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Circles 

The radial distance of the circle used to sample the LiDAR data affected the results for 

both the mean elevation and the percent water. The mean elevation of the 50 m radius circle 

samples of the marsh adjacent to natural creeks was significantly higher than that found in marsh 

adjacent to non-producing wells, but was not significantly different from producing wells 

(ANOVA, F2,41 = 5.09, p = 0.01, natural  = 90 cm, non-producing wells   = 58 cm, producing 

wells   = 70 cm). The difference in elevation between natural marsh and non-productive wells 

sites was no longer significant at radial distances greater than 50 m.  There were no significant 

differences among site types in the mean percent of water found in the 50 m radius circle 

samples.  The difference in percent water between natural channels and productive wells and 

between natural channels and non-productive wells became significant at radial distances greater 

than 150 m (ANOVA 150 m:  F2,41 = 6.49, p < 0.01; 200 m: F2,41 = 9.46, p < 0.01; 250 m: F2,41 = 

11.99, p < 0.01; 300 m: F2,41 = 12.28, p < 0.01 ) (Figure 3.6). The percent water in natural sites 

increased from a mean of 1.5 % over the 50 m radius sample to 19 % over the 300 m radius 

sample, from 0.2 % to 33 % for non-productive wells sites, and from 1.3 % to 38 % for 

productive well sites.  

The disparity in results obtained using a 50 m radius circle sample versus using a 300 m 

radius to sample the marsh is illustrated in Figure 3.7.  The results of the circular sample method 

did not show a ‘spoil bank effect’ for marsh area adjacent to channels dredged for well access 

unlike results from the transect method already described. The results of the circular sample 

method also demonstrated that as the sample area increased to include a greater amount of marsh 

area beyond the channel edge, there was a greater proportion of open water.  
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Figure 3.5.  A. The percent of pixels that had water values over distance from the channel edge. 

Natural and dredged marsh both had 0 % water at 5 and 10 m.  B. The elevation of dredged 

marshes over distance from the channel edge. Values in the box are significantly different by t-

test.  See table 3.1 for p-values.  The bars represent ± 1standard error. 
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Buffers 

There was no significant difference in marsh elevation between marshes within 100 m of 

dredged channel networks and marshes within 100 m of natural creek networks ( natural  = 84 

cm, dredged  = 85 cm). Dredged marsh sites, however, had nearly twice as many water pixels 

as natural marsh sites (t-test, p = 0.01, natural  = 9 %, dredged  = 17 %).   

The results of the three sample methods (100 m transect, 100 m buffer area, and circular 

samples) all demonstrate that there was significantly more open water in areas of marsh that have 

been disturbed by channel dredging, but that marsh elevation did not appear to be affected, 

except where spoil bank occured (at the marsh edge; Table 3.1). The marsh elevation and open 

water at producing well sites did not differ from that at non-producing well sites, or from transect 

and buffer results for dredged channels. 

Discussion 

The land elevation at the land-water interface of dredged canals showed an increase for 

up to 30 m from the marsh-water interface, but the elevation of interior marsh did not differ from 

that found in natural marshes.  Literature values for spoil bank dimensions range from 20 to 30.5 

m wide and about 0.5 to 1 m high (Monte 1978; Swenson and Turner 1987; Abernethy and 

Gosselink 1988). The elevated area of marsh adjacent to dredged canals examined by the transect 

method extended approximately 30 m from the edge and the mean highest elevation of 0.98 m 

occurred at 10 m from the edge of dredged canals. The natural channel levees in this study had 

an approximate width of 10 m and maximum height of 0.85 m. A difference in height of 13 cm 

between dredged and natural marsh edge is noteworthy in a microtidal setting where the tidal 

amplitude is 30 cm, and sea level rise is 0.2 cm/year.  

No significant difference was found in marsh elevation between natural and dredged 
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Figure 3.6.  The results from the circular sampling scheme.  A. The percentage of open water 

with increasing circle sample size.  Stars indicate results that were significantly different from 

the other results at that radial distance.  B. The mean elevation of marsh sample with increasing 

circle sample size. A significant difference was only found for natural channels at a radial 

distance of 50 m, indicated by a star.  The bars are ± 1 standard error. 
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Figure 3.7.  A. The results for percent of open water pixels obtained using a sample circle with a 

50 m radius versus a 300 m radius. Note that the y- axis is a log scale. B. The results for mean 

elevation obtained using a circle with a 50 m radius versus a 300 m radius. Letters represent 

significant differences between site types and bars are ± 1 standard error. 
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Table 3.1.  A summary of the marsh elevation and the percentage of water data obtained by three 

different sampling strategies:  one hundred and twenty 100 m transects at 60 sites, ten buffered 

channel networks, and forty-five 100 m diameter circles.   

 

 

   100 m diameter 

  100 m Buffered  

  Transects Networks 

A.  Mean marsh elevation 

 A.1  Natural marshes 83 cm 84 cm 

 A.2  Dredged marshes 76 cm 85 cm 

 

 Statistically significantly difference? Yes, @ 5 to 30 m No 

  No @ > 30 m 

 

B.  Percentage open water  

 B. 1. Natural marshes 1 % 9 % 

 B. 2. Dredged marshes 12 % 17 % 

 

 Statistically significantly difference? Yes No 

 

                                Circular Samples 

  50 m 100 m  

  radius radius 

C.  Mean marsh elevation 

 C.1  Natural marshes 90 cm 79 cm 

 C.2. Non-producing well sites 53 cm 59 cm 

 C.3  Producing well sites 70 cm 68 cm 

 

 Statistically significantly difference? Natural > non- No 

  Producing; Producing 

  Not different from  

  non-producing 

 

D.  Percentage open water  

 D.1. Natural marshes  1.5 % 19 % 

 D.2.  Non-producing well sites 0.2 % 33 % 

 D.2. Producing well sites 1.3 % 38 % 

 

 Statistically significantly difference? No Natural <  

   Non-producing and  

   Producing;  

   Producing 

   Not different from  

   non-producing 
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channel systems within a 100 m buffer of the channel system. The elevated spoil bank area found 

by the transect method extended 30 m from the edge, so the buffer analysis may have included 

enough non-spoil bank area to minimize the effect of spoil bank on the overall elevation 

measurement. It is also important to note that the transect method measured elevation at points 

on individual channels at locations widely distributed across the marsh, whereas the buffer 

method sampled the marsh around entire channel systems. The spoil bank may have eroded from 

these particular systems; their approximate age, estimated from the drilling dates, was 38 to 74 

years. Additionally, the dredged material tends to spread out over the marsh after deposition, and 

has been observed to cause elevation changes over an area five to six times as wide as the canal 

itself (Monte 1978). A combination of spreading near the spoil bank and marsh subsidence could 

cause the elevation of the dredged marsh end up at an elevation similar to that of an undisturbed 

marsh. 

Oilfields producing from shallow horizons may contribute to subsidence of the marsh 

(Walker et al. 1987; Morton et al. 2006). Because oil wells are usually sited within dredged 

canals, it is necessary to distinguish between the effects of fluid withdrawal at wells from the 

effects caused by the canals and spoil banks. The circular sample method was used to test for 

evidence of decreased surface elevation due to subsurface fluid withdrawal over distances from 

50 m to 300 m from the well site. Only natural and non-producing well sites were significantly 

different in mean elevation at a radius of 50 m (Figure 3.6), but no differences were found at 

radial distances greater than 50 m. It is, therefore, unlikely that fluid withdrawal changed marsh 

elevation at these sites. It is interesting that the dredged marshes with non-producing wells had 

the lowest mean elevation, compared to dredged marshes with producing wells and natural 

marshes. One explanation is that the spoil bank eroded after these dredged sites were abandoned, 
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while actively producing well sites are periodically re-dredged and the newly deposited materials 

‘leaked’ into the surrounding marshes.  

Both the transect and buffer methods demonstrated that there was significantly more open 

water in dredged than in natural marshes.  The percentage of open water 35 m into the marsh was 

15.7 % on transects in dredged marshes and 1.7 % on transects in natural marshes.  The 

difference, 14 %, compares well with the 18.3 % of the total wetland area that became open 

water from 1955/6 to 1978 when land loss was at its peak (Baumann and Turner 1990; Turner et 

al. 2007), and the estimated 22 % of the land lost from 1956 to 2005 (Barras 2006).  These 

comparisons suggest that the results from this analysis of the 57,000 ha study area are broadly 

applicable to the entire coast.  

The marsh around dredged canals appears to be more broken up, but not lower in 

elevation.  Turner and Rao (1990) found that the area and number of new ponds formed in 

Louisiana tidal marshes was positively related to canal area, and that if new small ponds formed, 

then it was more likely that larger ponds would also form, so that the marsh broke up internally, 

rather than at the edge. The results of my study are consistent with the pattern of marsh loss 

which would result from the internal break up of the marsh into open water.  Two proposed 

mechanisms explaining the marsh-to-water conversion of interior marshes are 1) the marsh 

surface behind spoil banks subsides because of a reduced sedimentation on flooding tides 

(Cahoon and Turner 1987), and, 2) through the loss of vegetation that occurs when changes in 

marsh hydrology cause extended flooding and drying events that severely stress marsh plants 

(Turner 1987).  Spoil banks have been shown to affect tidal inundation patterns by decreasing the 

number of flood events, increasing the duration of flooding and drying events, and reducing 

water exchange above- and below ground (Swenson and Turner 1987).  Extended flooding can 
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inhibit the growth and increase the mortality of marsh plants.  Extended drying periods increase 

soil salinity which may inhibit plant growth and cause catastrophic marsh ‘die-back’ (Howes et 

al. 1981, Mendelssohn et al. 1981).  More than 90 % of the soil volume is composed of organic 

matter and water in healthy salt marshes (Turner et al. 2001), so that once vegetative production 

is decreased or lost, the marsh surface may quickly subside and convert to open water. The 

elevation of the marsh adjacent to spoil banks in this study was not significantly lower than that 

of the marsh adjacent to natural levees, and there was no correlation between marsh elevation 

and the probability that a pixel was open water.  If marsh elevation is maintained through the 

deposition of over-bank sedimentation, then marshes with spoil banks blocking over-marsh flow 

should show a decrease in elevation as subsidence continues and sediment input is reduced. On 

the other hand, if marsh elevation is maintained by organic matter input from vegetative 

productivity, then the conversion of marsh surface to open water may occur rapidly as vegetation 

dies off due to the increased hydrologic stress, and occur without an intermediate phase of 

decreased elevation.  

The marshes of natural, non-producing well, and producing well sites all showed an 

increase of about 20 % in the percent of water pixels found when the circular sample size was 

increased from a radial distance of 50 m to 100 m. The 50 m samples were proportionally more 

filled with natural levee or spoil bank area than the 100 m samples; the smaller radius size was 

not effective at measuring the amount of open water beyond the spoil bank.  The position of the 

circle at 100 m often covered spoil bank area on both sides of the channel (Figure 3.3) so even at 

100 m, there still appears to be an effect of the presence of spoil bank on the results.  Increasing 

the radial distance to 150 m further increased the percent water found at non-productive and 

productive well sites, but did not at natural sites.  At 150 m, the difference in percent water 
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between natural sites and non-producing and producing well sites becomes statistically 

significant, and the results of the circular sample method parallel the findings of the transect and 

buffer sampling methods that there is more open water associated with dredged marsh sites than 

with natural marshes. 

The results of this study indicate that: 1) there wass no difference in the mean elevation 

of marsh > 30 m from the marsh edge of dredged canals and natural channels, 2) there was a 

difference in the amount of open water in marshes adjacent to dredged canals compared to 

marshes with only natural channels, 3) there was no difference in elevation in marsh areas with 

producing wells or with non-producing wells, compared to natural systems, and, 4) there was 

more open water formed in marsh areas near producing wells or non-producing wells, compared 

to natural marsh systems. There was no evidence found in this study to support the theory that 

deep sub-surface fluid withdrawal affects surface elevation. The formation of open water areas 

within the marsh was near dredged canals, but the mechanism of marsh-to-water conversion does 

not appear to involve an intermediate decrease in elevation.  The evidence that marsh loss occurs 

though a break up of interior marsh to form open water ponds, rather than through edge erosion, 

can be seen in aerial photos and through the results of this and other studies, but the mechanism 

and time scale of the marsh to pond transition needs further analysis.  A time series of LiDAR 

data would be useful in further exploring associations between elevation changes and marsh loss, 

and could be combined with “on the ground” studies of plant productivity to better understand 

marsh-to-water conversions. 
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CHAPTER 4 

 

SALT MARSH CORD GRASS, SPARTINA ALTERNIFLORA, RIBBED MARSH 

MUSSEL, GEUKENSIA DEMISSA DEMISSA, AND SALT MARSH 

PERIWINKLE, LITTORARIA IRRORATA, DISTRIBUTION IN NATURAL AND 

DREDGED TIDAL SALT MARSHES OF LOUISIANA 

 

Introduction  

 

 Comparisons of the tidal salt marsh edge to the inner marsh, and to shallow non-

vegetated areas (e.g., ponds, channels, bays), have shown that the marsh edge is 

preferentially selected for by decapod crustaceans and resident, transient, and 

commercially important fishes (Baltz et al. 1993; Peterson and Turner 1994; Rozas and 

Zimmerman 2000; Stunz et al. 2002), and the amount of marsh edge appears to be 

positively correlated with densities of natant decapods (Minello et al. 1994; Webb and 

Kneib 2002).  While it is generally accepted that the marsh edge serves as a nursery 

habitat for many nekton species by providing food and refuge, it is important to consider 

that marsh edge is not uniform and can include a variety of habitat types and 

environmental conditions.  For example, differences in infaunal food availability and 

predation pressure have been found between erosional and depositional edges (McIvor 

and Odum 1988), and fish community structure varies between rivulet and channel marsh 

edge (Hettler 1989). 

The dredging of canals creates tidal marsh edge.  The most intensely dredged 

coastal wetland landscape is in Louisiana, which had 45,866 ha of canals in 1990 (Britsch 

and Dunbar 1993).  No estimate of total increase in marsh edge could be found for these 

wetlands, but the total addition of edge by canal construction may be roughly estimated 

by dividing the area of dredged canals by the average canal width, estimated to be 50 m 

(Chapter 2), to obtain a canal length of 9,173 km, which is then multiplied by two to 

account for both banks of the channel.  This calculation yields an estimate of 18,346 km 
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of edge added to the coastal Louisiana marshes through canal construction. In the 

following text, the term “creek” refers to naturally formed systems, “canal” to artificially 

constructed systems, and “channel” refers to any conduit of tidal water, natural or 

artificial. 

It has been hypothesized that, because the marsh edge is essential habitat for 

many species, habitat value and fisheries landings may actually increase as marsh edge is 

increased, but eventually decline as open water replaces broken marsh (Chesney et al. 

2000).  It is possible, however, that the functioning of the marsh edge may be affected by 

the method of development (i.e., natural vs. anthropogenic), and by the amount of 

unbroken marsh area with which it is associated.  Morphological characteristics that 

differ between natural and created channels (e.g., width, maximum depth and bank 

profile) may influence fish assemblage composition (Williams and Zedler 1999).  

Dredged canals are usually bordered by parallel spoil banks formed by the deposition of 

dredge material.  The soil properties of this dredged sediment, such as bulk density, grain 

size, and nutrient content, may also differ from that of undisturbed sediment at 

unmodified marsh edges.  

The distribution of plant and animal species on the marsh surface near the 

channel may also be affected by channel modifications.  Tidal creek morphology has 

been linked to the spatial distribution of vegetation (Fischer et al. 2000; Sanderson et al. 

2000), and both vegetation type and density have primary roles in structuring the marsh 

surface habitat.  For example, the ribbed marsh mussel, Geukensia demissa, and the salt 

marsh periwinkle, Littoraria irrorata, have been shown to be positively correlated with 

the density and distribution of the salt marsh cord grass Spartina alterniflora (Bertness 

1984; Hamilton 1978).  The distributions of G. demissa and L. irrorata may also be 
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affected directly by channel modification if the presence of spoil bank makes the marsh 

edge inaccessible during settlement, or if the soil properties of spoil bank sediment are 

inappropriate. 

S. alterniflora, G. demissa demissa (G. demissa), and L. irrorata are three 

conspicuous species in the tidal salt marshes of the Gulf coast.  The activities of these 

organisms affect nutrient cycling within the marsh and between the marsh surface and 

channel system, and may indirectly affect the abundance of prey organisms and the 

growth of the vegetation that serves as a refuge for many nekton species.  The 

relationships between these organisms and marsh morphology are not well known and 

there is virtually no data on the effects of changing marsh edge by the creation of dredged 

channels.  This study examines natural creeks and dredged canals of a Louisiana tidal 

marsh in order to determine if there are: (1) differences in the distributions of S. 

alterniflora, G. demissa, and L. irrorata, (2) differences in nutrient content of plants and 

soils, (3) correlations between plant and animal biomass and soil properties, and (4) 

correlations between biomass and channel morphology or marsh elevation.  

Methods 

Site Selection 

Fifty sites were randomly chosen at natural creek, dredged canal, and open bay 

marsh edges over an area of approximately 36 km
2 

of Spartina alterniflora dominated 

tidal salt marsh in southeastern Barataria Bay, Louisiana.  The study area (89.83 
o
W, 

29.45 
o
N and 89.75 

o
W, 29.41 

o
N; Figure 4.1) is primarily a salt to brackish marsh 

dominated by S. alterniflora, with diurnal 30 cm tides influenced by wind and 

precipitation.  Petroleum exploration and drilling programs in the area began in the late 

1930’s with the advent of equipment capable of drilling in aquatic environments, 
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resulting in a coastal plain with a massive network of man-made canals (Davis 1973).  

The canal networks examined in this study are estimated to have been dredged between 

1933 and 1969 based on the date the oil/gas well drill bit pierced the ground (Louisiana 

Department of Natural Resources, accessed 2005). 

Sites were selected by placing a grid of numbered 10 ha hexagons over the area, 

then using a random number generator to select from those hexagons that fell on natural 

marsh edge (22 sites), marsh edge that has been modified by dredging (20 sites), and 

marsh edge at open water bodies (8 sites).  The channel width, linear distance to the 

nearest bay, and channel distance to the nearest bay (Figure 4.2) were measured at each 

site in Arc View using digital orthophotos taken in 1998.  Elevations at 5 m and 10 m 

from the marsh edge were obtained from LiDAR data (U.S. Army Corps of Engineers 

2003). 

Sample Collection 

 Two 0.5 m X 0.5 m quadrats were placed one meter apart at the marsh edge of 

each of the fifty sites in October, 2004.  Litoraria irrorata (L. irrorata) were collected by 

hand from the plots, and then all above ground vegetation was cut at the marsh surface 

and collected.  Vegetative litter within the plot was also collected.  All live Geukensia 

demissa demissa (G. demissa) and shell litter were then collected from the plot by hand, 

and approximately 0.25 liters of sediment were collected from the surface and sealed in 

plastic bags while pushing out as much air as possible.  The quadrats were then pushed 

directly backward away from the mash edge, where two more groups of samples were 

taken for a total of four plots sampled per site (Figure 4.3).  

Vegetation samples were washed and separated into live Spartina alterniflora (S. 

Alterniflora), other live vegetation, and dead vegetation.  Vegetation samples were dried 
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at 70 
o
C for five days and weighed to ± 0.01 g.  G. demissa samples were frozen prior to 

processing.  After thawing, the shells were cleaned, opened by cutting the posterior 

adductor, the byssus was removed, and the meat was rinsed in deionized water and 

removed from the shell.  Shell length was measured with calipers from the apex to the 

posterior margin to 0.1 mm.  The shells and meat of animals greater than 20 mm in length 

were dried at 60
o
C for 48 hours then weighed to ± 0.01 g.  L. irrorata were rinsed in 

deionized water, and then dried at 60 
o
C for 6 days.  All individuals from a plot were 

weighed together to ± 0.01 g.  

Vegetation and soil samples were analyzed by the Louisiana State University Ag 

Center.  Soil samples were analyzed for nitrogen, phosphorus, sodium, and sulfur by the 

addition of 20 ml of Mehlich 3 extractant solution to 2 g of soil, shaking for 5 min on fast 

speed, and results were read on an Inductively Coupled Plasma Mass Spectrometer 

(ICPMS).  The organic matter content was determined by adding 10 ml 1 N K2Cr2O7 and 

20 ml concentrated sulfuric acid, waiting 2 hr, then adding 90 ml water, letting the 

solution equilibrate for 16 hr, and then reading the results on a colorimeter.  Dried live 

and dead leaf tissue samples were ground and analyzed for phosphorus, potassium, iron 

and sodium by adding 5 ml concentrated HNO3 to 0.5 g samples, waiting 50 minutes, 

adding 3 ml H2O2 digest for 2.75 hr on a heat block, cooling, and then diluting and 

reading on an ICPMS.  Dry combustion on a Leco N analyzer was used to assess nitrogen 

content. Soil bulk density was measured by drying 5 ml of soil from each sample site at 

60
0
C for 72 hours, which were then weighed to ± 0.01 g. 

Data Analysis 

Samples were pooled over the four quadrats at each site and expressed as g dry 

weight biomass m
-2

.  The total biomass of S. alterniflora and G. demissa were compared 
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Figure 4.1.  The locations of the fifty sites randomly chosen at natural, dredged, and open 

marsh edges. The area is approximately 36 km
2
of a Spartina alterniflora dominated tidal 

salt marsh in southeastern Barataria Bay, Louisiana. 
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Figure 4.2.  An illustration of the methods of measuring channel width, linear distance to 

the nearest bay, and channel distance to the nearest bay. Measurements were made in Arc 

View using digital orthophotos of the area taken in 1998. 

 

 

 

 

 

 
 

Figure 4.3.  An illustration of the placement of four 0.5 m X 0.5 m quadrat samples at the 

marsh edge.  Littoraria irrorata, Spartina alterniflora, vegetative litter, Geukensia 

demsissa demissa, shell litter, and soil samples were collected.  

 

 

 



 55

among natural, dredged, and open bay (open) site types using an analysis of variance 

(ANOVA) and Tukey’s post-hoc test, and between natural and dredged site types using a 

standard t-test (Insightful Corporation 2001(a)).  The variation of the abiotic variables of 

channel width, elevation at 5 m from the edge, elevation at 10 m from the edge, linear 

distance, channel distance, the ratio of linear to channel distance (as a measure of 

sinuosity), soil nutrient composition (carbon, nitrogen, phosphorus, sodium, and sulfur) 

and soil bulk density was examined by performing a principal components analysis 

(PCA) in S-Plus using the princomp function and a correlation matrix (Insightful 

Corporation 2001(b)).  A variogram analysis was used to provide measures of spatial 

correlation in the S. alterniflora and G. demissa total biomass values over all fifty sites.  

The variogram provides a measure of how sample data are related with distance and 

direction, and is calculated as half the average squared difference between points 

separated by distance h: 

γ(h) =       1      Σ (zi – zj)
2
 

           2 |N(h)|  N(h) 

 

where N(h) is the set of all pairwise Euclidean distances i – j = h, |N(h)| is the number of 

distinct pairs in N(h), and zi and zj are data values at spatial locations i and j, respectively 

(Kaluzny et al. 1998). 

Results 

A total of 57.4 kg (dry weight) of S. alterniflora, 20.2 kg of G. demissa, and 0.34 

kg of L. irrorata were collected from fifty sites.  S. alterniflora was the dominant 

vegetation at all sites; G. demissa and L. irrorata were present at 46 and 48 of 50 sites, 

respectively.  There was no statistical difference between the biomass results for S. 

alterniflora, G. demissa, or L. irrorata plots sampled closest to the edge (A and B, Figure 
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4.3) and those sampled at 0.5 m from the edge (C and D), and so the data from all four 

quadrats was used to calculate site means.  

Spartina alterniflora  

 The mean biomass of live S. alterniflora at natural edge sites (927.2 g m
-2) 

 was 

significantly greater than the mean biomass at dredged sites (658.3 g m
-2

), but the 

biomass of open edge sites (810.7 g m
-2

) was not significantly (p > 0.05) different from 

natural or dredged sites (ANOVA, F2,47 = 7.122, p = 0.002).  Significantly more dead 

plant material was also found at natural sites than at the dredged or open sites, but 

dredged and open sites did not differ significantly from each other (ANOVA, F2,47 = 

19.628, p < 0.01) (Table 4.1 and Figure 4.4).  

 The leaves of live S. alterniflora from natural edge sites had significantly more 

nitrogen and phosphorus than those of dredged sites (nitrogen ANOVA, F2,47 = 4.95, p = 

0.011; phosphorus ANOVA, F2,47 = 7.60, p<0.01) (Figure 4.5).  The nitrogen in leaves 

from open sites was not significantly different from leaves collected at either natural or 

dredged sites, but the phosphorus content was significantly less than in leaves from 

natural sites.  The leaf content of potassium was also significantly higher at natural sites 

compared to either dredged or open sites (ANOVA, F2,47 = 11.19, p<0.01).  There were 

no significant differences in iron or sodium in leaves at the different site types.   

 The nitrogen, phosphorus, and iron content of dead vegetation did not differ 

among natural, dredged, and open site types. The sodium content of dead vegetation from 

dredged sites was significantly greater than at natural sites, but did not differ significantly 

from open sites (ANOVA, F2,47 = 3.98, p = 0.03) (Figure 4.6A).  The potassium content 

of dead vegetation was significantly higher at open sites than at natural sites, but there 
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was no significant difference between open and dredged or between dredged and natural 

sites (ANOVA, F2,47 = 4.27, p = 0.02) (Figure 4.6B).  

Geukensia demissa  

The highest mean density of G. demissa, 98 individuals m
-2

, was found at open 

edge sites, and was not significantly different from the mean density of 82 individuals m
-2

 

at natural sites.  The density of 30 individuals m
-2

 at dredged sites was significantly less 

than at natural and open sites (ANOVA, F2,47 = 4.91, p = 0.01).  The total biomass (shell 

+ body weight) for G. demissa was significantly greater at open sites than at natural and 

dredged sites, but the biomass at natural and dredged sites did not differ significantly 

from each other (ANOVA, F2,47 = 3.16, p = 0.05) (Figure 4.4).  However, the number of 

open sites sampled (8) was small compared to the number of dredged (20) and natural 

(22) site types, and the variance of G. demissa biomass at open sites was more than twice 

as great as that of dredged channel and natural sites.  The biomass of G. demissa was 

compared between dredged and natural creek sites only (not including open edge) by 

standard two-sample t-test, and mussel biomass was significantly greater at natural sites 

than at dredged sites (p = 0.01).  The mean shell length of all G. demissa collected was 

54.5 mm, the mean body weight was 0.23 g, and the mean shell weight was 6.60 g.  The 

mean shell length to shell weight ratio was significantly higher at natural sites than at 

dredged or open sites (ANOVA, F2,3197 = 13.65, p < 0.001), and the mean shell weigh to 

body weight ratio was also significantly greater at natural sites (ANOVA, F2,3197 = 17.32, 

p < 0.001).  The amount of shell litter collected from the plots did not differ among site 

types. 

Littoraria irrorata  

The number of L. irrorata found ranged from 0 to 134 m
-2

.  The mean number of 
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individuals for natural plots was 34 individuals m
-2

, 31 individuals m
-2 

for open edge 

sites, and 19 individuals m
 -2

 for dredged sites, but the means were not significantly 

different when tested by an ANOVA.  There also was no significant difference in the 

mean snail mass among site types.  

Soil Properties  

 The soils at the open edge sites had the highest values for nitrogen, sodium, and 

carbon content, and the lowest value for phosphorus content (Figure 4.7).  The soil 

nitrogen and sodium content were significantly greater at open sites and at natural sites 

than at dredged sites, but there was no difference between open and natural creek sites 

(nitrogen ANOVA, F2,47 = 7.5, p<0.01; sodium ANOVA, F2,47 = 5.9, p<0.01).  Soil 

carbon was significantly higher at open sites than at dredged sites, but was not different 

from natural sites, and soil carbon at natural sites was not different from dredged sites 

(ANOVA, F2,47 = 4.92, p = 0.01).  Soil phosphorus was significantly higher at natural 

sites than at open sites, but there was no significant difference in the soil phosphorus 

between natural and dredged or open and dredged sites (ANOVA, F2,47 = 3.65, p = 0.03).  

Soil bulk density values were significantly higher at dredged sites than at natural or open 

sites (ANOVA, F2,47 = 8.93, p < 0.001). 

Elevation and Channel Characteristics 

The mean elevations measures obtained from the LiDAR data at 5 m and at 10 m 

from the edge did not differ among site types.  The channel (c) distance, linear (l) 

distance, and c/l distance (sinuosity) did not differ significantly between dredged canals 

and natural creeks, but the mean channel width was significantly greater in dredged 

canals (60.7 m) than in natural (28.2 m) creeks (t-test, p = 0.002). 
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Table 4.1.  Means (± standard error) of the biomass and nutrient analysis variables for natural, dredged, and open edge site types. 

Significant differences between means were tested by ANOVA analysis ( p > 0.05 ) and Tukey’s post-hoc test and are represented by 

letters reading horizontally.  Results marked with an * were significantly different ( p > 0.05 )when compared to each other by t-test. 

 Natural Dredged Open Edge 
Spartina alterniflora    

     Live biomass (g m-2) 927.24 ± 47.03 A 658.31 ± 44.11 B 810.73 ± 115.06 AB 

     Dead veg. mass (g m-2) 453.65 ± 22.39 A 241.47 ± 36.04 B 187.59 ± 32.30 B 

     Live leaf N (%) 0.92 ±0.04 A 0.74 ± 0.04 B 0.79 ± 0.05 AB 

     Live leaf P (%) 0.11 ± 0.01 A 0.08 ± 0.01 B 0.08 ± 0.01 B 

     Live leaf K (%) 0.95 ± 0.06 A 0.62 ± 0.03 B 0.71 ± 0.08 B 

     Live leaf Fe (ppm) 684 ± 65. 605 ±58  596 ± 112 

     Live leaf Na (ppm) 22,703 ± 964 23,119 ± 1,375 20,328 ± 1,415 

     Dead veg. N (%) 0.76 ± 0.30 0.74 ± 0.02 0.84 ± 0.04 

     Dead veg. P (%) 0.06 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 

     Dead veg K (ppm) 0.28 ± 0.02 A 0.36 ± 0.02 AB 0.40 ± 0.08 B 

     Dead veg. Fe (ppm) 1,265 ± 107 1,138 ± 94 837 ± 167 

     Dead veg. Na (ppm) 20,291 ± 1,317 A 26,205 ± 1,979 B 21,025 ± 877 

Geukensia demissa    

     Biomass (g m-2) 478 ± 68.8 A* 221 ± 67 A* 610 ± 282 B 

     Individuals m-2 82 ± 12 A 30 ± 9 B 98 ± 41 A 

     Shell length / shell weight 19.3 ± 0.4 A 16.3 ± 26.9 B 15.9 ± 0.5 B 

     Shell weight / body weight 30.8 ± 0.5 A 26.9 ± 0.4 B 27.5 ± 0.3 B 

     Shell length (mm) 58.6 ± 2.4 49.5 ± 6.5 55.6 ± 3.8 

Littoraria irrorata     

     Density (number m-2) 34 ± 6 19 ± 4 31 ± 4 

         Biomass (g m-2) 50.91 ± 10.11 22.80 ± 6.38 45.12 ± 14.5 

Soil    

     N 0.72 ± 0.03 A 0.52 ± 0.05 B 0.80 ± 0.09 A 

     P 39.88 ± 4.05 A 33.88 ± 2.92 AB 23.04 ± 1.00 B 

     Na 15,569 ± 760 A 12,216 ± 1,059 B 18,082 ± 2,011 A 

     S 3,558 ± 183 3,034 ± 215 3,684 ± 660 

     C 9.22 ± 0.47 AB 7.22 ± 0.91 A 11.82 ± 1.86 B 
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Figure 4.4.  Biomass of live and dead Spartina alterniflora, Geukensia demissa demissa, 

and Littoraria irrorata among the three site types: dredged channel edge, open bay edge, 

and natural creek edge. The mean ± 1 standard error is shown and significant differences 

(ANOVA, p < 0.05) are show by letters for each species. See Table 4.1 for p values. 

 
Figure 4.5.  The live leaf content of nitrogen, phosphorus, and potassium at natural, 

dredged, and open marsh edges. The means ± 1 standard error are shown.  Significant 

differences between site types for each nutrient (ANOVA, p < 0.05) are marked with 

differing letters. 
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Figure 4.6.  The sodium (A) and potassium (B) content of dead vegetation collected from 

natural, open, and dredged marsh edge. The means ± 1 standard error are shown.  

Significant differences (ANOVA, p < 0.05) are shown by different letters. 

 

 

Spatial Distribution  

Because values of L. irrorata were low and similar among site types, only S. 

alterniflora and G. demissa biomass values were examined for patterns of spatial 

distribution.  Regressions of biomass values against (x, y) location showed there was no 

significant trend in values in either north-south or east-west directions.  The spherical 

variogram model fitted to the empirical variogram for S. alterniflora had a range distance 

of 0.31, which corresponds to a distance of approximately 3 kilometers, and is the 

distance over which points are considered to be spatially correlated. The model 

variogram for G. demissa had a range of 0.25 (spatial correlation over 2.5 km) similar to 

S. alterniflora (Figure 4.8).  The directional variograms of S. alterniflora for 90
o
 and 135

o
 

showed a range of correlation in biomass values of approximately 0.2, or 2 kilometers, in 

west-east and northwest-southeast directions, while the 0
o
 and 45

o
 directional variograms 

showed that there is little or no spatial correlation in the north-south and northeast- 
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Figure 4.7.  The soil nitrogen, sodium, carbon, and phosphorus.content of salt marsh 

soils.  Significant differences (ANOVA, p < 0.05) are shown by differing letters. 
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southwest directions (Figure 4.9). The directional variograms for G. demissa did not 

show a trend of spatial correlation in any direction.  There appeared to be no spatial 

correlation between sites of the same type for either S. alterniflora or G. demissa when 

the site types were examined independently (Figure 4.10).  In summary, when all site 

types are examined together, values for S. alterniflora and G. demissa biomass appear to 

be spatially correlated over a distance of 2.5 to 3 kilometers, which is about half of the 

distance across the study site, but when the data is divided by site type, there appears to 

be no spatial correlation in values for biomass for either species.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Fitted spherical variogram of S. alterniflora (top) and G. demissa (bottom) 

biomass values at all sites. Variogram values for S. alterniflora: range = 0.31, sill = 

2,857, nugget = 1,675, nlag = 10, and for G. demissa: range = 0.25, sill = 7,595, nugget = 

4,595, nlag = 10. Distance units are grid units, 1 grid unit is approximately 10 kilometers. 
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Figure 4.9.  The directional variograms for S. alterniflora mass values over angles 0
o
 

(north -south), 45
o
 (southwest-northeast), 90

o
 (east-west) and 135

o
 (southeast-northwest). 

The variograms for 90
o
 and 135

o
 show a range of correlation in biomass values of 

approximately 0.2, or 2 kilometers, in west-east and northwest-southeast directions, while 

the 0
o
 and 45

o
 directional variograms show that there is little or no spatial correlation in 

the north-south and northeast-southwest directions 
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Figure 4.10.  S. alterniflora and G. demissa  mass at natural (left) and dredged (right) site 

types examined separately for spatial correlation using variogram analysis. There appears 

to be no spatial correlation among sites of the same type. 

 

 

Correlations and Principal Components Analysis 

 With the data from the three site types combined, no statistical relationship was 

found between the biomass of G. demissa and that of S. alterniflora or L. irrorata, but 

there was a linear relationship between S. alterniflora  biomass and the number of L. 

irrorata (R
2
 = 0.38, p < 0.01 ).  S. alterniflora biomass was also linearly related to the 

amount of phosphorus in the leaves (R
2
 = 0.16, p < 0.01) and with soil nitrogen (R

2
 = 

0.12, p = 0.01), and was weakly correlated with soil sodium, (R
2
 = 0.07, p = 0.06).  The 
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biomass of dead plant material was found to be linearly related to the biomass of live S. 

alterniflora (R
2
 = 0.19; p <0.01), the live leaf nitrogen (R

2
 = 0.38; p <0.01), and also with 

the linear distance of the site from the bay (R
2
 = 0.21, p <0.01).  G. demissa biomass was 

positively related to live leaf nitrogen (R
2
 = 0.17, p <0.003) and shell litter weight (R

2
 = 

0.42, p <0.001). 

 The natural and dredged sites had different patterns in correlations when analyzed 

separately. Natural sites showed significant positive relationship between live S. 

alterniflora biomass and the number of L. irrorata (R
2
 = 0.18, p = 0.04), soil nitrogen (R

2
 

= 0.25, p = 0.02), and soil sodium (R
2
 = 0.23, p = 0.02), but not between S. alterniflora 

and G. demissa biomass or leaf phosphorus.  For dredged sites, S. alterniflora biomass 

was positively related to the number of L. irrorata (R
2
 = 0.36, p< 0.01), leaf phosphorus 

(R
2
 = 0.22, p = 0.04), and G. demissa biomass (R

2
 = 0.24, p = 0.03), but not with soil 

nitrogen or soil sodium.  

A principal components analysis (PCA) of the twelve abiotic variables for the 

natural creeks and dredged canal sites (n = 42) identified 3 components with eigenvalues 

greater than one, which explained 69 % of the variance (Table 3.2).  Soil carbon, 

nitrogen, and sodium loaded negatively and soil bulk density loaded positively on 

component 1. Channel width loaded positively and 5-10 m elevation and soil phosphorus 

loaded negatively on component 2, while 0-5 m elevation, linear distance, channel 

distance, and c/l distance loaded negatively on component 3.  

Discussion 

 The mean S. alterniflora biomass value at natural creek edges (927.2 g m
-2

) was 

higher than that found by Darby (2006) in a Louisiana marsh in September (876.8 g m
-2

), 
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but both the natural edge mean value and the mean value at dredged canal edges (658.3 g 

m
-2

) were within the wide range of average peak biomass values previously reported for 

Louisiana marshes.  For example, Visser and Sasser (2006) reported values from 473 g 

m
-2

 to 1698 g m
-2

.  G. demissa values in this study ranged from a low of 30 individuals m
-

2
 at dredged sites to 98 individuals m

-2
 at open sites.  These densities are generally lower 

than those reported for east coast marshes. Jordan and Valiela (1982) reported G. demissa 

densities from 364 to 734 individuals m
-2

 along creek banks, 140 individuals m
-2

 in tall S. 

alterniflora, and 34 individuals m
-2

 in short S. alterniflora in a New England salt marsh.  

Bertness (1980) found mean densities of 422, 88, and 186 individuals m
-2

 in three 

marshes of the Chesapeake Bay.  On the Gulf coast, densities of 2.8 individuals m
-2

 were 

found in Alabama (West and Williams 1986). 

Some of the suggested controls on S. alterniflora production include salinity, 

hydroperiod (or redox potential), and nutrient limitation (Tyler and Zieman 1999, Howes 

et al. 1981). The average range of channel water salinity in the study area is 8 to 15 psu 

and the gradient across the study area is typically not more than 2 psu (Granados-

Dieseldorff 2006, Spicer, unpublished data). Pore water salinity was not measured, but 

soil sodium was highest at the natural sites.  S. alterniflora has been shown to tolerate 

salinity of up to 115 psu (Hester et al. 1998).  Although it has been shown that salinity 

can become a significant controlling factor on Spartina spp. following disturbance 

(Baldwin and Mendelssohn 1998), all of the dredged canals examined in this study were 

at least 30 years old and therefore much older than the effects of disturbance would be 

expected to persist. I conclude that it is unlikely that salinity varies enough between 

natural and modified sites, or reached high enough concentrations in the soil or 
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Table 4.2.  The factor loadings from a principal component analysis of 12 abiotic 

variables (channel dimensions, bank elevation, and soil nutrients) from natural creeks and 

dredged canals. Loadings in bold were used to characterize factors. 

 

Abiotic Variable   Principal component factors 

  1  2   3 

Channel width  0.18 0.34  - 

0-5 m height  - -0.23  -0.39 

5-10 m height  - -0.63  0.11 

Linear distance (l)  -0.22 -0.28  -0.47 

Channel distance (c)   -0.27 -  -0.58 

c/l distance  -0.17 0.29  -0.35 

Soil C  -0.43 0.15  0.15 

Soil N  -0.43 0.11  0.11 

Soil P  - -0.39  0.19 

Soil Na  -0.44 -  0.11 

Soil S  -0.30 -0.26  0.23 

Soil density  0.40 -  -0.16 

  - -  - 

Standard deviation  2.16 1.36  1.32 

Proportion of variance explained  0.39 0.15  0.15 

Cumulative proportion explained   0.39  0.54   0.69 
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leaf tissue to account for the differences in S. alterniflora production among site types. 

Changes in hydroperiod, such as prolonged flooding events, can cause a shift 

from aerobic to anaerobic production in root metabolism, limiting above ground 

production (Howes et al. 1981).  The timing and duration of flooding events at a marsh 

edge site is strongly affected by marsh surface topography (Cahoon and Reed 1995).  

Dredged spoil banks restrict water flow both above and below the adjacent marsh 

(Swenson and Turner 1987), and may cause interior “ponding” of water on the marsh 

surface.  There were no significant differences among site types in the 5 m or 10 m 

elevations measured using the LiDAR data, however all samples were taken within the 

first meter of the marsh edge and edge profiles were not measured.  The data collected 

are insufficient to determine if hydroperiod was a cause of the differences in biomass 

values between natural and dredged marshes. 

The aboveground accumulation of S. alterniflora biomass is generally believed to 

be nitrogen limited (Morris 1982), and increases in primary production and plant nitrogen 

content have been shown to occur with nitrogen fertilization (Valiela and Teal 1979).  S. 

alterniflora biomass, soil nitrogen, and leaf nitrogen all had significantly lower values in 

dredged marshes than in natural marshes.  There was a weak but statistically significant 

correlation across site types in plant biomass and soil nitrogen, suggesting that nitrogen 

limitation may be one factor affecting the growth of S. alterniflora at dredged sites.  

Nitrogen fertilization may occur through pseudofeces deposition by mussels.  

Nitrogen absorbed by mussels is excreted as ammonia or dissolved organic nitrogen.  

Jordan and Valiela (1982) estimated that as much as 50 % of the nitrogen absorbed by G. 

demissa is deposited as feces and pseudofeces, and that 55 % of the nitrogen absorbed is 



 70

excreted as ammonia.  Bertness (1984) showed that the experimental removal of mussels 

from Spartina marsh plots decreased the soil nitrogen by 0.18 %, which is approximately 

the difference in soil nitrogen found between natural and dredged sites in this study (0.2 

%). When the data are examined for natural and dredged sites (Figure 4.11A), there does 

not appear to be a strong relationship between soil nitrogen and total mussel biomass per 

m
2
, but there does appear to be a weak relationship between the number of mussels and 

soil nitrogen (Figure 4.11B).  Plots with a high total G. demissa biomass can be 

composed of a few large individuals or many smaller individuals. Soil nitrogen is 

inversely correlated with the mean individual weight (shell plus body) of mussels (Figure 

4.11C), and the mean individual weight decreases as density increases (Figure 4.11D), 

meaning that plots with a few large individuals generally had lower soil nitrogen than 

those with many smaller individuals.  Smaller mussels may have higher metabolic rates 

than large mussels as a consequence of their higher surface to volume ratios (Jordan and 

Valiela 1982).  Mussels in natural plots were more dense and had a smaller mean body 

length than the mussels in dredged plots.  The effect of G. demissa on soil nitrogen 

fertilization may be dependent upon not only the number of mussels, but also their size 

distribution.  

Kreeger et al. (2000) suggest that G. demissa, too, may be nitrogen limited, 

because the estimated supply of nitrogen sources, primarily phytoplankton, do not meet 

the estimated demand.  Chintala et al. (2006) found that G. demissa density and total 

biomass increase with nitrogen loading, possibly because increasing nitrogen enhances 

food sources such as S. alterniflora detritus, microheterotrophs, particulate organic 

matter, or phytoplankton.  
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The relationship between S. alterniflora and G. demissa may be one of facultative 

mutualism: mussels fertilize Spartina through nitrogen excretion, and the increased 

Spartina density and biomass reduce mussel predation and increase food sources.  In this 

study, shell litter was collected as evidence of predation, but the mean dry weight of shell 

litter was not significantly different between natural and dredged sites, and there was no 

relationship between litter weight and either S. alterniflora biomass or stem number.  The 

primary predator on G. demissa is the blue crab Callinectes sapidus, with predation by 

mud crabs (Panopeus herbstii) also found in some studies. West and Williams (1986) 

found no size selectivity of mussels by blue crab, and Hughes and Seed (1981) found that 

crabs consumed mussels up to 80 mm in length, however mud crab predation may be 

restricted to mussels under 50 mm (Seed 1980).  Evidence of predation may be seen in 

length frequency histograms of G. demissa if predation is strongly size class restricted. 

The length frequency histograms for G. demissa (see next chapter) do not show any 

patterns that would resemble selective size class predation which, based on the literature, 

may be expected. It cannot be determined from this data if predation differed among site 

types and if it is a factor controlling mussel distribution. 

Food resource limitation can result from a low abundance of phytoplankton and 

other food resources, or because of limited inundation reducing feeding time.  The 

growth in shell and soft tissue are not coincidental (Borrero and Hilbish 1988), and 

mussels may respond to food-limitations by reducing absolute tissue growth rates more 

severely than absolute shell growth (Franz 1993), although Lent (1967) found there was 

no relationship between intertidal height and shell-weight/meat-weight ratio.  Franz 

(1997) demonstrated that limits in feeding time and food supply resulted in mussels of a 
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Figure 4.11.  A. The relationship between soil nitrogen and total mussel biomass m
-2

.  B. 

The relationship between the number of mussels and soil nitrogen. Plots with a high total 

G. demissa mass can be composed of a few large individuals or many smaller individuals.  

C. The relationship between soil nitrogen and the mean individual weight (shell plus 

body) of mussels.  D. The mean individual weight and density relationship.  Plots with a 

few large individuals generally had lower soil nitrogen than those with many smaller 

individuals. 
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given shell length having a lower body mass at higher elevations than  mussels of 

equivalent length at the marsh edge.  The mussels that were removed from natural sites in 

this study had higher mean shell length-to-shell weight and shell length-to-body weight 

ratios than those removed from dredged or open sites.  Based on the above findings, 

higher shell-to-body weight ratios would be expected to occur under conditions with 

limited inundation, or under conditions were food sources are limited. The LiDAR data 

does not show a difference in elevation over the first 5 m of the marsh edge, but, again, 

differences in bank slope would not show up at this resolution and were not measured in 

the field, and so the effect of inundation cannot be determined.  There was a greater 

density of mussels at natural sites, which could limit the amount of food available for 

individual mussels due to pre-filtering by neighboring mussels.  

 The principal components analysis showed that 69 % of the variability in the 

abiotic factors was accounted for by the nitrogen and carbon content and bulk density of 

the soil. This is consistent with the hypothesis that nitrogen limitation is a significant 

factor in S. alterniflora distribution.  Soil bulk density is not linearly related to G. 

demissa biomass in the plots (Figure 4.12), but there does appear to be an optimal range 

of approximately 0.25 to 0.4 g cm
-3

 for G. demissa. The mean bulk density for natural 

sites of 0.3 g cm
-3

 falls within this range, while the mean value of 0.44 g cm
-3 

for 

modified sites was above this range. The higher bulk density at modified sites probably 

reflects the source of the dredge spoil sediments from the channel bottom. These denser 

sediments may be more difficult for mussels to settle on. 

Landscape factors, including channel width, elevation, and distance from the site 

to the channel mouth accounted for the second and third components of the principal 
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components analysis. Both physical and ecological conditions within channels are 

affected by channel morphologic parameters such as outlet width and sinuosity.  For 

example, water velocity at the surface has been shown to be positively correlated with 

channel outlet width, and the amount of organic material in channel sediments scaled 

negatively with channel size (Hood 2002).  In this study, dredged channels had a mean 

width that was more than twice that of natural channels, and dredged channel width did 

not scale with channel sinuosity as measured by the ratio (channel distance) :  (linear 

distance to the channel mouth).  Wider, less sinuous dredged canals may be more subject 

to erosion at their edges. Banks subject to erosion may be less suitable for mussel 

survival (Jordan and Valiela 1982). 

Summary and Conclusions 

 Nitrogen limitation may be one cause of the greater biomass values of S. 

alterniflora at natural compared to dredged sites; there was not sufficient data to 

determine if salinity and hydroperiod differences affected plant growth.  G. demissa 

density was greater at natural than at dredged sites, which could indicate better food 

resources, less predation on settled mussels, or higher rates of settlement.  It has been 

suggested that the relationship between S. alterniflora and G. demissa may be mutually 

facultative, with G. demissa supplying nitrogen to S. alterniflora through psuedofeces 

deposition, and S. alterniflora providing protection and increased food resources for G. 

demissa.  In this study, there did appear to be a relationship between soil nitrogen and the 

number of mussels, and this relationship is affected by the size distribution of the 

mussels.  There was no evidence of a relationship between S. alterniflora density and 

predation on G. demissa as measured by shell litter.  Allometric variation in the ratios of 
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Figure 4.12. Soil bulk density is not linearly related to G. demissa biomass, but there does 

appear to be an optimal range for G. demissa of 0.25 to 0.4 g cm
-3

. 

 

 

shell length-to-body weight and shell weight-to-body weight suggest there may be 

differences in food resources between natural and dredged sites.  The amount of food 

available, inundation time, and mussel density have been shown to affect mussel growth 

patterns.  Further research is needed to measure fine scale bank slope and inundation 

differences between site types, as well as to examine differences in predation and 

recruitment.  
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 The nitrogen and carbon content and bulk density of soils accounted for 39 % of 

variation in the abiotic variables, and channel morphology and marsh elevation accounted 

for 69 % of the variance.  This suggests that the source of the sediment (i.e. natural 

deposition or dredge spoil) may be more important that the effects of channel shape or 

marsh elevation, at least within the range of elevations measured in this study.  This may 

be an important consideration when artificially introducing tidal channels into 

constructed wetlands.  It is also worth noting that these differences in soil properties 

occurred even though the canals examined in this study were at least thirty years old.  
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CHAPTER 5 

 

TOWARD A MODEL FOR LINKING LANDSCAPE CHANGE TO  

ECOSYSTEM FUNCTION: POPULATION STRUCTURE OF GEUKENSIA 

DEMISSA DEMISSA AT NATURAL AND DREDGED MARSH EDGES 

 

Introduction   

The development of major tidal networks in undisturbed tidal marshes involves a 

direct feedback between marsh elevation and the tidal prism (French and Stoddart 1992). 

The colonization of the marsh surface by halophytic vegetation is related to elevation and 

tidal fluctuations, and the presence of vegetation stabilizes the configuration of the tidal 

networks (Mudd et al. 2004, Rinaldo et al. 2004). These processes give rise to the 

physical properties of tidal channels, such as edge slope and the presence of rivulets, 

which have been shown to affect infaunal food availability and the rates of piscivorous 

predation, as well as access to the marsh surface for foraging and refuge (McIvor and 

Odum 1988, Rozas et al. 1988). 

Dredging marshes creates artificial canal systems with characteristics that are 

different from natural creeks in several important ways. Dredged canal networks are 

morphologically dissimilar to naturally formed creek systems (Chapter 2), and they are 

typically straighter, deeper, and have steeper banks, higher mean dissolved oxygen 

concentrations, and lower mean salinities than natural creeks (Williams and Zedler 1999; 

Rozas and Reed 1994).  These structural and functional differences between naturally 

formed tidal creeks and dredged canals may have important effects on the biological 

functioning of the system. In the following text, the term “creek” refers to naturally 

formed systems, “canal” to artificially constructed systems, and “channel” refers to any 

conduit of tidal water, natural or artificial. 
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The population structure of the ribbed marsh mussel, Geukensia demissa demissa 

(G. demissa), has the potential to be highly affected by channel morphology. There are 

several reasons that this potential is likely.  For example, the survival of mussel spat 

released into tidal channels is mediated by currents, channel water temperature and 

oxygen concentration, and the presence of predators. Settlement occurs as tides flood the 

marsh edge, and recruitment rates are positively correlated with tidal coverage (Nielsen 

and Franz 1995). G. demissa feed by filtering primarily plankton from the water column 

during flooding tide (Peterson and Howarth 1987), and their growth rate, as well as 

reproduction, may be food-limited by submergence time (Franz 1993, Borrero 1987). 

Desiccation can occur when flooding tides are too infrequent, and mussels in low tide 

zones may be more susceptible to predation (Stiven and Gardner 1992).  

A population’s length frequency and age structure can provide insight into how 

physical and structural processes affect the distribution of organisms. The structural and 

functional differences between natural and dredged channel systems are examined in this 

study by comparing the age distribution of mussels at sites with divergent environmental 

conditions. This information provides a starting point for the development of a 

conceptual model of how dredged canal systems will function as mussel habitat in 

comparison to natural creeks.  

Methods 

 G. demissa were collected from four 0.5 m X 0.5 m quadrants placed at the marsh 

edge of 22 natural creek and 20 dredged canal sites in Barataria Bay, Louisiana. See 

Chapter 4 for a description of the marsh site.  Shell length (± 1 mm) was measured with 

calipers from the apex to the posterior margin.  Age was estimated by counting the 
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external growth rings across the length range on 195 right-valve shells that were 

randomly selected.  Shells were dried at 60
0
C for 48 hours and then placed in a solution 

of 50% bleach for approximately 1 hour to make the growth rings more visible. Growth 

rings (Figure 5.1) are caused by retraction of the shell-secreting mantle edge into the shell 

during harsh environmental conditions, and have been previously used to approximate 

seasonal growth (Bertness 1980). 

 

 

Figure 5.1. Image of a G. demissa shell with examples of growth rings highlighted. 

 

 The age frequencies of mussels were compared by site type (natural creek edges and 

dredged canal edges) and for the following variables: channel distance from the nearest 

outlet, bank elevation, channel width, Spartina alterniflora dry weight, and soil bulk 

density. Channel distance from the sample site to the nearest outlet was measured in 

ArcView using digital orthophotos of the area taken in 1998.  Channel width was 

measured in situ for channels less than 10 m wide, and using the aerial photos for 

channels greater than 10 m wide.  Bank elevation values were obtained from LiDAR data 

with a horizontal resolution of 5 m and a vertical relative precision of ± 0.07 m (U.S. 

Army Corps of Engineers 2003).  S. alterniflora was clipped at the ground and removed 

from the plots prior to the removal of the mussels, and was washed and then dried at 70 
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0
C for five days and weighed to ± 0.01 g. Soil bulk density was measured by drying 5 ml 

of soil from each sample site at 60
0
 for 72 hours, and then weighing to ± 0.01 g.  

The data for each of these variables was divided into quartiles (Table 5.1). 

Mussels from sites with values less than the 1
st
 quartile were compared with those with 

values greater than the 3
rd

 quartile.  For bulk density, mussels from sites with a bulk 

density less than the 1
st
 quartile were compared to those from sites values greater than the 

3
rd

 quartile and to those with values between the 1
st
 and 3

rd
 quartiles. 

 

Table 5.1. The minimum, 1
st
 quartile, mean, 3

rd
 quartile, and maximum values for each of 

the five environmental variables by which G. demissa age distributions were compared. 

 

Variable minimum 

1st 

quartile mean 

3rd 

quartile maximum 
      

Channel distance (m) 84 627 1,315 1,877 3,293 

Bank elevation (m) 0.2 0.5 0.7 0.9 1.2 

Channel width (m) 3 23 43 51 218 

S. alterniflora dry weight (g m-2) 347 602 799 982 1,382 

Soil bulk density (g cm-3) 0.15 0.28 0.36 0.41 0.81 

      

 

 

Results 

More than twice as many G. demissa were collected from natural creek edges than 

from dredged canal edges, with a total of 1,816 from natural sites and 600 from dredged 

sites. The density of mussels (± SE) at natural sites was 82 ± 12 m-2, which was significantly 

greater than the density of 30 ± 9 m-2 at dredged sites (t-test, p = 0.001).  The length frequency 

histogram of mussels from the natural sites (Figure 5.2) approximated a normal 

distribution, but the length frequency at dredged sites was skewed toward larger 

individuals. 
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Figure 5.2.  Shell length frequency histograms of mussels from marsh at natural creek 

edges (left) and dredged channel edges (right). 

 

The exponential equation y = 100*(1-0.65
x
) was fit to the length to age curve 

(Figure 5.3) with an r
2
 = 0.97. The equation  

Age = log ((length-100) / 100) 

          log (0.65) 

 

was used to calculate the age distributions for mussels at natural and dredged sites 

(Figure 5.4).  Thirty percent of the mussels at natural sites and 24 % at the dredged sites 

were aged 1 to 2 years; this age range accounted for the greatest proportion of mussels at 

both site types.  The low number of mussels aged 0 to 1 years is a sampling artifact from 

only measuring mussels greater than 20 mm in length. Also, smaller mussels are more 

difficult to find in the sediment, and are therefore probably under-represented in the 

population sample. There is a constant attenuation in the number of mussels with 

increasing age at the natural sites. At dredged sites the number of mussel age 5 to 6 years 

is slightly greater than those aged 4 to 5 years. 
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Figure 5.3.  The relationship between the number of shell growth rings and mean length 

of G. demissa. The exponential equation y = a(1-b
x
) was fit to the data with an r

2
 = 0.97. 

 

 

 

Figure 5.4.  Age frequency histograms for mussels from natural (left) and dredged (right) 

systems calculated from age at length equation. This method assumes that 1 band equals 

one year of growth. The low number of 0 to 1 year aged mussels is probably because 

small sized mussels were missed during collection. 
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 The age distribution at sites nearest channel outlets had a peak at ages 3 to 4 

years, with 28 % of the population in this age range (Figure 5.5). The age distribution at 

sites farthest from channel outlets is skewed toward individuals aged 1 to 2 years, with a 

constant attenuation with age.  The highest elevation sites had a more even distribution of 

mussels aged 1 to 5 years than the lowest elevation sites, whereas individuals aged 1 to 2 

years were 31 % of the population (Figure 5.6).  A similar pattern was observed for the 

widest versus narrowest sites.  The mussels in the 1 to 2, 2 to 3, 3 to 4, and 4 to 5 year 

classes accounted for 19 to 20 % each at the widest channel sites; in contrast, 40% of 

mussels were aged 1 to 2 years at the narrowest channels (Figure 5.7).  The lowest S. 

alterniflora dry weight sites had a low proportion of individuals that were aged 0 to 3 

years and the majority of individuals were in the 3 to 4 year age class (Figure 5.8).  The 

highest S. alterniflora dry weight sites had a high percentage of 1 to 2 year aged mussels, 

with constant attenuation with age, as did the lowest and highest bulk density sites 

(Figure 9). The sites with an intermediate bulk density had fewer individuals aged 1 to 2 

years, than age 2 to 3 years, and no individuals that were 7 to 10 years in age. 

 

Discussion 

 

 Counting external growth rings (annuli) of mussel shells as a measure of age has 

been reported to under-estimate the age of older individuals (Brousseau 1981), but the 

shell ring count to shell length curve did demonstrate the expected decrease in growth 

rate with size. Each growth ring may not truly represent one year, and rings were often 

difficult to distinguish, but this method did prove useful for comparing population 

structure across environmental conditions. 
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Figure 5.5.  Left: Age frequency histograms of mussels from sites with a channel distance 

≤ 627 m (1
st
 quartile). Right: Age frequency histograms of mussels from sites with 

channel distance ≥ 1877 m (3
rd

 quartile). 

 

 

 

 

 

 

 

 

 

 

Figure 5.6.  Left: Age frequency of mussels at sites with an elevation ≤ 0.5 m (1
st
 

quartile). Right: Age frequency of mussels at sites with an elevation ≥ 0.9 m (3
rd

 

quartile). 
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Figure 5.7.  Left: Age frequency histograms of mussels from sites with a width ≤ 22.9 m 

(1st quartile). Right: Age frequency histograms of mussels from sites with a width ≥ 50.9 

m (3
rd

 quartile). 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.  Left: Age frequency histograms of mussels from sites with S. alterniflora dry 

weight of ≤ 602 g m-2 (1
st
 quartile). Right: Age frequency histograms of mussels from 

sites with S. alterniflora dry weight of ≥ 982 g m-2 (3
rd

 quartile). 
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Figure 5.9.  Top: Age frequency histograms of mussels from sites with a bulk density ≤ 

0.28 g cm-3 (1
st
 quartile). Bottom left: Age frequency histograms of mussels from sites 

with a bulk density ≥ 0.41 g cm-3 (3
rd

 quartile). Bottom right: Age frequency histograms of 

mussels from sites with a bulk density > 0.28 and < 0.41 g cm-3. 
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At dredged sites there were fewer mussels and the age distribution was skewed 

toward larger, older individuals compared to natural sites. The widest channel sites and 

lowest S. alterniflora sites also showed a similar lack of a peak in 1 to 2 year aged 

recruits. Dredged canals are typically wider than natural creeks, and significantly lower 

plant biomass was found at dredged canal edges than at creek edges (Chapter 4), so it is 

not surprising that these variables would show similar results. The attenuation in the 

number of mussels with increasing age at the natural sites suggests regular recruitment 

and mortality rates. At the dredged sites, there is a decrease in individuals in the 3 to 5 

year age range. Predation could account for this decrease. Mussels in this age range are 

approximately 65 to 80 mm in length, and Hughes and Seed (1981) found that crabs 

consumed mussels up to 80 mm in length.   

Sites farthest from the channel outlet and those with the smallest widths had the 

greatest proportion of the population that was individuals 1 to 2 years old. The population 

of mussels at the far ends of narrow channels appears to be made of mostly young small 

mussels and have fewer older individuals than the wider channels. This suggests high 

recruitment, and either high adult mortality or slower growth. Retention time may be a 

factor in high recruitment at distal ends of channel systems. A greater proportion of G. 

demissa larvae produced in a system will be retained through settlement if retention time 

exceeds the larval development period (Franz 2001). Hood (2002) showed that 

allochthonous detrital inputs are more likely to be retained in small sloughs and in the 

smaller and more distal portions of large sloughs. In wider channels closer to the outlet, 

recruitment may be lower due to a decrease in retention time, but adult survival or growth 

may be greater.  Bertness (1980), for example, found that mussels showed progressively 
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decreasing growth rates and maximum size from the open coast to the more severe 

estuarine environment. 

Age frequencies for lowest and highest elevations did not differ greatly. Previous 

studies have shown that for mussels living at the seaward edge of the marsh, those from 

lower elevation displayed substantially higher growth rates than their counterparts at 

higher elevation (Lin 1989).  Elevation differences between sites may not have been great 

enough to see a difference.  

The results of a previous analysis of mussel biomass at natural and dredged sites 

suggested there is an optimal range for G. demissa recruits of 0.25 to 0.4 g cm
-3

 (Chapter 

4). Mussel distributions were compared at low, medium and high bulk density sites. 

Based on the histograms, low bulk density sites appear to have the greatest proportion of 

recruits. Medium bulk density sites had a greater proportion of individuals age 2 to 3 

years, and also had mussels older than 10 years. The finding of higher mussel biomass at 

the mid-bulk density sites may not be a result of higher recruitment due to better soil 

properties, but soil properties may contribute to the longevity of individuals that do 

recruit to sites with bulk density values in this range. 

Conceptual Model 

A conceptual model (Figure 5.10) was created to link structural differences 

between natural creek systems and dredged canal systems to population processes in G. 

demissa. Information used in developing the model came from studies of natural and 

dredged channel shape complexity (Chapter 2), marsh elevation adjacent to natural and 

dredged systems (Chapter 3), collections of G. demissa, S. alterniflora, and soil samples 

from random dredged and natural channel marsh edge (Chapter 4), and from the 
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population structure analysis presented in the paper, as well as information from other 

sources of published literature on G. demissa and S. alterniflora. The box numbers in 

parenthesis in the following text refer to the boxes numbers in Figure 4.10. 

Structural differences between natural creek systems and dredged canal systems 

include changes in the shape of the channel system and in channel bank properties. 

Natural creek networks were found to be significantly more complex in shape (box 1) 

through the analysis of perimeter-to-area ratio, shape index, and patch fractal dimension 

of 5 natural and 5 dredged channel systems (Chapter 2). The bank elevation (box 2) of 

marsh adjacent to natural creeks was significantly lower than dredged canals.  Natural 

creek levels measured using LiDAR elevation data averaged 10 m in width and had a 

maximum height of 0.85 m, while the elevated area of marsh adjacent to dredged canals 

examined extended approximately 30 m from the channel edge and the mean highest 

elevation of 0.98 m occurred at 10 m from the edge of canals (Chapter 3). The mean 

channel width (box 3) measured at random points was more than twice that of natural 

creeks, and  substrate bulk density (box 4) was lower at natural marsh edges than at 

dredged canals (Chapter 4). 

Recruitment of mussels to the marsh edge (box 5) is affected by structural 

changes in the shape of channel systems, elevation of adjacent marsh, and substrate 

properties at the marsh edge. Shape complexity can regulate both the amount of edge and 

quantity of mussel spat available for settlement. The amount of edge available for 

settlement box 6) is directly related to the shape index (Chapter 2). The amount of mussel 

spat available for settlement is partially determined by the retention time (box 7) of 

materials in the channel system.  Compared to dredged networks, natural networks had a 
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significantly greater percent channel area that was < 5m from the channel edge (Chapter 

2). This result can be attributed to the presence of small side channels that are < 10m 

wide in natural channels that are rarely present in the dredged channels examined in this 

study.  Retention time may therefore be greater in natural creek systems, which would 

create a higher density of spat available for settlement.  The greater proportion of age 1 to 

2 year individuals at the sites that had the narrowest channel widths and in those that 

were furthest from the channel outlet seems to suggest this. 

Inundation time (box 8) controls how often the marsh edge is available to settling 

spat. A wider, higher bank at a dredged canal means the marsh behind it may rarely be 

flooded enough for recruits to access it during flooding tides. Jordan and Valiela (1982) 

hypothesized that the abundance of adult mussels must be determined ultimately by the 

settlement and survival of spat because mortality of large mussels is very low. 

Inundation also affects the growth (box 9) and reproductive effort (box 10) of 

mussels (Franz 1993).  G. demissa feed by filtering primarily plankton from the water 

column during flooding tide (Peterson and Howarth 1987), but Geukensia can also feed 

on locally generated food sources such as Spartina detritus and suspended benthic algae 

(Peterson et al. 1985). Growth rates may be directly linked to submergence time, 

although Lin (1989) found that the magnitude of differences in mussel growth rates 

between low and high tidal elevations were larger than the quantitative differences in 

average submergence time. Variability in the quantity and quality of food between 

habitats may be an important factor, but ultimately would also be governed by physical 

conditions (Bertness 1980).  Mussels growing at higher tidal levels are exposed to
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Figure 5.10.  Conceptual model linking structural differences between natural and dredged marsh channel systems to population 

processes in G. demissa and production of S. alterniflora. The numbers in parentheses and letters A, B, and C refer to process 

descriptions in the text.
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potential desiccation and thermal stress (Lent 1969), and may allocate a smaller 

proportion of total production to growth, but exceed the reproductive effort of lower-

shore populations (Franz 1997). Mussels growing lower in the tidal zone may be more 

susceptible to predation (box 11) by blue crab. 

Inundation is also a limiting factor in the production of S. alterniflora (box 12). 

The growth of S. alterniflora is controlled to some extent by the relative oxidation state 

of the sediments (Howes et al. 1981).  S. alterniflora growth is also limited by nutrient 

availability in the soil (box 13), which is affected by the structural parameter of soil 

organic matter. Soil bulk density was found to be significantly higher in dredged canals 

than in natural creeks, which may be the result of sediment source since dredged spoil 

banks are made from sediment dredged from the channel bottom (Chapter 4). Channel 

width may also affect the percentage of organic material (Hood 2002).  

Density-dependent recruitment and survival are represented by box 14.  It has 

been suggested that the recruitment of mussels to the marsh edge is correlated primarily 

with the amount of available substrate composed of other living mussels (Nielsen and 

Franz 1995).  The number of mussels gathered that were 20 to 25 mm in length were 

compared to number of mussels that were > 25 mm in length (Figure 5.11) to determine 

if the number of recruits in the Barataria marsh was related to the number of conspecifics, 

and there does appear to be a weak relationship between the numbers of recruits and 

established mussels.  The densities of mussels also tends to increase with decreasing 

elevation (Jordan and Valiela 1982), and evidence of density-dependent mortality 

(Bertness 1980) suggests that intraspecific competition may be a significant mortality 

factor at lower elevation sites.  
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The relationship between G. demissa and S. alterniflora may be one of facultative 

mutualism. Mussels increase soil nitrogen (line A) through excretion and pseudofeces 

deposition. Bertness (1984) showed that the experimental removal of mussels from 

Spartina marsh plots decreased the soil nitrogen by 0.18 %, and in the Great Sippewissett 

Marsh the mussel population has the highest biomass of any animal population and 

releases more ammonia than any population of either plants or animals. Since nitrogen 

limits productivity in the salt marsh, increased retention of nitrogen due to filtration by 

mussels may ultimately enhance the productivity of the marsh (Jordan and Valiela 1982). 

The increased Spartina density and biomass can reduce predation on mussels (line B) by 

producing a firm base for attachment of the byssi (Kuenzler 1961), and increased mussel 

growth (line C) by providing an additional food source (Kreeger et al. 2000), as well as 

by serving as a shield against the hot summer sun (Kuenzler 1961).  

Summary 

 The examination of mussel populations by age distribution provides evidence that 

structural differences between natural creeks and dredged canal systems can influence the 

recruitment, growth, and mortality of mussels. Channel distance, channel width, and S. 

alterniflora standing biomass affected the age distribution of mussels, and all three 

parameters may differ between natural and dredged systems. The conceptual model 

presented in this paper is a first step toward developing a predictive model of how 

landscape change will affect mussel populations. The relationships between retention 

time and recruitment, inundation time and growth and reproduction, and soil bulk density 

and growth and mortality need further investigation. The model could also be refined by 

the incorporation of density dependent growth and mortality. 
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Figure 5.11.  The number of recruits (mussels 20 – 25 mm in length) compared to the 

number of individuals considered to be established (greater than 25 mm in length). The 

regression line is for natural and dredged site results combined. 
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CHAPTER 6 

 

SUMMARY 

 

I used GIS methods and LiDAR data to analyze differences in the shape 

complexity of natural and dredged channel networks and to compare the elevation of the 

marsh adjacent to natural and dredged channels and productive and non-productive oil 

and gas wells in a tidal salt marsh in Louisiana. I then examined the distribution of 

Spartina alterniflora, Geukensia demissa demissa, and Littoraria irrorata in relation to 

channel morphology, soil properties and elevation of the marsh edge at natural creeks, 

dredged canals, and open bay edges in order to correlate landscape patterns with 

ecological processes.  

Dredged canals were significantly less complex in shape, contained less channel 

habitat that was less than 5 m from the marsh edge, and had lower drainage area indices 

than natural creeks systems. The marsh around dredged canals appears to be more broken 

up, but not lower in elevation. Densities of S. alterniflora and G. demissa were lower, and 

soil and leaf nitrogen were significantly less in marsh adjacent to dredged canals than in 

marsh adjacent to natural creeks.  

Shape complexity affects the amount of edge available and the area of marsh that 

can be accessed from the channel, and may also have an effect on the retention time of 

particles in the channel system, current speeds, and habitat diversity.  The results of the 

spatial heterogeneity analysis support the idea that channel shape affects microhabitat 

distribution.  Nekton populations may be affected by channel shape on a microhabitat 

level if channels with less complex edges provide less variability in edge structure. The 

application of the habitat patch metrics of perimeter-to-area ratio, shape index, and patch 
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fractal dimension to tidal marsh channel systems was useful for identifying differences in 

shape complexity between natural creeks and dredged channels.  A more detailed 

analysis of fine scale bank slope, channel cross section profiles, and elevation would 

provide a better understanding of structural differences between natural and dredged 

channels.  The tidal channel network and the adjacent marsh edge actually are a mosaic 

of many microhabitat patches.  Dredged channels have a reduced shape complexity over 

natural systems, which likely results in reduced habitat diversity. The organisms that have 

evolved to survive in the difficult environment of the tidal marsh are dependent upon 

specific inundation regimes; a reduction in habitat diversity may remove species niches 

along the inundation gradient. 

 The results of both the transect and buffer methods of measuring marsh elevation 

surrounding natural creeks and dredged channels demonstrated that there is significantly 

more open water in dredged than in natural marshes.  The formation of open water areas 

within the marsh was near dredged canals, but the mechanism of marsh-to-water 

conversion does not appear to involve an intermediate decrease in elevation. The results 

of this study are consistent with the pattern of marsh loss which would result from the 

internal break up of the marsh into open water ponds.  There was no evidence found in 

this study to support the theory that deep sub-surface fluid withdrawal affects surface 

elevation. The mechanism and time scale of the marsh-to-water transition needs further 

analysis. A time series of LiDAR data would be useful in further exploring associations 

between elevation changes and marsh loss, and could be combined with “on the ground” 

studies of plant productivity to better understand marsh-to-water conversions. 
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 Nitrogen limitation may be one cause of the lower biomass values of S. 

alterniflora at dredged compared to natural sites; there was not sufficient data to 

determine if salinity and hydroperiod differences affected plant growth.  The greater G. 

demissa density at natural marsh sites could indicate better food resources, less predation 

on settled mussels, or higher rates of settlement than at dredged marshes.  The 

examination of mussel populations by age distribution provided evidence that structural 

differences between natural creeks and dredged canal systems influences the recruitment, 

growth, and mortality of mussels. Channel distance, channel width, and S. alterniflora 

production affected the age distribution of mussels, and all three parameters differ 

between natural and dredged systems. At dredged sites there were fewer mussels and the 

age distribution was skewed toward larger, older individuals compared to natural sites. 

The populations of mussels at the far ends of narrow channels appear to be made of 

mostly young, small mussels and have fewer older individuals than the wider channels. 

This suggests that high recruitment, and either high adult mortality or slower growth 

occurs in the distal ends of natural creek, while low recruitment and low adult mortality 

occurs along dredged canals.  The relationships between retention time and recruitment, 

inundation time and growth and reproduction, and soil bulk density and growth and 

mortality need further investigation in order to continue development of a model that can 

predict how mussel populations will change as the marsh landscape is changed.  

 This work demonstrates that landscape scale changes to tidal salt marshes have 

the potential to alter ecological processes at the microhabitat scale.  The dredging of 

massive canal networks is no longer a common practice in Louisiana marshes, but it is 

important to understand how these artificial systems compare to natural ones so that we 
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do not underestimate the impact dredged systems continue to have on the ecosystem long 

after they are created.  Understanding these impacts and the relationships between the 

natural hydrology and habitat quality will aid in the restoration of these salt marshes.  
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