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Abstract
This study assesses the relative performance characteristics of five established classification
techniques on data collected using the P300 Speller paradigm, originally described by Farwell
and Donchin (1988 Electroenceph. Clin. Neurophysiol. 70 510). Four linear methods:
Pearson’s correlation method (PCM), Fisher’s linear discriminant (FLD), stepwise linear
discriminant analysis (SWLDA) and a linear support vector machine (LSVM); and one
nonlinear method: Gaussian kernel support vector machine (GSVM), are compared for
classifying offline data from eight users. The relative performance of the classifiers is
evaluated, along with the practical concerns regarding the implementation of the respective
methods. The results indicate that while all methods attained acceptable performance levels,
SWLDA and FLD provide the best overall performance and implementation characteristics for
practical classification of P300 Speller data.

1. Introduction

A brain–computer interface (BCI) is a device that uses brain
signals to provide a non-muscular communication channel
[18], particularly for individuals with severe neuromuscular
disabilities. The P300 event-related potential, evoked in
scalp-recorded electroencephalography (EEG) by external
stimuli, has proven to be a reliable response for controlling
a BCI [5]. Recent studies have demonstrated that a P300-
based BCI trained on a limited amount of data can serve
as an effective communication device [1, 13, 14]. In
addition, more advanced feature extraction and classification
procedures have been implemented, greatly improving the
classification performance beyond those reported by Farwell
and Donchin on a 6×6 matrix of alphanumeric characters
[5]. Several classification techniques have demonstrated
notable performance for the P300 Speller, including stepwise
linear discriminant analysis [2, 5], support vector machines
[8, 10, 11], wavelets [1] and matched filtering [14]. This
recent progress has verified the capabilities of P300-based
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BCI systems and provided the impetus for efforts to improve
the speed and accuracy performance of the paradigm.

This study provides a comprehensive comparison of
several competitive classification techniques for the P300
Speller: Pearson’s correlation method (PCM), Fisher’s linear
discriminant (FLD), stepwise linear discriminant analysis
(SWLDA), linear support vector machine (LSVM) and
Gaussian support vector machine (GSVM). PCM and FLD
were chosen as simple linear techniques to provide a baseline
for comparison. The fundamental difference between these
two methods is that PCM only incorporates univariate
statistics, while FLD incorporates multivariate statistics.
SWLDA is an extension of FLD and was selected because
of its successful application to the P300 Speller in earlier
work [2, 5]. SVMs were chosen to represent popular modern
classifiers that have a theoretical foundation designed to
provide several desirable performance characteristics. The
LSVM was included for comparison to the linear SWLDA
and PCM, and the GSVM was included to evaluate potential
gains of nonlinear kernel methods.
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1.1. The P300 Speller

The P300 Speller described by Farwell and Donchin presents
a 6 × 6 matrix of characters [5]. Each row and each
column are intensified; the intensifications are presented in
a random sequence. The user focuses attention on one of the
36 cells of the matrix. The sequence of 12 flashes, 6 rows
and 6 columns, constitutes an Oddball Paradigm [4] with
the row and the column containing the character to be
communicated constituting the rare set, and the other ten
intensifications constituting the frequent set. Items that are
presented infrequently (the rare set) in a sequential series of
randomly presented stimuli will elicit a P300 response if the
observer is attending to the stimulus series. Thus, the row
and the column containing the target character will elicit a
P300 when intensified, because this constitutes a rare event in
the context of all other character flashes. Although the P300
response is independent of spatial attention, the relative roles
of eye gaze and transient visual responses in the P300 Speller
paradigm have yet to be examined.

2. Data collection

2.1. Users

Eight people (six men and two women, ages 24–50) were the
BCI users in this study. The users varied in their previous BCI
experience, but all users had either no or minimal experience
with a P300-based BCI system. The study was approved by
the New York State Department of Health Institutional Review
Board, and each user gave informed consent.

2.2. Task, procedure and design

The user sat upright in front of a video monitor and viewed the
matrix display. The task was to focus attention on a specified
letter of the matrix and passively count the number of times the
target character intensified. All data were collected in the copy
speller mode: words were presented on the top left of the video
monitor and the character currently specified for attention was
listed in parentheses at the end of the letter string (see figure 1).
Each session consisted of nine experimental runs; each run was
composed of a word or a series of characters prescribed by the
investigator. This set of prescribed characters spanned the set
of alphanumeric characters in the matrix and was consistent for
each user and session. The rows and columns were intensified
for 100 ms with 75 ms between intensifications. One character
epoch (i.e., one trial) consisted of 15 intensifications of each
row and column.

Four of the users were given suboptimal feedback because
the classifier was constructed using generic feature weights,
not adjusted to match their responses. The other four users
used SWLDA feature weights derived from their own previous
session’s data, and thus were given consistent and accurate
online feedback.

2.3. Data acquisition and processing

The EEG was recorded using a cap (Electro-Cap International,
Inc.) embedded with 64 electrode locations distributed over

Figure 1. The 6 × 6 matrix used in the current study. A row or
column intensifies for 100 ms every 175 ms. The letter in
parentheses at the top of the window is the current target letter ‘D’.
A P300 should be elicited when the fourth column or first row is
intensified. After the intensification sequence for a character epoch,
the result is classified and online feedback is provided directly
below the character to be copied.

the entire scalp, based on the International 10–20 system [15].
All 64 channels were referenced to the right earlobe, and
grounded to the right mastoid. The EEG was amplified with
an SA Electronics amplifier (20 000×), digitized at a rate of
240 Hz, bandpass filtered 0.1–60 Hz, and stored. All aspects
of data collection and experimental control were controlled by
the BCI2000 system [12].

2.4. Preprocessing

The channel selection and data preprocessing are based on
results found in [9]. In that study, several subsets of
64 channels were systematically evaluated with respect to
various data decimation factors and referencing schemes in
order to determine the combination that provided maximal
classification performance. For each channel in the subset,
800 ms segments of data following each intensification were
extracted. The segments were then moving average filtered and
decimated by equivalent values. The resulting data segments
were concatenated by channel for each intensification, creating
a single feature vector for training the classifiers. It was found
that the eight-channel ear-referenced subset shown in figure 2,
with a moving average window and decimation factor of 12,
provided the best general performance. Based on these results,
it is presumed that this technique is effective for capturing the
essential information of the P300 response for discrimination
purposes. Therefore, this channel set and preprocessing
technique were adopted for the present study, resulting in a
feature vector length of 128 (192/12 samples ∗ 8 channels).

3. Classification methods

Determining the presence or absence of a P300 evoked
potential from EEG features can be considered a binary
classification problem with a discriminant function having a
decision hyper-plane defined by:

w · f (x) + b = 0 (1)
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Figure 2. The electrode montage used in the current study [15].
The eight electrodes selected for analysis are indicated by the dotted
circles.

where x is the feature vector, f (·) is a transformation function,
w is a vector of classification weights and b is the bias term. For
nonlinearly separable problems, the f (·) can represent a kernel
transformation that maps the features into a higher dimensional
space in an attempt to create a linearly separable set. For linear
methods, f (·) is simply an identity transformation: f (x) = x.
All five methods considered are different approaches to solving
for w and b. However, because it is assumed that a P300 is
elicited for one of the six row/column intensifications, and
that the P300 response is invariant to row/column stimuli, the
resultant classification is taken as the maximum of the sum of
scored feature vectors for the respective rows, as well as for
the columns:

predicted row = arg max
rows


∑

irow

w · f (xirow)


 (2)

predicted column = arg max
columns


 ∑

icolumn

w · f (xicolumn)


 . (3)

By assigning class labels of +1 and −1 to the target and
nontarget stimuli, respectively, this design selects the response
with the largest positive distance from the trained separating
hyper-plane. This is ideally analogous to selecting the
response that strongly represents the characteristic P300
as defined by the training data. The predicted character
is located at the intersection of the predicted row and
column in the matrix. Because equations (2) and (3) are
invariant to the constant bias term b, it does not need to be
computed. The details of the four linear methods, PCM, FLD,
SWLDA, LSVM, and one nonlinear kernel method, GSVM,
are described below.

3.1. Pearson’s correlation method

Pearson’s correlation coefficient [3] is a statistical analysis tool
that can be used to test the significance of predictor variables.
This coefficient, which measures the correlation between two
series X = (xi, 1 � i � L) and Y = (yi, 1 � I � L), is defined
by:

r = L
∑

xiyi − ∑
xi

∑
yi√(

L
∑

x2
i − (∑

xi

)2)(
L

∑
y2

i − ( ∑
yi

)2) (4)

where L is the number of responses in the training set, yi are
the class labels corresponding to each stimulus, and xi are the
values of a single input feature corresponding to each stimulus.
It reflects the degree of linear relationship between the two
series, and ranges between −1 and +1. If the two series are
strictly proportional, r is equal to ±1. If the two series show
no correlation, r is equal to zero. The higher the absolute value
of r, the more significant the predictor variable for the model.

To use PCM for discrimination, for each feature in the
feature vector, the correlation coefficient between the feature
and target observations is computed using equation (4). Rather
than selecting only the most significant features for inclusion
to the model, all of the respective correlation coefficients are
used as the feature weights in equation (1). If a feature is
significant, its value will be multiplied by a non-null coefficient
and added to the sum. If a feature is not significant, its value
will be multiplied by a coefficient near zero and have little
impact on the model. This supervised learning scheme, which
uses the information contained in each axis of the feature
space independently of the others, is very efficient in terms of
computational complexity.

3.2. Fisher’s linear discriminant

Fisher’s linear discriminant [6] is the benchmark method for
determining the optimal separating hyper-plane between two
classes. FLD is simple to calculate and provides robust
classification that is optimal when the two classes are Gaussian
with equal covariance. For binary classification tasks such as
this, Fisher’s linear discriminant and the ordinary least-squares
regression solution are equivalent, with the estimated feature
weights given as:

ŵ = (XT X)−1XT y (5)

where X is the matrix of observed feature vectors and y is the
vector of class labels.

3.3. Stepwise linear discriminant analysis

Stepwise linear discriminant analysis [3] is an extension
of FLD that performs feature space reduction by selecting
suitable features to be included in the discriminant function.
This technique was originally introduced for classifying the
P300 in [5]. A recent analysis of this method for the P300
Speller [9] has confirmed this relatively simple technique to
be effective for online communication.

A combination of forward and backward stepwise
analyses was implemented. Here, the input features are
weighted using ordinary least-squares regression (equivalent
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to FLD) to predict the target class labels. Starting with
no initial features in the discriminant function, the most
statistically significant input feature for predicting the target
label (having a p-value <0.1) is added to the discriminant
function. After each new entry to the discriminant function,
a backward stepwise analysis is performed to remove the
least significant input features (having p-values >0.15). This
process is repeated until the discriminant function includes
a predetermined number of features, or until no additional
features satisfy the entry/removal criteria. In this case,
the final discriminant function was restricted to contain a
maximum of 60 features [9].

3.4. Support vector machines

A support vector machine [17] is designed to determine the
hyper-plane that maximizes the separating margin between the
two classes of a binary classification. With class labels coded
as yi ∈ [±1], equation (1) can be reformulated as:

yi(w · f (xi) + b) + ηi � 1 (6)

where ηi > 0 represents the distance from the misclassified
points to the margin. With the margin simply equaling 2/‖w‖,
the maximum margin will minimize:

C

l∑
i=1

ηi +
1

2
‖w‖2, (7)

subject to equation (6), where C is an arbitrary regularization
parameter that reflects the penalty for misclassification and
l is the number of training examples. This constrained
optimization problem can be solved using Lagrangian
multipliers, equivalently maximizing:

max
α




l∑
i=1

αi − 1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xj , xi)




s.t. αi � 0, i = 1, . . . , l (8)
l∑

i=1

αiyi = 0

where the kernel function K(xj , xi) = �(xj ) · �(xi) defines
the nonlinear transformation, �(x) = x for the linear case.
With the vector of Lagrangian multipliers �α, the classification
score of a feature vector x, disregarding the inconsequential
bias term, is computed as follows:

scoreSVM =
l∑

i=1

αiyiK(xi, x). (9)

The Gaussian kernel used for the nonlinear GSVM is selected
because of its universal approximation properties and is given
as follows:

K(u, v) = e− ‖u−v‖2

2σ2 . (10)

A normalization of the input features was performed to
improve performance of the SVM algorithm. The SVM
parameters were varied for each user, resulting in negligible
performance differences. Therefore, the parameters that
resulted in the best overall performance on the training data
were determined to be C = 10 and σ 2 = 103. These values
were used for all simulations.

4. Comparison protocol

The previously described feature vectors served as a common
input to all five of the classifiers. Parameters for each method
were optimized over the set of users and fixed to the values
specified in section 3. No restrictions were otherwise placed
on the classification schemes and the algorithms were free to
use any subset of the prescribed features for classification.

In designing a practical P300-based BCI classifier,
performance and implementation are the primary
considerations. These factors are outlined below.

4.1. Performance considerations

The performance of a P300 classifier is evaluated by both speed
(number of intensification sequences required for accurate
classification) and accuracy (per cent correct). An increased
communication (bit) rate will result by optimizing one or both
of these performance factors.

The performance of the classifiers was validated in two
ways using the offline data. First, for each user, the classifiers
were trained on the data from the first session only (all
15 intensification sequences, equivalent to 6480 training
observations) and tested on all four subsequent sessions.
Second, for each user, the classifiers were trained on a single
session (again, all 15 intensification sequences) and tested on
the subsequent session, for four consecutive sessions. For
the test sessions, the feature vectors for each subsequent
intensification in the sequence (up to 15) were averaged by
corresponding row/columns for each character epoch and
classified by the five algorithms.

4.2. Implementation considerations

The implementation of a P300 classifier is evaluated by
the training requirements for the algorithm to arrive at a
suitable solution and the online classification requirements
of applying the resultant solution. An evaluation of the
algorithm training encompasses the model selection and
parameterization, the amount of training data required to
construct the model, the computational complexity, and the
convergence properties. These issues are confounded in
characterizing the fundamental practicality of the algorithm:
the amount of time and computational resources required
for successful training. For instance, algorithms requiring
more training data, having slower convergence properties,
having increased computational complexity, or requiring
multiple model/parameter/data evaluations for optimization
all result in increased training time and/or more required
computational resources. Because data and parameter
dependences are involved, it is difficult to quantify and provide
a definitive comparison of the implementation properties of
the classification algorithms. The practical aspects regarding
training of each algorithm are discussed in section 6.

For the five algorithms considered, online classification
requirements are of less concern because all of the models are
relatively simple and static. Additionally, feedback is given at
the end of trial, so moderate processing delay can be tolerated.
All algorithms considered merely involve simple transforms
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Figure 3. Performance curves for each method of training. The top row of plots shows the classification results using weights derived from
the first session for each user applied to all subsequent sessions. The bottom row of plots shows the classification results using weights
derived from the previous session for each user applied to each subsequent session. Legend acronyms: FLD (Fisher’s linear discriminant),
SWLDA (stepwise linear discriminant analysis), PCM (Pearson’s correlation method), LSVM (linear support vector machine), GSVM
(Gaussian support vector machine). Note: the comparatively low performance for user B is presumably the result of suboptimal feedback
(see section 2.2). The comparatively low performance for user H is presumed to be due to concentration and attentional issues reported by
the user during the online sessions.

(This figure is in colour only in the electronic version)

and inner products using static feature weights: PCM, FLD and
LSVM apply a single weight for each input feature; SWLDA
has a maximum number of weights set to the predefined model
order (likely less because of the termination heuristic); and the
GSVM requires the Gaussian kernel operation for each support
vector, which may become a computational burden with a large
number of support vectors. However, for online application of
the P300 Speller, none of the methods considered will impose
an impractical feedback delay.

5. Results

The performance results are provided in figure 3. The top row
of plots shows the classification results using weights derived
from the first session for each user applied to all subsequent
sessions. The bottom row of plots shows the classification
results using weights derived from the previous session for
each user applied to each subsequent session.

A repeated measures ANOVA on the performance results
revealed a significant difference (F(4, 28) = 19.94, p < 0.0001)
between the five classification algorithms. Using a post hoc
Tukey–Kramer [7] test, FLD and SWLDA were significantly
better than PCM (p < 0.01) and GSVM (p < 0.05), and
the SVM methods were also significantly better than PCM
(p < 0.05). There is no statistically significant difference

between classification using weights derived from the first
session versus weights derived from the previous session
(F(1, 7) < 1, ns), or in performance across sessions (F(3,
21) < 1, ns). Also, there is no statistically significant
difference (F(1, 7) < 1, ns) between the users whose feedback
was based on suboptimal generic feature weights and the users
whose feedback was based on SWLDA weights optimized to
their unique P300 response.

6. Discussion

With sufficient and discriminable input features, poor
performance characteristics are commonly the result of
inadequate modeling and/or over-fitting of the data. For this
study, the input features were selected to presumably contain
the essence of the P300 Speller response for discrimination [9].
In general, all of the algorithms were capable of adequately
classifying the data. However, the statistical analysis suggests
that linear classifiers are sufficient for P300 data and that
the added complexity of nonlinear methods is not necessary.
Additionally, the statistical analysis further suggests that the
P300 response appears to be stable across sessions, which
is consistent with [13]. Furthermore, the statistical analysis
indicates that the users’ offline performance was unaffected by
the accuracy of the online feedback over a limited number of
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sessions. This invariance to feedback verifies the innate nature
of the P300 response.

PCM is extremely simple: it optimizes the classifier
based on the univariate statistics of a fixed model including
all features. Because PCM solely relies on univariate
statistics, the method is not limited by the number of
training observations when the dimension of the input feature
space becomes large. The training required for PCM is
solely dependent on equation (4) and does not require any
parameterization in this basic form. This results in rapid
training, implementation and good performance. However,
PCM exhibits the lowest average performance because it does
not utilize the covariance between features and because it can
be unnecessarily redundant.

FLD is similar in conception to PCM, but more
advantageous because it accounts for the covariance between
features. FLD is also extremely simple: it optimizes the
classifier by optimizing the weights of all the features in a
least-squares sense. As with PCM, the training required for
FLD is solely dependent on equation (5) and does not require
any parameterization in this basic form. This again results
in rapid training, implementation and performance superior to
PCM.

With increasingly large input feature spaces, the results
produced by FLD and similar methods could begin to
deteriorate if there is an insufficient number of training
observations. SWLDA offers a solution to this problem
by selectively limiting the size of the input feature space.
The SWLDA algorithm is reasonably efficient because the
terminating heuristic is implemented in such a way that
suitable features are selected in a non-exhaustive manner.
The only required parameters, the maximum model order
and the termination heuristic, are intuitive and can be easily
gauged based on the expected characteristics of the data. In a
sense, SWLDA has the advantage of having automatic feature
extraction because insignificant terms are removed from the
model (i.e. weights are set to zero). Although SWLDA can be
tuned to provide faster convergence by limiting the model order
or termination heuristic, it is not guaranteed to be convergent
and will not provide a model if the heuristic cannot be satisfied.
However, this typically occurs only if the model is inadequate
or if there is not discriminable information contained within
the features. When properly configured, this result can be used
to conclude that P300 evoked potentials are not present in the
session.

SVMs are designed to have the desirable theoretical
property and advantage of maximizing the margin between
classes in order to provide good generalization, and thus
can provide reasonable results using a minimum amount
of data for training. This has been examined for P300
Speller classification in [10]. However, in practice for P300
classification, SVMs do not necessarily provide an evident
performance advantage over other methods. Although the
LSVM performed well, the GSVM’s inferior performance is
likely attributed to over-fitting the training data. Over-fitting
can be a common dilemma with nonlinear classifiers because
they are often able to model the training data very accurately,
but can fail if the training data are not totally representative of

independent test data. Over-fitting may be resolved by tuning
the classification algorithm to generalize to independent test
data. This leads to another drawback of SVMs, the onerous
process of attaining suitable model and training parameters.
Because SVM parameters such as the regularization parameter
and kernel bandwidth cannot be intuitively generated, it may be
necessary to examine many combinations to achieve optimal
performance. In addition, although SVMs can perform well
with little training data, the algorithm is very complex and
training is significantly slower than with the other methods
considered.

Algorithm training time and resources are of utmost
practical importance. Ultimately, when P300-based BCIs
are made available to disabled people, it will initially be
necessary to test the efficacy of the P300 paradigm for each
individual user in his or her home where the testing time
may be limited to an hour or so and computing resources are
commonly restricted to those of a standard laptop computer.
Thus, efficient and effective algorithm training is necessary
for prompt calibration, configuration of the classifier and
commencement of the experiment. Nevertheless, the ultimate
goal is to maximize performance and therefore communication
rate. When time, data and computational resources are
available, classifier performance should not be forsaken
for modest improvements in the convenience of algorithm
training.

Ultimately, it is conceivable that, with enough effort, any
of the methods examined could likely be tuned to improve
performance. However, the required effort to precisely
tune each algorithm may vary greatly, which is a major
consideration for practical application. Out of the five
methods examined, FLD and SWLDA provide the best overall
combination of training and performance characteristics for
practical P300 Speller classification, with SWLDA providing
potential advantages because of its capability to eliminate
insignificant features for large, unknown feature spaces.

References

[1] Bostanov V 2004 BCI competition 2003-data sets Ib and IIb:
feature extraction from event-related brain potentials with
the continuous wavelet transform and the t-value scalogram
IEEE Trans. Biomed. Eng. 51 1057–61

[2] Donchin E, Spencer K M and Wijesinghe R 2000 The mental
prosthesis: assessing the speed of a P300-based
brain-computer interface IEEE Trans. Rehabil. Eng.
8 174–9

[3] Draper N and Smith H 1981 Applied Regression Analysis
2nd edn (New York: Wiley) pp 307–12

[4] Fabiani M, Gratton G, Karis D and Donchin E 1987
Definition, identification, and reliability of measurement of
the P300 component of the event-related brain potential
Adv. Psychophysiol. 2 1–78

[5] Farwell L A and Donchin E 1988 Talking off the top of your
head: toward a mental prosthesis utilizing event-related
brain potentials Electroenceph. Clin. Neurophysiol.
70 510–23

[6] Fisher R A 1936 The use of multiple measurements in
taxonomic problems Ann. Eugenics 7 179–88

[7] Hochberg Y and Tamhane A C 1987 Multiple Comparison
Procedures (New York: Wiley)

304

http://dx.doi.org/10.1109/TBME.2004.826702
http://dx.doi.org/10.1109/86.847808
http://dx.doi.org/10.1016/0013-4694(88)90149-6


A comparison of classification techniques for the P300 Speller

[8] Kaper M, Meinicke P, Grossekathoefer U, Lingner T and
Ritter H 2004 BCI competition 2003-data set IIb: support
vector machines for the P300 speller paradigm IEEE Trans.
Biomed. Eng. 51 1073–76

[9] Krusienski D J, Sellers E W, McFarland D J, Vaughan T V and
Wolpaw J R Toward enhanced P300 Speller performance
J. Neurosci. Methods submitted

[10] Meinicke P, Kaper M, Hoppe F, Huemann M and Ritter H
2002 Improving transfer rates in brain computer interface: a
case study NIPS 1107–14

[11] Blankertz B, Müller K R, Krusienski D J, Schalk G,
Wolpaw J R, Schlögl A, Pfurtscheller G, Millán J R,
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