

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

Eric Kurtz, Douglas Kuhel, James E. Anderson, Sherry A. Mueller

This work was supported by the U.S. Department of Energy, under special project number DE-FC26-07NT43278.

Acknowledgement: Dennis Miller, Lars Peereboom, and Carl Lira at Michigan State University for supplying the fuels used in this study.

- Background
- Experimental Method
- Experimental Results
- Summary & Conclusions

This work has been published in SAE 2012-01-1695

- Background
- Experimental Method
- Experimental Results
- Summary & Conclusions

MSU Fuels Investigations

 Canola-based FAMEs (CME) has relatively good cold flow properties & oxidative stability.

- DBS further improves the cold flow properties of CME.
- To stay within the 40 CN U.S requirement, DBS content in CME must be limited to 40%.

Single-Cylinder Study Objectives

Study the influence of selected oxygenated fuels on combustion and emissions in a modern diesel engine

- Conventional Combustion
- Low Temperature Combustion (LTC)

- Background
- Experimental Method
- Experimental Results
- Summary & Conclusions

	Mineral Diesel Fuels (Control group)			Oxygenated Fuels	
	720	727	668*	CME	60-40
Cetane No.	45.6	41.8	56.5	50.8	40.8
NHV (MJ/kg)	42.9	42.4	43.2	37.4	33.2
H:C ratio	1.81	1.775	1.952	1.88	1.86
O:C ratio	0	0	0	0.11	0.19
Aromatics	28.6%	32.4%	<5%	0%	0%

*A low aromatic diesel fuel included in the study (97.7% saturates)

Test Conditions

- A single-cylinder version of the production 6.7L V8 PowerStroke®.
- Evaluated over the entire engine map.

BMEP [bar]

Test Procedure

Testing attempted to mimic diesel engine controls

- Calibration settings are based on engine speed and fuel quantity
 - Fuel pressure Main SOI
 - Pilot fuel quantity
 Pilot SOI

Boost pressure

– EGR rate

Test Procedure

- Established base calibration settings using 720 fuel (46 CN)
- Identical settings for all fuels:

	Rail pressure	Main quantity	Pilot quantity	Pilot SOI	Main timing	EGR rate
Conventional	720 calibration setting			720 SOI	Sweep	
LTC	720 cal. settings		No pilot		720 SOC	Sweep
	•			/		

 Select conditions also tested with constant injected fuel energy by adjusting the quantity of <u>each</u> fuel pulse (adjusted for fuel NHV).

- Background
- Experimental Method
- Experimental Results
 - Emissions
 - Combustion noise (not presented)
 - BSFC & Efficiency (not presented)
- Summary & Conclusions

NOx and Oxygenated Fuels

- NOx emissions appear to be primarily a function of intake oxygen concentration for both fuels (independent of fuel oxygen content)
- At the same intake O₂, no statistical difference in NOx was observed with oxygenated fuels
- EGR is typically controlled based on a EGR rate or air mass flow
- Fuel O increases the total intake O₂ for a given EGR rate NOx increases

Example Control Scenario

- 1 higher intake O2
 2 lower EGR rate, higher boost pressure, higher
 - injection pressure

- Commanded fuel quantity will increase to adjust for lower fuel energy.
- As commanded fuel quantity increases, typically EGR rate decreases, boost and injection pressure increase.
- Leads to a further increase in NOx emissions.

Engine Speed [rpm]

Particulate Emissions

- Large PM reductions with both oxygenated fuels
- Mechanism #1: PM reduction is due to displacement of aromatic
 - A relatively small PM reduction with low aromatic fuel (668)
 - PM reduction with 668 was not statistically significant
- Mechanism #2: PM reduction is the result of fuel oxygen
 - PM reduction is consistent with fuel oxygenation
 - Consistent with estimated oxygen equivalence ratio at the lift-off length

Hydrocarbon Emissions

<u>LTC</u>

- Results track with cetane number rather than oxygenation
 - 668 & CME: low HC
 - 727 & 60-40: high HC
- True also of combustion noise (not shown)

Conventional Combustion

- Higher HC emissions observed with the 60-40 blend.
- Pilot heat release was weak with the 60-40 blend due to low energy content and low cetane number.

HC Emissions with Compensation

- Equivalent HC emissions with the 60-40 blend vs. the base fuel once injected quantity was adjusted for fuel energy content
- Adjusting quantity reduced HC in LTC for both oxygenated fuels
 - Increased load
 - Shorter ignition dwell

- Background
- Experimental Method
- Experimental Results
- Summary & Conclusions

Effect of Oxygenation - Summary

	Conventional Combustion	Low Temperature Combustion	
NOx	Oxygenation had no effect ¹		
PM	Decreased significantly w/ fuel oxygen		
НС	Same as diesel ²	Function of cetane ³	
Noise	Same as diesel ²	Function of cetane	
Thermal Efficiency	Oxygenation had no effect ²		
Fuel Consumption	Degraded due to lower NHV ⁴		

¹ Maintaining calibration settings, including intake O₂.

² Adjusting injected fuel quantity for fuel energy content.

³ Lower HC when injected fuel quantity adjusted for fuel energy content.

⁴ A function of fuel energy density.

Thank you!

Engine Description

Туре	Single-cylinder
Cycle	4-stroke
Valves per cylinder	4
Bore	99 mm
Stroke	108 mm
Displacement	0.83 L
Compression Ratio	16.2:1
Maximum Rail Pressure	2000 bar
Combustion system design	Chamfered

* Engine & combustion system specifications matched the production 6.7L PowerStroke®

Combustion Noise

- Differences in combustion noise correlate with cetane number of the test fuel in both conventional combustion and LTC.
- Compensation for NHV reduces slightly difference from 720 fuel.

	High Cetane		Low Cetane		
	668	CME	727	60-40	
CDC	Lower		Similar		
LTC	Similar		Lower		

BSFC & Thermal Efficiency

- Higher BSFC with oxygenated fuels
 - Lower NHV
 - Lower BMEP
- Thermal efficiency of CME was comparable to the diesel fuels

- Lower thermal efficiency with the 60-40 blend without fuel quantity adjustment – later combustion phasing
- Similar thermal efficiency for all fuels when injection quantity was adjusted for energy content

Additional Conclusions

It is speculated that NOx increase found in the literature may be due to

- An increase in intake O₂ with fuel oxygen content when EGR rate or air mass flow are controlled
- Reduced EGR, increased boost and increased injection pressure when the commanded fueling injection is increased to meet torque demand with oxygenated fuels (lower energy content)
- When the intake O₂ and engine calibration are the controlled to the same value, oxygenated fuels do not appear to have a negative impact on NOx emissions in a modern diesel engine