
A Comparison of Commercial and MilitarY computer Security Policies

David D. Clark* - David Il. Wilson*’e

*
Senior Research Scientist, MIT Laboratory for Computer Sciencf

**
545 Technology Square, Cambridge, MA 02139

Director, Information Security Servicesl Ernst & whinneY

2000 National City Center, Cleveland, OH 44114

ABSTRACT

Most discussions of computer
security focus on control of disclosure.

In Particular, the U.S. Department of
Defense has developed a set of criteria

for computer mechanisms to provide
control of classified information.
However, for that core of data
processing concerned with business
operation and control of assets, the
primary security concern is data
integrity. This paper presents a policy

for data integrity based on commercial

data processing practices, and compares

the mechanisms needed for this policy
with the mechanisms needed to enforce

the lattice model for information
security. We argue that a lattice model

is not sufficient to characterize
integrity policies, and that distinct
mechanisms are needed to Control
disclosure and to provide integrity.

INTRODUCTION

Any discussion of mechanisms to

enforce computer security must involve a

particular security policy that

specifies the security goals the system

must meet and the threats it must

resist. For example, the high-level

security goals most often specified are

that the system should prevent

unauthorized disclosure or theft of

information, should prevent unauthorized

modification of information, and should

prevent denial of service. Traditional

threats that must be countered are

system penetration by unauthorized

persons, unauthorized actions by

authorized persons, and abuse of special

privileges by systems programmers and

facility operators. These threats may

be intentional or accidental.

Imprecise or conflicting assumptions

about desired policies often confuse

discussions of computer security

mechanisms. In particular, in comparing

commercial and military systems, a

misunderstanding about the underlying

policies the two are trying to enforce

often leads to difficulty in

understanding the motivation for certain

mechanisms that have been developed and

espoused by one 9rouP or the other.

This paper discusses the military

security policy, presents a security

policy valid in many commercial

situations, and then compares the two

policies to reveal important differences

between them.

The military security policy we are

referring to is a set of policies that

regulate the control of classified

information within the government. This

well-understood, high-level information

security policy is that all classified

information shall be protected from

unauthorized disclosure or

declassification. Mechanisms used to

enforce this policy include the

mandatory labeling of all documents with

their classification level, and the

assigning of user access categories

based on the investigation (or

“clearing”) of all persons permitted to

use this information. During the last

15 to 20 years, considerable effort has

gone into determining which mechanisms

should be used to enforce this policy

within a computer. Mechanisms such as

identification and authorization of

users, generation of audit information,

and association of access control labels

with all information objects are well

understood. This policy is defined in

the Department of Defense Trusted

computer System Evaluation Criteria

[DOD], often called the “Orange Book”

from the color of its cover . It

articulates a standard for maintaining

confidentiality of information and is,

for the purposes of our paper , the

“military” information security policy.

The term “military” is perhaps not the

most descriptive characterization of

this policy; it is relevant to any

situation in which access rules for

sensitive material must be enforced. We

use the term ‘military” as a concise tag

which at least captures the origin of

the policy.

184

CH2416-61871000010 184SOi.000 19871EEE

In the commercial environment,

preventing disclosure “ often

important, but preventing ~~authorized

data modification is usually paramount.

In particular, for that core of

commercial data processing that relates

to management and accounting for assets,

preventing fraud and error is the

primary goal. This goal is addressed by

enforcing the integrity rather than the

privacy of the information. For this

reason, the policy we will concern

ourselves with is one that addresses

integrity rather than disclosure. We

will call this a commercial policy, in

contrast to the military information
security policy. We are not suggesting

that integrity plays no role in military

concerns. However, to the extent that

the Orange Book is the articulation of

the military information security

policy , there is a clear difference of

emphasis in the military and commercial

worlds.

While the accounting principles that

are the basis of fraud and error control

are well known, there is yet no Orange

Book for the commercial sector that

articulates how these policies are to be

implemented in the context of a computer

system. This makes it difficult to

answer the question of whether the

mechanisms designed to enforce military

information security policies also apply

to enforcing commercial integrity

policies. It would be very nice if the

same mechanisms could meet both goals,

thus enabling the commercial and

military worlds to share the development

costs of the necessary mechanisms .

However, we will argue that two distinct

classes of mechanism will be required,

because some of the mechanisms needed to

enforce disclosure controls and

integrity controls are very different.

Therefore, the goal of this paper is

to defend two conclusions. First, there

is a distinct set of security policies,

related to integrity rather than

disclosure, which are often of highest

priority in the commercial data

processing environment . Second, some

separate mechanisms are required for

enforcement of these policies, disjoint

from those of the Orange Book.

MILITARY SECURITY POLICY

The policies associated with the

management of classified information,

and the mechanisms used to enforce these

policies, are carefully defined and well

understood within the military.

However, these mechanisms are not

necessarily well understood in the

commercial world, which normally does

not have such a complex requirement for

control of unauthorized disclosure.

Because the military security model

provides a good starting point, we begin

with a brief summary of computer

security in the context of classified

information control.

The top-level goal for the control

of classified information is very

simple: classified information must not

be disclosed to unauthorized

individuals. At first glance, it

appears the correct mechanism to enforce

this policy is a control over which

individuals can read which data items.

This mechanism, while certainly needed,

is much too simplistic to solve the
entire problem of unauthorized

information release. In particular,

enforcing this policy requires a

mechanism to control writing of data as

well as reading it. Because the control

of writing data is superficially

associated with ensuring integrity

rather than preventing theft, and the

classification policy concerns the

control of theft, confu~ion has arisen

about the fact that the military

mechanism includes strong controls over

who can write which data.

Informally, the line of reasoning

that leads to this mechanism is as

follows. To enforce this policy, the

system must protect itself from the

authorized user as well as the

unauthorized user. There are a number

of ways for the authorized user to

declassify information. He can do so as

a result of a mistake, as a deliberate

illegal action, or because he invokes a

program on his behalf that, without his

knowledge, declassifies data as a

malicious side effect of its execution.

This class of program, sometimes

called a “Trojan Horse” program, has

received much attention within the

military. To understand how to COntrOl

this class of problem in the computer,

consider how a document can be

declassified in a noncomputerized

context . The simple technique involves

copying the document, removing the

classification labels from the document

with a pair of scissors, and then making

another copy that does not have the

classification labels. This second

copy , which physically appears to be

unclassified, can then be carried past

security guards who are responsible for

controlling the theft of classified

documents. Declassification occurs by

copying.

To prevent this in a computer

system, it is necessary to control the

ability of an authorized user to copy a

data item. In particula~, once a

computation has read a data item of a

certain security level, the system must

ensure that any data items written by
tnat computation have a security label

at least as restrictive as the label of

the item previously read. It is this

185

mandatory check of the security level of

all data items whenever they are written

that enforces the high level security

policy.

An important component of this

mechanism is that checking the security

level on all reads and writes is

mandatory and enforced by the system, as

opposed to being at the discretion of

the individual user or application. In

a typical time sharing system not

intended for multilevel secure

operation, the individual responsible

for a piece of data determines who may

read or write that data. Such

discretionary controls are not

sufficient to enforce the military

security rules because, as suggested

above, the authorized user (or programs

running on his behalf) cannot be trusted

to enforce the rules properly. The

mandatory controls of the system

constrain the individual user so that

any action he takes is guaranteed to

conform to the security policy. Most

systems intended for military security

provide traditional discretionary

control in addition to the mandatory

classification checking to support what

is informally called “need to know.” BY

this mechanism, it is possible for the

user to further restrict the

accessibility of his data, but it is not

possible to increase the scope in a

manner inconsistent with the

classification levels.

In 1983, the U.S. Department of

Defense produced the Orange Book, which

attempts to organize and document

mechanisms that should be found in a

computer system designed to enforce the

military security policies. This

document stresses the importance of

mandatory controls if effective

enforcement of a policy is to be

achieved within a system. To enforce

the particular policy of the Orange

Book, the mandatory controls relate to

data labels and user access categories.

Systems in division C have no

requirement for mandatory controls,

while systems in divisions A and B

specifically have these mandatory

maintenance and checking controls for

labels and user rights. (Systems in

Division A are distinguished from those

in B, not by additional function, hut by

having been designed to Permit formal
verification of the security principles

of the system.)

several security systems used in the

commercial environment, specifically

RACF , AcF/2 , and CA-TopSecret, were

recently evaluated using the Orange Book

criteria. The C ratings that these

security packages received would

indicated that they did not meet the

mandatory requirements of the security

model as described in the Orange Book.

Yet, these packages are used commonly in

industry and viewed as being rather

effective in their meeting of industry

requirements. This would suggest that

industry views security requirements

somewhat differently than the security

policy described in the Orange Book .

The next section of the paper begins a

discussion of this industry view.

COMMERCIAL SECURITY POLICY FOR INTEGRITY

Clearly, control of confidential

information is important in both the

commercial and military environments.

However, a major goal of commercial data

processing, often the most important

goal, is to ensure integrity of data to

prevent fraud and errors. No user of

the system, even if authorized, may be

permitted to modify data items in such a

way that assets or accounting records of

the company are lost or corrupted. Some

mechanisms in the system, such as user

authentication, are an integral part of

enforcing both the commercial and

military policies. However, other

mechanisms are very different.

The high-level mechanisms used to

enforce commercial security policies

related to data integrity were derived

long before computer systems came into

existence. Essentiallyr there are two

mechanisms at the heart of fraud and

error control: the well-formed

transaction, and separation of duty

among employees.

The concept of the well-formed

transaction is that a user should not

manipulate data arbitrarily, but only in

constrained ways that preserve or ensure

the integrity of the data. A very

common mechanism in well-formed

transactions is to record all data

modifications in a log so that actions

can be audited later. (Before the

computer, bookkeepers were instructed to

write in ink, and to make correcting

entries rather than erase in case of

error. In this way the books

themselves, being write-only, became the

log, and any evidence of erasure was

indication of fraud.)

Perhaps the most formally structured

example of well-formed transactions

occurs in accounting systems, which

model their transactions on the

principles of double entry bookkeeping,
Double entry bookkeeping ensures the

internal consistency of the system’s

data items by requiring that any

modification of the books comprises two

parts, which account for or balance each

other. For example, if a check is to be

written (which implies an entry in the

cash account) there must be a matching

entry on the accounts payable account.

If an entry is not performed properly,

so that the parts do not match, this can

186

be detected by an independent

(balancing

test

the books). It is thus

possible to detect such frauds as the

simple issuing of unauthorized checks.

The second mechanism to control

fraud and error, separation of duty,

attempts to ensure the external

consistency of the data objects: the

correspondence between the data object

and the real world object “

represents . Because computers do n;;

normally have direct sensors to monitor

the real world, computers cannot verify

external consistency directly. Rather,

the correspondence is ensured indirectly

by separating all operations into

several subparts and requiring that each

subpart be executed by a different

person. For example, the process of

purchasing some item and paying for it

might involve subparts: authorizing the

purchase order, recording the arrival of

the item, recording the arrival of the

invoice, and authorizing payment. The

last subpart, or step, should not be
executed unless the previous three are

properly done. If each step is

performed by a different person, the

external and internal representation

should correspond unless some of these

people conspire. If one person can

execute all of these steps, then a

simple form of fraud is possible, in

which an order is placed and payment

made to a fictitious company without any

actual delivery of items. In this case,

the books appear to balance; the error

is in the correspondence between real

and recorded inventory.
Perhaps the most basic separation of

duty rule is that any person permitted

to create or certify a well-formed

transaction may not be permitted to

execute it (at least against production

data) . This rule ensures that at least

two people are required to cause a

change in the set of well-formed

transactions.
The separation of duty method is

effective except in the case of

collusion among employees. For this

reason, a standard auditing disclaimer

is that the system is certified correct

under the assumption that there has been

no collusion. While this might seem a

risky assumption, the method has proved

very effective in practical control of

fraud. Separation of duty can be made
very powerful by thoughtful application

of the technique, such as random

selection of the sets of p:;g;e to

perform some operation, so any

proposed collusion is only safe by

chance. Separation of duty is thus a

fundamental principle of commercial data

integrity control.

Therefore, for a computer system to

be used for commercial data processing,

specific mechanisms are needed to

enforce these two rules. To ensure that

data items are manipulated only by means
of well-formed transactions, it is first

necessary to ensure that a data item can

be manipulated only by a specific set of

programs. These programs must be

inspected for proper Construction, and

controls must be provided on the ability

to install and modify these programs, so

that their continued validity is

ensured. To ensure separation of

duties, each user must be permitted to

use only certain sets of programs. The

assignment of people to programs must

again be inspected to ensure that the

desired controls are actually met.

These integrity mechanisms differ in

a number of important ways from the

mandatory controls for military security

as described in the Orange Book, First,

with these integrity controls, a data

item is not necessarily associated with

a Particular security level, but rather
with a set of programs permitted to

manipulate it. Second, a user is not

given authority to read or write certain

data items, but to execute certain

programs on certain data items. The

distinction between these two mechanisms

is fundamental. With the Orange Book

controls, a user is constrained by what

data items he can read and write. If he

is authorized to write a particular data

item he may do so in any way he

chooses. With commercial integrity

controls, the user is constrained by

what programs he can execute, and the

manner in which he can read or write

data items is implicit in the actions of

those programs. Because of separation

of duties, it will almost always be the

case that a user, even though he is

authorized to write a data item, can do

so only by using some of the

transactions defined for that data

item. Other users, with different

duties, will have access to different

sets of transactions related to that

data.

MANDATORY COMMERCIAL CONTROLS

The concept of mandatory control is

central to the mechanisms for military

security, but the term is not usually

applied to commercial systems. That is,

commercial systems have not reflected
the idea that certain functions, central

to the enforcement of policy,
designed as a fundamental characteris~!~

of the system. However, it is important

to understand that the mechanisms
described in the previous section, in

some respects, are mandatory controls.
They are mandatory in that the user of

the system should not, by any sequence

of operations, be able to modify

list of programs permitted to manipul~?~

a particular data item or to modify the

187

list of users permitted to execute a

given program. If the individual user

could do so, then there would be no

control over the ability of an

untrustworthy user to alter the system

for fraudulent ends.

In the commercial integrity

environment, the owner of an application

and the general controls implemented by

the data processing organization are

responsible for ensuring that all

programs are well-formed transactions.

As in the military environment, there is

usually a designated separake staff

responsible for assuring that users can

execute transactions only in such a way

that the separation of duty rule is

enforced. The system ensures that the

user cannot circumvent these controls.

This is a mandatory rather than a

discretionary control.

The two mandatory controls, military

and commercial, are very different

mechanisms. They do not enforce the

same policy. The military mandatory

control enforces the correct setting of

classification levels. The commercial

mandatory control enforces the rules

that implement the well-formed

transaction and separation of duty

model. When constructing a computer

system to support these mechanisms, very

different low-level tools are

implemented.

An interesting example of these two

sets of mechanisms can be found in the

Multics operating system, marketed by

Honeywell Information Systems and

evaluated by the Department of Defense

in Class B2 of its evaluation criteria.

A certification in Division B implies

that Multics has mandatory mechanisms to

enforce security levels, and indeed

those mechanisms were specifically

implemented to make the system usable in

a military multilevel secure environment

[wHITMORE]. However, those mechanisms

do not provide a sufficient basis for

enforcing a commercial integrity model.

In fact, Multics has an entirely

different set of mechanisms, called

protection rings, that were developed

specifically for this purpose

[SCHROEDERI. Protection rings provide a

means for ensuring that data bases can

be manipulated only by programs

authorized to use them. Multics thus

has two complete sets of security

mechanisms , one oriented toward the

military and designed specifically for

multilevel operation, and the other

designed for the commercial model of

integrity.

The analogy between the two forms of

mandatory control is not perfect. In

the integrity control model, there must

be more discretion left to the

administrator of the system, because the
determination of what constitutes proper

separation of duty can be done only by a

comparison with application-specific

criteria. The separation of duty

determination can be rather complex,

because the decisions for al 1 the

transactions interact. This greater

discretion means that there is also

greater scope for error by the security

officer or system owner, and that the

system is less able to prevent the

security officer, as opposed to the

user, from misusing the system. To the

system user, however, the behavior of

the two mandatory controls is similar.

The rules are seen as a fundamental part

of the system, and may not be

circumvented, only further restricted,

by any other discretionary control that

exists.

COMMERCIAL EVALUATION CRITERIA

As discussed earlier, RACF, ACF/2,

and CA-TopSecret were all reviewed using

the Department of Defense evaluation

criteria described in the Orange Book.

Under these criteriat these systems did

not provide any mandatory controls.

However, these systems, especially when

executed in the context of a

telecommunications monitor system such

as CICS or IMS, constitute the closest

approximation the commercial world has

to the enforcement of a mandatory

integrity policy. There is thus a

strong need for a commercial equivalent

of the military evaluation criteria to

provide a means of categorizing systems

that are useful for integrity control.

Extensive study is needed to develop

a document with the depth of detail

associated with the Department of

Defense evaluation criteria. But, as a

starting point, we propose the following

criteria, which we compare to the

fundamental computer security

requirements from the “Introduction” to

the Orange Book. First, the system must

separately authenticate and identify

every user, so that his actions can be

controlled and audited. (This is

similar to the Orange Book requirement

for identification.) Second, the system

must ensure that specified data items

can be manipulated only by a restricted

set of programs, and the data center

controls must ensure that these programs

meet the well-formed transaction rule.

Third, the system must associate with

each user a valid set of programs to be

run, and the data center controls must

ensure that these sets meet the

separation of duty rule. Fourth, the

system must maintain an auditing log

that records every program executed and

the name of the authorizing user. (This

is superficially similar to the Orange

Book requirement for accountability, but

188

the events to be audited

different.)

are quite

In addition to these criteria, the

military and commercial environments
share two requirements. First, the
computer system must contain mechanisms

to ensure that the system enforces its

requirements. And second, ttl:
mechanisms in the system must

protected against tampering

unauthorized change. These t:;

requirements, which ensure that the

system actually does what it asserts it

does, are clearly an integral part of

any security policy. These are

generally referred to as the “general”

or “administrative” controls in a

commercial data center.

A FORMAL MODEL OF INTEGRITY

In this section, we introduce a more

formal model for data integrity within

computer systems, and compare our work

with other efforts in this area. We use

as examples the specific integrity

policies associated with accounting

practices, but we believe our model is

applicable to a wide range of integrity

policies.

To begin, we must identify and label

those data items within the system to

which the integrity model must be

applied. We call these “Constrained

Data Items,” or CDIS. The particular

integrity policy desired is defined by

two classes of procedures: Integrity

Verification Procedures, or IVPS , and

Transformation Procedures, or TPs. The

purpose of an IVP is to confirm that all

of the CDIS in the system conform to the

integrity specification at the time the

IVP is executed. In the accounting

example, this corresponds to the audit

function, in which the books are

balanced and reconciled to the external

environment. The TP corresponds to our

concept of the well-formed transaction.

The purpose of the TPs is to change the

set of CDIS from one valid state to

another. In the accounting example, a

TP would correspond to a double entry

transaction.

To maintain the integrity of the

CDIS, the system must ensure that only a

TP can manipulate the CDIS. It is this

constraint that motivated the term

constrained Data Item. Given this

constraint~ we can argue that, at any

given time, the CDIS meet the integrity

requirements. (We call this condition a

“valid state.”) We can assume that at

some time in the past the system was in

a valid state, because an IVP was

executed to verify this. Reasoning

forward from this point, we can examine
the sequence of TPs that have been

executed. For the first TP executed, we

can assert that it left the system in a

valid state as follows. By definition

it will take the CDIS into a valid state

if they were in a valid state before

execution of the TP. But this

precondition was ensured by execution of

the IVP. For each TP in turn, we can

repeat this necessary step to ensure

that, at any point after a sequence of

TPs , the system is still valid. This

proof method resembles the mathematical

method of induction, and is valid

provided the system ensures that only

TPs can manipulate the CDIS.1

While the system can ensure that
only TPs manipulate CDIS, it cannot
ensure that the TP performs a

well-formed transformation. The

validity of a TP (or an IVP) can be

determined only by certifying it with

respect to a specific integrity policy.
In the case of the bookkeeping example,

each TP would be certified to implement

transactions that lead to properly

segregated double entry accounting. The

certification function is usually a

manual operation, although some
automated aids may be available.

Integrity assurance is thus a

two-part process: certification, which
is done by the security officer, system

owner, and system custodian with

respect to an integrity policy; and

enforcement, which is done by the

system. Our model to this point can be

summarized in the following three rules:

Cl: (Certification) All IVPS must

properly ensure that all CDIS

are in a valid state at the time

the IVP is run.

C2: All TPs must be certified to be

valid. That is, they must take

a CDI to a valid final state,

given that it is in a valid

state to begin with. For each

TP, and each set of CDIS that it

may manipulate, the security

officer must specify a

“relation,” which defines that

execution. A relation is thus

--- ----- ------ - ----
lThere is an additional detail which

the system must enforce, which is to

ensure that TPs are executed serially,

rather than several at once. During the

mid-point of the eXeCUtiOn of a TP,

there is no requirement that the system

be in a valid state. If another TP

begins execution at this point, there is

no assurance that the final state will

be valid. To address this problem, most

modern data base systems have mechanisms

to ensure that TPs appear to have

executed in a strictly serial fashion,

even if they were actually executed

concurrently for efficiency reasons.

189

of the form: (TPi, (CDIa, CDIb,

CDIC, . . .)), where the list of
CDIS defines a particular set of

arguments for which the TP has

been certified.

El: (Enforcement) The system must

maintain the list of relations

specified in rule c2, and must

ensure that the only

manipulation of any CDI is by a

TP, where the TP is operating on

the CDI as specified in some

relation.

The above rules provide the basic

framework to ensure internal consistency

of the CDIS. To provide a mechanism for

external consistency, the separation of

duty mechanism, we need additional rules

to control which persons can execute

which programs on specified CDIS:

E2 : The system must maintain a list

of relations of the form:

(UserID, TPi, (CDIa, CDIb, CDIC,

. . .)), which relates a user, a

TP, and the data objects that TP

may reference on behalf of that

user. It must ensure that only

executions described in one of

the relations are performed.

C3: The list of relations in E2 must.

be certified to meet the

separation of duty requirement.

Formally, the relations specified

for rule E2 are more powerful than those

of rule El, so El is unnecessary.

However, for both philosophical and

practical reasons, it is helpful to have

both sorts of relations.

Philosophically, keeping El and E2

separate helps to indicate that there

are two basic problems to be solved:

internal and external consistency. As a

practical matter, the existence of both

forms together permits complex relations

to be expressed with shorter lists, by

use of identifiers within the relations

that use “wild card” characters to match

classes of TPs or CDIS.
The above relation made use of

UserID, an identifier for a user of the

system. This implies the need for a

rule to define these:

E3: The system must authenticate

the idenkity of each user

attempting to execute a TP.

Rule E3 is relevant to both commercial

and military systems. Howevert those

two classes of systems use the identity

of the user to enforce very different

policies. The relevant policy in the

military context, as described in the

Orange Book, is based on level and

category of clearance, while the

commercial policy is likely to be based

on separation of responsibility among

two or more users.

There may be other restrictions on

the validity of a TP. In each case,

this restriction will be manifested as a

certification rule and enforcement
rule. For example, if a TP is valid

only during certain hours of the day,

then the system must provide a

trustworthy clock (an enforcement rule)
and the TP must be certified to read the

clock properly.

Almost all integrity enforcement

systems require that all TP execution be

logged to provide an audit trail.

However, no special enforcement rule is

needed to implement this facility; the

log can be modeled as another CDI, with

an associated TP that only appends to

the existing CDI value. The only rule

required is:

C4: All TPs must be certified to
write to an append-only CD I

(the log) all information

necessary to permit the nature

of the operation to be

reconstructed.

There is only one more critical

component to this integrity model. Not

all data is constrained data. In

addition to CDIS, most systems contain

data items not covered by the integrity

policy that may be manipulated

arbitrarily, subject only to
discretionary controls. These
Unconstrained Data Items, or UDIS, are

relevant because they represent the way

new information is fed into the system.

For example, information typed by a user

at the keyboard is a UDI; it may have

been entered or modified arbitrarily.
To deal with this class of data, it is

necessary to recognize that certain TPs

may take UDIS as input values, and may

modify or create CDIS based on this
information. This impl ies a
certification rule:

C5 : Any TP that takes a UDI as an

input V?ilUe mUSt be certified

to perform only valid

transformations, or else no

transformations, for any
possible value of the UDI. The

transformation should take the

input frOM a UDI to a CDI, OK

the UD I is rejected.
Typically, this is an edit
program.

For this model be effective, the
various certification rules must not be

bypassed. For example, if a user can
create and run a new TP without having

it certified, the system cannot meet its

goals. For this reason, the system must

190

ensure certain additional constraints.
Most obviously:

E4 : Only the agent permitted to
certify entities may change the

list of such entities

associated with other
entities: specifically, the

associated with a TP. An agent

that can certify an entity may

not have any execute rights

with respect to that entity.

This last rule makes this integrity

enforcement mechanism mandatory rather

than discretionary. For this structure

to work overall, the ability to change

permission lists must be coupled to the

ability to certify, and not to some

other ability, such as the ability to

execute a TP. This coupling is the

critical feature that ensures that the

certification rules govern what actually

happens when the system is run.

Together, these nine rules define a

system that enforces a consistent

integrity policy. The rules are

summarized in Figure 1, which shows the

way the rules control the system

operation. The figure shows a TP that

takes certain CDIS as input and produces

new versions of certain CDIS as output.

These two sets of CDIS represent two

successive valid states of the system.

The figure also shows an IVP reading the

collected CDIS in the system in order to

verify the CDIS’ validity. Associated

with each part of the system is the rule

(or rules) that governs it to ensure

integrity.

Central to this model is the idea

that there are two classes of rules:

enforcement rules and certification

rules. Enforcement rules correspond to

the application-independent security

functions, while certification rules

permit the application-specific

integrity definitions to be incorporated

into the model. It is desirable to

minimize certification rules, because

the certification process is complex,

prone to error, and must be repeated

after each program change. In extending

this model , therefore, an important

research goal must be to shift as much

of the security burden as possible from

certification to enforcement.

For example, a common integrity

constraint is that TP S are to be

executed in a certain order.

model (and in most systems of ~~da~?~

this idea can be captured only by

storing control information in some CDI,

and executing explicit program steps in

each TP to test this information. The

result of this style is that the desired

policy is hidden within the program,

rather than being stated as an explicit

rule that the system can then enforce.

Other examples exist. Separation of
duty might be enforced by analysis of

sets of accessible CDIS for each user.

We believe that further research on

specific aspects of integrity policy
would lead to a new generation of tools

for integrity control.

OTHER MODELS OF INTEGRITY

Other attempts to model integrity
have tried to follow more closely the

structure for data security defined by

Bell and LaPadula [BELLI, the formal

basis of the military security
mechanisms. Biba [BIBA] defined an
integrity model that is the inverse of
the Bell and LaPadula model. His model
states that data items exist at
different levels of integrity, and that

the system should prevent lower level
data from contaminating higher level
data. In particular, once a program
reads lower level data, the system
prevents that program from writing to

(and thus contaminating) higher level
data.

Our model has two levels of
integrity: the lower level UDIS and the

higher level CDIS. CDIS would be
considered higher level because they can

be verified using an IVP. In Biba’s
model, any conversion of a UDI to a CDI

could be done only by a security officer

or trusted process. This restriction is

clearly unrealistic; data input is the

most common system function, and should
not be done by a mechanism essentially

outside the security model. Our model
permits the security officer to certify

the method for integrity upgrade (in our

‘terms? those TPs that take UDIS as

input values), and-thus recognizes ch e

fundamental cole of the TP (i.e.,
trusted process) in our model. More

generally, Bibs’s model lacks any

equivalent of rule El (CDIS changed only

by authorized TP), and thus cannot

provide the specific idea of constrained

data.

Another attempt to describe

integrity using the Bell and LaPadula

model is Lipner [LIPNER]. He recognizes

that the cakegory facility of this model

can be used to distinguish the general

user from the systems programmer or the

security officer. Lipner also

recognizes that data should be

manipulated only by certified
(production) programs. In attempting to

express this in terms of the lattice

model, he is constrained to attach lists

of users to programs and data

separately, rather than attaching a list

of programs to a data item. His model

thus has no way to express our rule El.

By combining a lattice security model
with the Biba integrity model, he more

closely approximates the desired model,

191

Figure 1: Summary of System Integrity Rules

USERS

Cl: lVPvalidatea CDl atate

C5: TPsvatidate UDl

C2: TPspreserve valid state

E4: Authorization lists

/

IVP

D
CDI

System in

some state

$
CDI

CDI

CDI

==%/El: CDlschanged only byauthorized T

192

but still cannot effectively express the

idea that data may be manipulated only

by specified programs (rule El).

Our integrity model is less related
to the Bell and LaPadula model than it

is to the models constructed in support

of security certification of systems
themselves. The iterative process we
use to argue that TPs preserve
integrity, which starts with a known
valid state and then validates
incremental modifications, is also the
methodology often used to verify that a

system, while executing, continues to
meet its requirements for enforcing
security. In this comparison, our CDIS
would correspond to the data structures

of the system, and the TPs to the system

code. This comparison suggests that the

certification tools developed for system
security certification may be relevant
for the certifications that must be
performed on this model.

For example, if an Orange Book for
industry were created, it also might
have rating levels. Existing systems
such as ACF/2, RACF , and CA-TopSecret

would certainly be found wanting in
comparison to the model. This model
would suggest that, to receive higher
ratings, these security systems must
provide: better facilities for end-user
authentication; segregation of duties
within the security officer functions,
such as the ability to segregate the
person who adds and deletes users from
those who write a user$s rules, and

restriction of the security function

from user passwords; and the need to

provide much better rule capabilities to

govern the execution of programs and

transactions.
The commercial sector would be very

interested in a model that would lead to

and measure these kinds of changes.

Further, for the commercial world, these

changes would be much more valuable than

to take existing operating systems and
security packages to B or A levels as

defined in the Orange Book.

CONCLUSION

With the publication of the Orange

Book, a great deal of public and

governmental interest has focused on the

evaluation of computer systems for

security. However, it has been

difficult for the commercial sector to

evaluate the relevance of the Orange

Book criteria, because there is no clear

articulation of the goals of commercial

security. This paper has attempted to

identify and describe one such goal ,

information integrity, a goal that is

central to much of commercial data

processing.

In using the woras commercial and

military in describing these models, we

do not mean to imply that the commercial

world has no use for control of

disclosure, or that the military is not

concerned with integrity. Indeed, much

data processing within the military

exactly matches commercial practices.

However, taking the Orange Book as the

most organized articulation of military
concerns, there is a clear difference in

priority between the two sectors. For

the core of traditional commercial data

processing, preservation of integrity is

the central and critical goal.
This difference in priority has

impeded the introduction of Orange Book

mechanisms into the commercial sector.

If the Orange Book mechanisms could

enforce commercial integrity policies as
well as those for military information

control, the difference in priority

would not matter, because the same

system could be used for both.

Regrettably, this paPer argues there is

not an effective overlap between the

mechanisms needed for the two . The

lattice model of Bell and LaPadula

cannot directly express the idea that

manipulation of data must be restricted

to well-formed transformations, and that

separation of duty must be based on

control of subjects to these

transformations.

The evaluation of RACF, ACF/2, and

CA-TopSecret against the Orange Book

criteria has made clear to the

commercial sector that many of these

criteria are not central to the security
concerns in the commercial world. What

is needed is a new set of criteria that

would be more revealing with respect to

integrity enforcement. ‘This paper

offers a first cut at such a set of

criteria. We hope that we can stimulate

further effort to refine and formalize

an integrity model, with the eventual

goal of providing better security

systems and tools in the commercial

sector.

There is no reason to believe that

this effort would be irrelevant to

military concerns . Indeed,

incorporation of some form of integrity

controls into the Orange Book might lead

to systems that better meet the needs of

both groups.

ACKNOWLEDGMENTS

The authors would like to thank

Robert G. Andersen, Frank S. Smith, 111,

and Ralph S. Poore (Ernst & Whinney,

Information Security Services) for their

assistance in preparing this paper. We

also thank Steve Lipner (Digital

Equipment Corporation) and the referees

of the paper for their very helpful

comments .

193

REFERENCES

[DoD] Department of Defense

Trusted computer System

Evaluation Criteria,

CSC-STD-011-83, Department

of Defense Computer

Security Centerr Fort

Meade, MD, August 1983.

[Bell] Bell, D. E. and L. J.

LaPadulat “Secure Computer

systems,” ESD-TR-73-278

(Vol I-III) (also Mitre

TR-2547), Mitre

Corporation, Bedford, MA,

April 1974.

[Bibs] Biba, K. J., “Integrity

Considerations for Secure

Computer systems,” Mitre

TR-3153, Mitre

Corporation, Bedford, MA,

April 1977.

[Lipner] Lipner, s. B.t

“Non-Discretionary

Controls for Commercial

Applications,” Proceedings

of the 1982 IEEE Symposium

Security and Privacy,

~kland, CA, April 1982.

[Schroeder] Schroeder, M. D. and J. H.

Saltzer, “A Hardware

Architecture for

Implementing Protection

Rings, “ Comm ACM, Vol 15,

3 March 1972.

[Whitmore] Whitmore, J. C. et al.,

“Design for Multics

Security Enhancements ,“

ESD-TR-74-176, Honeywell

Information Systems, 1974.

194

