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A Comparison of Computational Color Constancy
Algorithms—~Part I: Methodology and Experiments
With Synthesized Data

Kobus Barnard, Vlad Cardei, and Brian Funt

Abstract—We introduce a context for testing computational In this paper we discuss a number of the leading algorithms
color constancy, specify our approach to the implementation of and characterize their performance using synthesized data (all
a number of the leading algorithms, and report the results of 415 is available on-line [2], as are implementations for most

three experiments using synthesized data. Experiments using . . . .
synthesized data are important because the ground truth is of the algorithms [3]). Experiments using synthesized data are

known, possible confounds due to camera characterization and important because the ground truth is known, possible con-
pre-processing are absent, and various factors affecting color founds due to camera characterization and pre-processing are
constancy can be efficiently investigated because they can beabsent, and factors affecting color constancy can be efficiently
manipulated individually and precisely. investigated because they can be manipulated individually and

The algorithms chosen for close study include two gray world . . . "
methods, a limiting case of a version of the Retinex method, precisely. These factors include input characteristics such as

a number of variants of Forsyth’s gamut-mapping method, SPecularities, camera behaviors such as pixel clipping, and the
Cardei et al's neural net method, and Finlaysonet al’s Color statistics of illuminant and surface reflectance occurrence in

by Correlation method. We investigate the ability of these al- training data and in testing data. Understanding these factors
gorithms to make estimates of three different color constancy \\nqer controlled conditions is a necessary first step toward
quantities: the chromaticity of the scene illuminant, the overall - . . .

magnitude of that illuminant, and a corrected, illumination dealing with them in images t?ken with a real camgra. Further-
invariant, image. We consider algorithm performance as a More, the methodology used in this work has been informed by
function of the number of surfaces in scenes generated from our work with a large data set of real images [1], [4]. This has

reflectance spectra, the relative effect on the algorithms of added enabled us to make our experiments with synthetic data closely

specularities, and the effect of subsequent clipping of the data. ; ; ;
All data is available on-line at http://www.cs.sfu.ca/~color/data, ;ﬂggi:ﬁ;ﬁeéhe problems faced with when real image data is

and implementations for most of the algorithms are also available
(http://www.cs.sfu.ca/~color/code).

Index Terms—Algorithm, color by correlation, color constancy,

. X . Il. APPROACHES TOCOMPUTATIONAL COLOR CONSTANCY
comparison, computational, gamut constraint, neural network.

The goal of computational color constancy is to find a
nontrivial illuminant invariant description of a scene from an
image taken under unknown lighting conditions. This is often

HE IMAGE recorded by a camera depends on thr@goken into two steps. The first step is to estimate illuminant

factors: the phySical content of the scene, the illuminatiqjhrametersy and then a second step uses those parameters to
incident on the scene, and the characteristics of the camei@mpute illumination independent surface descriptors [5]-[7].
The goal of computational color constancy is to account for thgyese descriptors can be quite abstract, but here we simplify
effect of the illuminant, either by directly mapping the imagenatters by specifying that the illumination invariant description
to a standardized illuminant invariant representation, or By an image of the scene as if it were taken under a known,
determining a description of the illuminant which can be useglandard, canonical, light [8]. The choice of the canonical
for Subsequent color correction of the image. This has importa.m!]minant is somewhat arbitrary_ For image reproduction ap-
applications such as object recognition and scene understandgligations it makes most sense to use an illuminant for which
as well as image reproduction and digital photography (sg& camera is balanced, and this is the choice we have used.
[1] for additional overview). We assume a diagonal model of illumination change which

maps the image taken under one illuminant, to the image taken
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respectively. To the extent that this same scaling works fathere Sy = Ry + Gr + Br is the target illuminant
the other, nonwhite patches, we say that the diagonal modbtomaticity and(rg, gp) = (Rg/Skg, Gr/Sr) where
holds. The efficacy of the diagonal model is largely a functiofy = Rg + Gg + Bg is the estimate, this second error is
of the vision system sensors, specifically whether or not theywen by \/(rg — r7)2 + (gr — gr)2. These two measures
are narrow band, and whether or not they overf@-[12]. In are roughly interchangeable, but the first makes more sense
the case of the camera used for the present work, the diagdoalthe (R, G, B) algorithms, whereas the second is closer to
model is a good approximation. If the diagonal model leadse quantity that several of the chromaticity algorithms try to
to large errors, then performance may be improved by usingnimize.
sensor sharpening [13], [14]. Tomeasure illuminart?, G, B) error itis perhaps most nat-
The variants of Forsyth’s gamut mapping method [8] directlyral to consider the vector distance(iR, GG, B) between the
estimate the diagonal mapping from the input image to the “calfuminant and the estimate theredf,Rr — Rr)? + (Gg —
rected” image. The other algorithms considered in this papét)? + (Br — Br)?)'/2, and thus, we include some results
estimate the color of the illuminant as defined by the camera ngsing this error measurement. However, given the application
sponse to a pure white, or a projection thereof (chromaticityyependent asymmetry between illuminant chromaticity and il-
Using the diagonal model we can easily convert between thésminant brightness, we find it more useful to look at the con-
two approaches. An estimate of the illumingd, &, B) can junction of a chromaticity error measure and the error in bright-
be used to correct an image. Conversely, an estimate of the diagss. For the latter we use a fourth error measure, that being the
onal map also gives us an estimate of the ilumir@it G, B), difference inR+ G+ B between the illuminant and the estimate
found by applying the inverse transform to thR, G, B) of thereof,|Sg — St|.
white under the canonical illuminant. Finally, for our last two error measures we consider the error
Often we are most interested in the chromaticity dh the final color constancy result, which is the difference be-
the illuminant and/or a correction for chromaticity onlytween the corrected image, and the exact target image taken
We remind the reader that chromaticity is color nomander the canonical illuminant. These results are difficult to ob-
malized by overall magnitude-one chromaticity space tain with image data, because they require registered images
(r,9) = (R/(R+ G+ B), G/(R+ G + B)). Chromaticity with exactly the same geometry for each illuminant. This is only
is often sufficient because an illuminant magnitude is ofteeasible if all illuminants are produced from a single source in
implicitly present. For example, when a picture is taken, eitheonjunction with filters, which precludes the use of a general
a human operator or some mechanism has often set the apeitlunminant set like ours. The problems are diminished in the re-
to a reasonable value. Thus, a correction for chromaticistricted case of chromaticity mappings, but even here, variations
which leaves the overall brightness the same, is often sufficientgeometry cause problems. With synthetic data it easy and
for image reproduction applications. A number of color coruseful to look at mapping results, and we use the RMS error
stancy algorithms have been developed which work entiradyer synthetic scene surfaces(iR, G, B) and(r, g) between
in some chromaticity space [15]-[18], and much progress hth& target data and the mapped estimate thereof. Specifically, if
been made by taking advantage of the simplifications aﬁordpﬁ“) is the observed response for channel or chromaticity com-
by this strategy. However, since these algorithms ignore thenentk for pixel i, andr " is the analogous quantity for the

magnitude of the image pixels, they are potentially less poarget image, then the RMS error is computed by
erful than algorithms which attempt to use information that

may be implicit in those values. For example, it is commonly LN K ) 1/2

recognized that specular highlights carry information about the <_ Z - Z (pz(k) _ Ti(k)) )

illuminant chromaticity [19]-[23], and the fact that they are N i K &

relatively bright is of use to some algorithms. This means that

it can be beneficial to use an algorithm which estimates thrédiere X is the number of channels (usually 3) or chromaticity

parameters even if the goal is chromaticity correction. components (usually 2) and’ is the number of synthetic
surfaces (or image pixels).

I1l. ERRORMEASURES

. . i IV. ASSUMPTIONS ANDCONTEXT
We consider six error measures. The first treats the

illuminant (R, G, B), and the corresponding estimate_MOSt color constancy algori_thms assume that the world con-
thereof, as vectors in(R, @, B) space, and compute55|stsofperfectlyd|ffuserefle_ctmgsurfaces. Colc_)rconstancyhas
the angle between these two vectors in degrees. Speéf0beenattempted by making use of specularities [19]-{24]. In
ically, if T = (Ry, Gy, Br) is the target illuminant this paper we do not test any algorithms which specifically re-

(R, G, B), andE = (Rg, Gg, Bg) is the estimate, then duire specularities to be present. However, specularities are very
the angular error is given byos~!((T e E)|T|~![E|"}). common, and therefore we have study their effect on the various
The second error measure is the vector distancérin) algorithms. We further assume that the illumination is the same
space of the illuminant chromaticity and the estimati" the entire (synthetic) scene.

o e _ Color constancy algorithms also generally make assumptions
thereof. Specifically, if (v, = (Rg¢/St, Gg/S ; ; . e
P Y, it(rz, 97) (Rz/S7, Gr/57) about the diversity, and possibly the statistics, of the surfaces

IThe world (surfaces and illuminants) encountered by the camera also afiédRd the '”um_'nantls that will be gncountered. .Typ|caIIy the
the diagonal model error. surfaces and illuminants are supplied as collections of surface
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Fig. 1. Chromaticity distributions of the various sets of illuminants used in this study. The 11 illuminants used for creating test images aréahdnvtbin
we plot the chromaticities of an additional set composed of more sources, including a number illuminations measured in and around our universitheamp
training set constructed from these sources is shown in (c). A similar set used for testing with the chromaticity space more densely populated(&) shown

reflectances and illuminant energy spectra. The required détar different 12 volt incandescent lights, and those four used
sets are then computed using an appropriate camera modetonjunction with a blue filter (Roscolux 3202). The spectra
For surface reflectances we used a set of 1995 speatfaone of the incandescent lights (Sylvania 50MR16Q) is very
compiled from several sources. These surfaces included #imilar to a regular incandescent light bulb. The other three are
24 Macbeth color checker patches, 1269 Munsell chips, 1BQlbs developed to provide spectra similar to daylight of three
Dupont paint chips [25], 170 natural objects [25], the 35@ifferent color temperatures (Solux 3500K, Solux 4100K, Solux
surfaces in the Krinov data set [26], and 57 additional surfacé800K). When used in conjunction with the blue filter these
measured by ourselves. This set was chosen to be a supdtwee bulbs provide a reasonable coverage of the range of out-
of the reflectance sets used by others for color constandgor illumination. The chromaticities of all 11 illuminants are
research. This set was used both for modeling the world felhown in Fig. 1(a).
algorithm calibration (training) and testing the algorithms. To create the illuminant set used for training, we divided
The illuminant spectra for all parts of this study were chosei, ¢g) space into cells 0.02 units wide, and placed the 11
to roughly uniformly cover thér, ¢) chromaticities of common illuminants described above into the appropriate cells. We
illumination conditions. All illuminant spectra were normalizedhen added illumination spectra from a second set of 97,
so that a perfect white seen by our camera under each illuminprvided that their chromaticity bins were not yet occupied.
would have a maximum response among the three channel§bis second set consisted of additional sources and a number
255. To obtain the appropriate illuminant sets, we first selecteflillumination spectra measured in and around our university
11 sources to be used for image data experiments. These weneapus. The chromaticities of this additional illuminant set
selected to span the range of chromaticities of common natuaaé shown in Fig. 1(b). Finally, to obtain the desired density of
and man made illuminants as best as possible, while beargayerage, we used random linear combinations of spectra from
in mind the other considerations of stability over time, spethe two sets. This is justified because illumination is often
tral nearness to common illuminants, and physical suitabilitiie blending of light from two or more sources. In addition,
for our experimental setup (using the sun would have been dif- the extent that the diagonal model holds, these constructed
ficult). These 11 sources include three fluorescent lights (Syilumination spectra will behave like physical sources with the
vania warm white, Sylvania cool white, and Philips Ultralume)kame chromaticities as the constructed ones. Fig. 1(c) shows the



BARNARD et al.: PART |: METHODOLOGY AND EXPERIMENTS WITH SYNTHESIZED DATA 975

chromaticities of the training set obtained using this method. Chromat.iciiigﬁ of‘reﬂecéance%gédga;% genaration
Finally, to produce the illuminant set for testing, we followed (canonical illuminant, Sony -930 camera)
the same procedure, but filled the space 4 times more densely. 0.7

The resultant chromaticities are shown in Fig. 1(d). r

We characterized our Sony DXC-930 CCD camera as de- 0.6
scribed in [27] and used these sensors for generating camera u g 00
responses for synthesizing scenes and algorithm training/cali- — 0.5 O
bration. The ideal (linearized) camera response for chahnel . C Oo o @@GD @)
p¥), is computed from a surface spectf@)) and illuminant 9 04F d@
spectraF(\) and sensor functioR™) by g€ 8 OO §@)

¢ 03 C%% ® 0o o
: * FBoo® o e,
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In practice, all the functions are replaced by vectors. In our case o : &ﬁ@
we use 101 samples from 380 nm to 780 nm in steps of 4 nm 0: Coeo b b b by
which is the sampling provided by our PhotoResearch PR-650 0 0.2 0.4 0.6 0.8 1
spectrometer. The camera sensors, as well as the data used tc =R/(R+G+B)

estimate them, are available on-line [2]. - _ _
. Fig.2. Chromaticities of the reflectance data set as imaged under the canonical
Where relevant we use the Sylvania 50MR16Q for the canqfiminant and with the Sony DXC-930 camera.

ical illuminant, as this is the illuminant for which the camera

is best balanced. Specifically, under this illuminant, the camera__ ) )

response to perfect white is roughly the same across the threEinally, the extensive body of work on the Retinex theory of
channels. Thér, g) chromaticities of the reflectance data sdpuman vision has yielded several algorithms. The emphasis of

as imaged under the canonical illuminant and with the Sof}gtinex theory is on human vision, and goes beyond simple il-
DXC-930 camera are shown in Fig. 2. luminant estimation. Hence, computational color constancy al-

gorithms emerge from Retinex more as a process of analogy
than through specification by the original researchers. Nonethe-
V. ALGORITHMS less, at least three algorithms for simple illuminant estimation in

We endeavored to include the most promising computatiQ" context can be identified. We investigate the one closest to
color constancy algorithms, as well as several simple, yig@-[36]- We do not test the method in [37], [38] (analyzed in
effective, commonly used algorithms. Several algorithms th&2)): nor the method in [40], as they are essentially gray world

were not implemented bear mentioning. First, we did not teigorithms. We now discuss the algorithms chosen for detailed

the innovative Maloney—Wandell algorithm. Despite being at{udy-
important contribution to the development of many ideas, this
algorithm simply does not work well in the general context it Gray World Methods
which we test color constancy. The reason for this is that, for The gray world method assumes that the average of the sur-
a three sensor vision system, this algorithm requires that faee reflectances of a typical scene is some pre-specified value,
surface reflectances of the world can be well approximate¢hich is referred to as “gray.” The exact definition of “gray”
by two basis functions. This is not true in general. Seversquires some clarification. One possibility is simply true gray;
authors have noted that this problem leads to poor performamgecifically, a 50% uniform reflectance. This leads to the algo-
[28], [29]. rithm labeled GW in the results. A second choice is to use the
A second important algorithm not tested is Brainard aralerage of the reflectance database. This is expected to perform
Freeman’s Bayesian method [28]. Instead we investigate thetter then GW with synthesized data, and the result is guaran-
related Color by Correlation method as originally introducettted to be excellent if a large number of surfaces are used. With
for chromaticity input [16], [30], [31] (Brainard and Freeman’smage data, however, the actual average surface reflectance is
approach [28] use a three-dimensional (3-D) space; a 3rdt knowna priori, and thus, this method is expected to fare rel-
version of Color by Correlation has also recently been proposatively less well. We denote this algorithm by DB-GW. We note
[32]; also see [33] for another approach related to Color liat since these algorithms work on camera sensor responses,
Correlation). the actual assumption about scene averages is weaker than stated
We also exclude Buchsbaum’s gray world variant [6], as wedbove. Specifically, the algorithms simply assume that the scene
as that of Gershoet al. [7] which use linear models in con- average is identical to the camera response to the chosen “gray”
junction with gray world like assumptions. An additional partinder the scene illuminant. Then, under the diagonal assump-
of Gershoret al’s algorithm is the idea that gray world aver-tion, the color of white can be estimated from that average. In
aging should be done over segmented components of an imabe,case of GW, the average is simply multiplied by two. In the
rather than the image pixels. This is implicit when synthesizedse of DB-GW, we scale the result by the ratio of the camera
data is used. With image data this strategy can be implementedponse to white under the canonical illuminant, to the camera
with appropriate pre-processing. response to gray, again under the canonical illuminant.



976 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 9, SEPTEMBER 2002

B. llluminant Estimation by the Maximum of Each Channel The convex hull of
measured RGB is taken as

The SCALE-BY-MAX algorithm estimates the illuminant an approximation of the
(R, G, B) by the maximum response in each channel. It is entire gamut under the
a limiting case of one version of Retinex [34], [35], [39], unknownilluminant
[41]. This method is clearly sensitive to the dynamic range
of the vision system. We also note that for a world of matte
reflectances, the estimate of the illuminant magnitude provided
will be biased, as the maximum reflectance in the scene will
always be less than that of a pure white. It would seem feasible
to compensate for this bias, but it would be a significant
undertaking to accurately estimate it, as it changes with the
number of surfaces in the scene. Also, if specularities are
present, then the maximum reflectance can easily be greate
than that of pure white. On the positive side, we note that if /
significant specularities are present, and the vision system ha
sufficient dynamic range to prevent them from being clipped, The unknown gamut of all
then this method provides an excellent estimate of illuminant possible RGB under the
chromaticity. In doing so, the algorithm is implicitly making  unknown illuminant.
use of pixel brightness information and thus, can potentially Fig. 3.
out-perform algorithms which use only chromaticity input.

The known gamut of
all possible RGB
under the known,
canonical illuminant.

Possible
maps

lllustration of the basic idea of gamut-mapping color constancy.

suffices to intersect only the sets corresponding to the vertex
points of the convex hull of the observé®, G, B). To find

We present the results of a number of algorithms based enmnvex hulls we use the freely available program “ghull” [43].
Forsyth’s gamut-mapping approach [8] (see also [1], [12], [15Fonvex sets can intersected by breaking space into cubes and
[17], [42]). The first step of the approach is to form the safollecting those which are in all hulls, or much more elegantly
of all possible(R, G, B) due to surfaces in the world underby taking the convex hull of the appropriate quantities in dual
a known, “canonical” illuminant. This set is convex and we respace [44].
resent it by its convex hull. Similarly, we represent the set of all It is possible that the sets to be intersected have no point in
possible( R, G, B) under the unknown illuminant by its (un-common as a result of failures in the assumptions or other er-
known) convex hull. Under the diagonal assumption of illumiors such as noise. Here we augment the observed data with
nation change, these two hulls are a unique diagonal mapptheg corner points of error boxes around the data, and compute
(a simple 3-D stretch) of each other. The goal is to estimate tlwntributions taC g, ¢, gy for each corner point. The modified
diagonal mapping. C(r,c, B) is again the convex hull of the contributing maps, and

Fig. 3 illustrates the situation using triangles to represeistexpanded as a result of modeling the error. Note that this is
the gamuts. In the fullR, G, B) version of the algorithm, not that same as simply mapping an expanded observed hull, as
the gamuts are actually 3-D polytopes. The upper thickéte observed points need to be inverted to #ilg; ¢, p). We
triangle represents the unknown gamut of the possible sentineshold the error box corner points so that#all, or B used
responses under the unknown illuminant, and the lower thicksre larger than a small positive value to avoid problems when
triangle represents the known gamut of sensor responsiesy are inverted. The amount of error is slowly increased until
under the canonical illuminant. We seek the mapping betwette intersection is nonempty.
the sets, but since the one set is not known, we estimate iFinlayson’s Color in Perspective algorithm [15] adds two ad-
by the observed sensor responses. These responses forditi@nal ideas to the gamut mapping method. First, the method
subset, the convex hull of which is illustrated by the thinneyan be used with the chromaticity spdé&/ 3, G/B). Second,
triangle. Because the observed set is normally a proper subtie¢,diagonal maps can be further constrained by restricting them
the mapping to the canonical is not unique, and Forsyth [&] ones corresponding to expected illuminants. This new con-
provides a method for effectively computing the set of possibftraint is nonconvex in the space of diagonal maps. In [15] the
diagonal maps which is a convex set in the space of mappiogmbined solution set was considered to be the intersection of
coefficients. the convex constraint set due to the original surface constraints,

Since each observed?, &G, B) must be mapped into the and the nonconvex illuminant constraint set. In [42] the illumi-
canonical gamut, a candidate diagonal dp, dq, dg) must nant constraint set was approximated by its convex hull and also
satisfy (Rdg, Gdg, Bdg) € C, whereC is the canonical used in the ful(R, G, B) case.
gamut. This means in turn thétlr, dg, dg) € C(r, ¢, B) Once the set of possible maps has been computed, an
were C(g, ¢, p) is obtained fromC' by dividing each (hull) important second stage of the algorithm is to choose a solution
point by (R, G, B) element-wise. Each such set is a (convexjom the feasible set. Several different methods for doing this
constraint on the possible diagonal maps, and the final solutibave been proposed. The original method chose the solution
set is determined by intersecting the collection of convex setdhich maximized the volume of the mapped set [8], which
obtained by considering each obsenétl G, B)—in fact, it is simply the diagonal transform with maximal determinant.

C. Gamut Mapping Methods
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The Color in Perspective method uses the same heuristicpimssible chromaticity ranges resulting from a discretization of
chromaticity space. However, this solution method is quite, ¢) space, ordered in any convenient manner. Two versions
biased, and in [42] the average of the constraint set wak Color by Correlation are described in [16]. In the first
investigated, both in the chromaticity based algorithm and thersion, the elements of the correlation matrix corresponding
(R, G, B) algorithm. This method for choosing the solution i$o a given illuminant are computed as follows: First, theg)
still biased in the chromaticity case, and in [17] the averagirgpromaticities of the reflectances in the training set under that
was done in three dimensions. Specifically, the constrainitiiminant are computed using the camera sensors. Then the
on the mappings in perspective space correspond to conesdnvex hull of these chromaticities is found, and all chro-
the space of mappings betweéR, G, B) gamuts. In order maticity bins within the hull are identified as being compatible
to average over the nonconvex illumination constraint, Monteith the given illuminant. Finally, all entries in the row for the
Carlo integration was used. In this work, we approximate thggven illuminant corresponding to compatible chromaticities
average using a more direct form of numerical integration, bo#ine set to one, and all other elements in that row are set to zero.
in the chromaticity and R, GG, B) cases. We simply divide To estimate the illuminant chromaticity, the correlation ma-
space into cubes (or squares) and average those for whichttheis multiplied by a vector whose elements correspond to the
implied illuminant is in the cone of possible illuminants. Thesame(r, g) bins used in the correlation matrix. The elements
implied illuminant is found by dividing the canonical illuminantof this vector are set to one if the corresponding chromaticity
(R, G, B) [or (R/B, G/B)] by the mapping correspondingoccurred in the image, and zero otherwise. Timeelement of
to the chosen cube (or square) element-wise. the resulting vector is then the number of chromaticities which

To summarize, we investigate three methods of forming tlage consistent with the illuminant. Under ideal circumstances,
solution set. These are Forsyth’s original method, designatltichromaticities in the image will be consistent with the ac-
by CRULE (for “coefficient-rule,” the name of the originaltual illuminant, and that illuminant will therefore have maximal
algorithm), the Color in Perspective method, designated by Ci@rrelation. As is the case with gamut-mapping methods, it is
and the illumination constraint set applied to CRULE designatgassible to have more than one plausible illuminant, and in our
by ECRULE (for “extended-CRULE”). We do not consider thémplementation we use the average of all candidates close to the
chromaticity case without the illumination constraint. Thesaximum. This algorithm is quite close to Color in Perspective
solution sets are paired with three methods of selecting a solutimd provides a convenient alternative implementation. We label
from them. We use MV to denote the original maximum volumthis algorithm “C-by-C-01.”
heuristic, AVE to specify that the constraint set is averaged,In the second version of Color by Correlation, the correlation
using a convex approximation to the illumination constraimmatrix is set up to compute the probability that the observed
if necessary, and ICA to specify that the constraint set ¢firomaticities are due to each of the training illuminants.
numerically integrated because it is nonconvex (“illuminatiohhe best illuminant can then be chosen using a maximum
constrained average”). likelihood estimate, or using some other estimate as discussed

For our experiments the canonical gamut is determined bglow. To compute the correlation matrix, the setnfyg) for
first calculating all (R, G, B) of the reflectance set undereach illuminant is again found using our database of surface
the canonical illuminant (the Sylvania 50MR16Q), and theteflectances. The frequency of occurrence of each discrete
computing the convex hull of that set. Th&, G, B) of the (r, g) is then recorded. If additional prior information about
canonical illuminant is simply théR2, G, B) of a pure white the probability of occurrence of these reflectances is available,
as imaged under that illuminant. We assume that the illuminahen the counts are weighted accordingly. llluminant priors
set is conical (all illuminants can be arbitrarily bright), anére also supported. In our implementation we simply use
it is computed by projecting theR, G, B) of the illuminant uniform statistics. The constructed counts are proportional to
data set onto thér, g) chromaticity planek+G+B = 1, and the probability that a giverir, g) would be observed, given
taking the convex hull of the projected points. The illuminatiothe specific illuminant. The logarithms of these probabilities
gamut is then the cone defined by the origin and the hufir a given illuminant are stored in a corresponding row of the
points on the plane. Rather than use this cone as a 3-D en@gtrelation matrix. The application of the correlation matrix,
we can often simply use it implicitly by observing that arflone exactly as in the C-by-C-01 case, now computes the
(R, G, B) is inside the cone, if the correspondifig ¢) is logarithm of the posterior distribution.
in the convex hull of the projected points used to define the This computation of the posterior distribution is a simple
cone. application of Bayes’s rule. Specifically, the probability that
the scene illuminant isl, given a collection of observed
D. Color by Correlation chromaticities, is given by

Recently, Finlaysoret al. introduced Color by Correlation PUIC) = peinpi) @)
[16], [30], [31] as an improvement on the Color in Perspective P(C)
method. The basic idea of Color by Correlation is to pre-com-
pute a correlation matrix which describes the extent to whiéHnce we are assuming uniform priors forand since’(C) is
proposed illuminants are compatible with the occurrence 8fnormalization which is not of interest, this reduces to
image chromaticities. Each row in the matrix corresponds to a
different training illuminant. The matrix columns correspond to P(I|C) x P(C|I). (3)
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Assuming that the observed chromaticities are independgmbrted. However, demonstrating the virtues of the MLM method
P(C|I) itself is the product of the probabilities of observingvould require error measures which are different than the ones

the individual chromaticities, given the illuminant/ used for this study.
P(O|I) = H P(c[I). (4) E. Neural Net Methods
c€C We also provide the results from a neural network trained to

estimate the color of the illuminant [18], [45], [46] (Labeled
NEURAL-NET in the results). The neural net is a multilayer
log(P(C|I)) = Z log(P(c|)). ) Perceptrqn with tWO hidden_layers. Asis common, the general
structure is pyramidal. The input layer consists of 2500 nodes,
the first hidden layer has 400 nodes, the second hidden layer
This final quantity is exactly what is computed by the applicdias 30 nodes, and the output layer has 2 nodes. We divide
tion of the correlation matrix to the vector of chromaticity ocehromaticity space into discrete bins, with each input neuron
currences. Specifically, théh element of the resulting vector iscorresponding to one of the discrete bins. The input to each
the logarithm of the posterior probability for thh illuminant. neuron is a binary value representing the presence or absence
There are several potential problems with the method as @é-a scene chromaticity falling in the correspondingg) bin.
scribed so far. First, due to noise, and other sources of mius, we form gr, ¢) histogram of the image, and then bina-
matches between the model and the real world, an observedrist that histogram.
of chromaticities can yield zero probability for all illuminants, The output signal from the two output neurons are real valued,
even if the illuminant, or a similar one, is in the training setand correspond to an estimate of the chromaticity of the scene
Second, the illumination may be a combination of two illumidluminant. Output signals are computed as a weighted sum of
nants, such as an arbitrary mix of direct sunlight and blue sksalues of input neurons put through a sigmoid function. The
and ideally we would like the method to give an intermediate anetwork is trained to compute this estimate by being presented
swer. We deal with these problems as follows. First, as describgith many synthesized images, generated from the training sets
above, we ensure that our illuminant set co\ersy) space, so described above, together with the chromaticity of the illumi-
that there is always a possible illuminant not too far from theant used to generate each image. The training of the neural net
actual illuminant. Second, as we build the correlation matrices;curs by re-adjustment of neuron weights using back-propa-
we smooth the frequency distribution of obseryedg) with a gation without momentum, based on the discrepancy between
Gaussian filte{o = 1.0). This ensures that there are no holepredicted and actual scene illuminant chromaticity. Extensive

Taking logarithms gives

cCC

in the distribution, and compensates for noise. details are provided in [45], [46].
The final step is to choose an answer, given the posterior
probability distribution. The original work [16] suggests three VI. EXPERIMENTS

choices: The maximum I|keI!hood, mean I|keI|hpod, and the In each of three experiments we computed the performance
local area mean, introduced in [28]. That work discusses theosfethe algorithms for synthetic scenes with 4, 8, 16, 32, 65
methods in detail with respect to a related Bayesian approactl%, 256. 512. and 1024 surfaces. For each number of surfaces,
color constancy, where they are referred to as the MAP, MMSfe generated 1000 scenes with the surfaces randomly selected
and MLM estimators, respestlvely. We will adopt this notatiog,m the reflectance database and a randomly selected illumi-
here as suffixes to “C-by-C.” The MAP estimate is simply th@ant from the test illuminant database. For each error measure,
illuminant which has the maximum posterior probability. Tygorithm, and number of scenes we computed the root mean
compute the MMSE estimate of the chromaticity estimate Wyuare error (RMS) over the 1000 results. More specifically, for

take the averager, g) weighted by the posterior distribution. 5 given error measure, 1&; be the error for théth synthesized
The MLM estimator is computed by convolving the posteriogcene. Then the RMS error is given by

distribution with a Gaussian mask, and then finding the max-

imum. For our purposes, we would like to choose the particular 1 X 1/2
Gaussian mask sigma which minimizes the error of some spe- <N Z E?)
cific task. Unfortunately, the bulk of our results are not of much i

help here, as they are based on RMS error, and thus, we alregfiére v is 1000 in this case. We chose RMS over the average
know that the MMSE method will work better. Brainard angyecause, on the assumption of roughly normally distributed er-
Freeman argue that the MLM estimate should be considered s with mean zero (approximately true for most algorithms
favor of the MMSE estimate because the latter penalizes lafge pp. 82-86]), the RMS gives us an estimate of the standard
errors too much. They would prefer that once errors are beyofiéliation of the algorithm estimates around the target. This is
a certain size, they are considered equally bad. Without adgteferable to using the average of the magnitude of the errors, as
tional knowledge about the application, it is difficult to quantifithose values are not normally distributed. Finally, given normal
such an error measure, but we can take a small step in thatgitistics, we can estimate the relative error in the RMS estimate
rection by considering the average absolute error, as opposeyd /v/2N [47, p. 269]. ForN = 1000, this is roughly 2%.

the RMS error. This yields a sigma where the MLM estimate For each experiment we consider the results for eight sur-
is slightly better than the MMSE estimate for average absoluces in detail. This number of surfaces is closest in difficulty
error, and we use this sigma (8.0) for the MLM estimates rés the data from a comprehensive set of images taken with a
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real camera [1], [4]. Although absolute errors found with syn- Performance of selected algorithms versus
thesized and captured data are not generally comparable, we ¢ number of surfaces in synthetic scenes
interested in studying the changes in relative performance ove L
the two conditions. This is most valid if the numbers are roughly
the same, and we ensure this by specifying eight synthetic su 0.08La§
faces for comparison with our image data results. )
We include the results of two minimal color constancy «
methods. The first (NOTHING) is to do nothing, which &
implicitly assumes that the vision system is already properlyE &

—— GW
—aA—— DB-GW
—~v—— SCALE-BY-MAX
3 — o - CIPICA

N — A - C-by-C-01

\ - 6 - - CRULE-MV

- 3 - - CRULE-AVE

— & — - ECRULE-MV

54

. . . . . Q
calibrated for the actual illuminant, and, in our context, is & \\ --v-- E‘éﬁ‘éi‘i“ﬁé}
equivalent to guessing that the actual illuminant is the canons \3 :_:_2_:_: Coby-C-MAP

<-=-¢---- C-by-C-MMSE

ical (target) illuminant. The second method (AVE-ILLUM) is _“2 0,069‘_\
similar, but instead, the illuminant is assumed to be the averagg A
of the normalized illuminants in our database.

m

A. Experiment With Matte Data

In Fig. 4, we plot the error irfr, ¢) for selected algorithms
as a function of the number of matte surfaces. As the number ¢= 0.04
surfaces in the scenes increases, there is more information ave §
able for the algorithms, and performance generally increase:«?)

For a sense of the absolute scale, we offer the heuristic that &,
error of 0.02 is adequate color constancy for most tasks; the cu ‘gf

rent state of the art falls short of this mark. In Table I, we pro-,
vide the results of all algorithms using several error measure
for eight surfaces.

Both NOTHING and AVE-ILLUM are independent of the
scene, and thus, their error is constant with respect to th r
number of surfaces. Since the test illuminants are distribute
throughout the data set, and since the canonical illuminant i
toward the periphery of the set (it is redder than average), AVE
ILLUM is a more effective minimal algorithm than NOTHING.

n (r,g) of illuminant

0.02

Vector dist

A similar consideration explains the poor performance of 0 I I I I I I I I
the CIP-MV algorithm. As found in [1], this algorithm is 2 3 4 5 6 7 8 9 10
biased. Specifically, in théR/B, G/B) chromaticity space, LOG, (Number of generated (R,G,B))

2 i >

the maximum volume constraint chooses essentially the blues.
illuminant consistent with the observed chromaticities. With oyr ) - )
L . .Fig. 4. Errorin(r, g) chromaticity as a function of the number of surfaces
comprehensive illuminant data set, many surfaces are requif§tsome of the better performing algorithms. The results of NOTHING,

before the algorithm CIP-MV performs better than the twéVE-ILLUM, CIP-MV, and CIP-HA are largely off the scale, and, thus, are
minimal algorithms. Similarly, many surfaces are also requirélitted. Numeric results for the case of eight surfaces (corresponding-t
to obtain a good result using the somewhat less biased CIP—I'—rIAhls plot) for all algorithms are available in Table I
algorithm. Finally the CIP-ICA algorithm was consistently
better than both NOTHING and AVE-ILLUM, and performedcase of a small number of surfaces, where the ECRULE-ICA
much better than the other two Color in Perspective methoasethod was the best gamut-mapping algorithm.
Also, as expected, the C-by-C-01 algorithm behaved similarly In general, the methods which make use of the distribution
to the CIP-ICA method. of the input chromaticities, specifically Color by Correlation
The rank order of algorithm performance is a function of thend the neural net, gave the best chromaticity estimates. As
number of surfaces. For example, the CIP-ICA and C-by-C-@kpected, the C-by-C-MMSE algorithm performed better than
methods performed better than SCALE-BY-MAX for a smallhe C-by-C-MAP algorithm, as it is known to be optimal for
number of surfaces, but the error with SCALE-BY-MAXRMS error. The error for the neural net method was between
dropped rapidly as the number of surfaces increased, becomimpy-C-MAP and C-by-C-MMSE, as was C-by-C-MLM. We
lower than that for the Color in Perspective methods at arouathphasize that these results are for the particular statistical envi-
eight surfaces. The methods based on 3-D gamut-mappiogment we chose for testing. In fact, the environment we chose
generally did better than SCALE-BY-MAX, although theis difficult in two regards: First, we use a relatively large range
variants which average their constraint set to obtain the finafl illuminants, especially in the direction away from the day-
solution (CRULE-AVE, ECRULE-AVE, and ECRULE-ICA) light illuminant locus. Our choice is based on illumination en-
were exceeded by SCALE-BY-MAX at around 16 surfacesironments which we have measured in and around our univer-
The maximum volume heuristic was better than averaging fsity campus, but for some applications it is quite possible that
estimating illuminant chromaticity, except in the importanthe illuminant set could be significantly restricted, or suitable
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TABLE |
ALGORITHM PERFORMANCEWITH RESPECT TO ANUMBER OF ERRORMEASURES THE VALUES LISTED ARE THERMS OVER 1000 YNTHETICALLY
GENERATED SCENES EACH HAVING EIGHT SURFACESRANDOMLY SELECTED FROM THE REFLECTANCE DATA SET, AS VIEWED UNDER AN
ILLUMINANT RANDOMLY SELECTED FROM THE TEST ILLUMINANT DATA SET. THE UNCERTAINTY IN THESE NUMBERS IS ROUGHLY 2%.
AN ASTERISK ISUSED FORMISSING ORNONAPPLICABLE VALUES

Mluminant | Hluminant | Hluminant Nluminant | Scene Scene
Algorithm Estimate Estimate rg | Estimate Estimate Mapping rg | Mapping RGB
Angular Error RGB Error | R+G+B error (RMS error (RMS
Error Error over pixels) | over pixels)
(degrees)
NOTHING 16.45 0.114 * * 0.113 *
AVE-ILLUM 11.79 0.086 * * 0.089 *
GW 8.00 0.058 190 310.1 0.062 137
DB-GW 6.51 0.048 96 144.6 0.054 33
SCALE-BY-MAX 9.03 0.067 165 267.0 0.072 106
CIP-MV 26.27 0.200 * * 0.240 *
CIP-AVE 18.12 0.130 * * 0.141 *
CIP-ICA 10.51 0.077 * * 0.081 *
NEURAL-NET 5.23 0.038 * * 0.045 *
C-by-C-01 10.79 0.078 * * 0.082 *
C-by-C-MAP 5.63 0.042 * * 0.048 *
C-by-C-MILM 5.25 0.039 * * 0.045 *
C-by-C-MMSE 4.66 0.034 * * 0.041 *
CRULE-MV 6.75 0.052 111 178 0.058 54
CRULE-AVE 8.39 0.061 208 303 0.066 45
ECRULE-MV 6.04 0.046 107 172 0.052 51
ECRULE-AVE 7.22 0.051 147 223 0.054 37
ECRULE-ICA 7.15 0.051 144 218 0.053 37

priors could be placed on the illuminants, and this would hefprresponds to a vector distance erro0dfl * /2, which is
the algorithms which make use of prior knowledge about tlwnsistent with our findings. We chose the resolution to be con-
illuminant. In this work we have imposed a relatively unifornsistent with that of the neural network, and we assume that the
prior on the illuminan{r, g), which is difficult to exploit—for limiting error for the neural net is also largely due to the same
a typical error measure, averaging of feasible solutions will gowoblem. This error could be reduced by using a more accurate
just as well. discretization, but doing so is not particularly important, as we
Second, we expect our reflectance data is also relativeBrely have this kind of input outside of simulation.
difficult for the methods which attempt to exploit detailed The gamut-mapping methods also did not converge to zero
statistics of the world. Although it is not uniform i, g) error. Here the problem is the failure of the diagonal model
space (which would be even more difficult), the over-ridingvhich relates the solution set (in the space of diagonal maps)
characteristic, as exemplified by the Munsell data (a significamt illumination estimates. The error for SCALE-BY-MAX, on
subset), is that it covers the range of colors reasonably wellilie other hand, did get close to zero. It does not go exactly to
we had first generated data with a more peaked distributiarero because we did not include a perfect reflectance in the data
then we would expect that both the neural net and Color kgt. The GW algorithm converged to a specifiable error, due to
Correlation would do even better. However, a model of wh#te difference between the actual database average, and a perfect
to expect in a random image is not readily available, argtay. Finally, when we used the database average for gray with
thus, we chose to investigate the algorithms in the contextthe DB-GW algorithm, the error converged to zero as expected.
no preference for any given surface beyond that implied byWe turn briefly to brightness. In general, none of the al-
our data set. This means that the results presented heregaéthms provide good estimates of illuminaft+ G + B
likely to be closer to the worst rather than best case for theséh eight surfaces. The lowest error is 145 (DB-GW) which
algorithms. In fact we expect that some of the excellent resuitslarge given the range (0, 765). The superior performance
reported using Color by Correlation [30] are due to narrowerf the DB-GW algorithm is due to its calibration on the true
assumptions regarding the statistics of illuminants and surfaoean reflectance of the surfaces. Unfortunately, this statistic
reflectances. Unfortunately, the details of the algorithm asi# not typically availablea priori for image data. Among
is used in [30] are not available due to commercial interesthe other algorithms, the best choice is invariably one of the
and therefore it is difficult to provide further analysis. gamut-mapping algorithms. We make the observation that
We note that for a large number of synthetic surfaces, whitihe preferred gamut mapping algorithm depends on the error
is much better input than normally available in practice, the emeasure. If the goal is to estimate the illumin&ft G, B) or
rors of most algorithms did not converge exactly to zero. In the + G + B then we prefer the maximum volume heuristic.
case of the Color by Correlation methods, this is simply du@n the other hand, if we wish to accurately map the image to
to the discretization of the input. We chose to break(thgy) a similar one of the same scene under the canonical illuminant
space into 50 units by 50 units, which corresponds to bins whif{, G, B) mapping error—rightmost column in Table 1],
are 0.02 units square. Thus, we cannot expect the algorithntlien we prefer choosing the solution from the constraint set
do much better than an error of 0.01 in each-@ndg, which by averaging. This is consistent with the easily demonstrated
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Change in RMS algorithm performance

claim that, under uniform statistics, the average minimizes the It
due to added specularities

expected RMS mapping error [42], which was the reason fol
introducing this solution selection method.

Given that the illuminan{R, G, B) and the selected trans-
form are related through the diagonal model, the observatiol
that the preferred solution selection method depends on the err_
measure requires further explanation. The important observeg
tion is that a given diagonal map is approximately proportion:’;tl_“;3
to the element-wiseverseof the illuminant(R, G, B). Thisis o

most easily visualized by noting that as we approach the origirg ~ °

in the mapping space, we are dealing with an increasingly brigh'fg
illuminant. This inversion relating the mapping space to the illu-=
minant space means that averaging in one space (diagonal maj <
is not equivalent to averaging in the other (illuminants). The in-§
version also means that an assumption of uniform statistics iig
the one space does not mean uniform statistics in the other. Thué -0.01 0
we do not necessarily expect the average of the diagonal majs

to give the best illuminantR, GG, B) estimate. e

0.01

!

\II‘.TII'.:IIIIII

,_\
T 19

B. Experiment With Simulated Specularities

etween (r,g

In a second experiment, we simulated scenes where each sts _ ¢,
face was made specular with a probability of 25%. To each 0’8
these reflectance spectra, we added a random factor times a p&
fect reflectance. The random factors were uniformly distributec"§
between zero and two. Thus, the surface reflectances could nog
be up to three times as bright as in the previous experiment. 2

We plot the change in the chromaticity results from the
nonspecular case as a function of the number of surface
(Fig. 5), and provide a variety of absolute results for the case o
eight surfaces (Table Il). Here we see that when specularitie
are present, most algorithms estimate chromaticity more acct
rately (but with widely differing improvements), even though
they were not designed to take advantage of specularities. F« I I I I I I I I

— o GW
—a~—— DB-GW
———— SCALE-BY-MAX
— o - CIPICA

— A - C-by-C-01

- - o - - CRULE-MV

- — 3 - - CRULE-AVE

- — ¢ - - ECRULE-MV

- — ¥ - - ECRULE-ICA
—m\—— NEURAL-NET
----EF--- C-by-C-MAP
c--=Ar=== C-by-C-MMSE

T T T T 1% T 7T

example, with specular reflection, the maximum value in eact 0%y 3 4 5 6 7 8 9 10
channel is more likely to be close to the color of white under LOG, (Number of generated (R,G,B))

the scene illuminant, and thus, in this test, SCALE-BY-MAX

does especially well. Fig. 5. Change irfr, ¢) error due to the addition of simulated specularities.

Chromaticity based algorithms cannot make use of the brigmle experiment used to produce Fig. 3 was rerun with added specularities. This

inf fi but din 5 lariti hould rﬁégé is the difference of the errors, as a function of the number of surfaces. The
ness information, but as argued In [ ] Speculariues shou olute errors for the case of eight surfaces (corresponding=o3 in this

have an overly negative impact because they simply move @) are available in Table III.
served chromaticities toward white. These modified chromatic-
ities are valid for some physically realizable surface, and thu
basic assumptions are not violated. However, we do expect so
degradation given our experimental paradigm, because col§ ; .
which are more saturated tend to lead to stronger constraints o he results in Table Il also show that specular reflection has

the illuminant. This is consistent with the drop in the perforg .generally negat_lve Impact on the estimation of the overall
mance of the Color in Perspective method, clear in Fig. 5. brightness of the illuminant. This is expected, as none of the

We also expected gray world algorithms to estimate t gorithms model the effe(_:t of spe_cular reflection on p_ixel
illuminant chromaticity better when specularities are prese IiIghtness. .The decrgase_ In error in .the (.BW case is simply
because the extra part added to the sum used in the ave gloa b”ght”?‘ss bias In that algorithm in the npnspecular
has the same chromaticity as a perfect gray. We note that e, and thus, it essentially works better by accident.
extra part does not have the same chromaticity as the gray used . o . o
by the DB-GW algorithm, which explains why that aIgoritth' Experiment With Simulated Specularities and Clipping
degrades in the case of a large number of surfaces. When strong specularities are present in real images, they are

Amongst the 3-D gamut-mapping algorithms, the largest peften clipped, which can significantly affect algorithm perfor-
formance increase due to specularities was when the maximomance. This motivated our third experiment where we inves-
volume heuristic was used to choose the solution. This was ¢grated the performance of the algorithms in the specular case
pected, as this heuristic tends to choose the map which takéth simulated clipping of the brightest pixels. Three levels of
a bright (and thus, in this experiment, specular) pixel to thatificial clipping were used. For each level, all pixels with

G, B) for white under the canonical, which yields a good
omaticity result.
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TABLE I

ALGORITHM PERFORMANCEWITH RESPECT TO ANUMBER OF ERRORMEASURES FORSYNTHETIC SCENES(8 SURFACES WITH SPECULARITIES (UNCERTAINTY IS
ROUGHLY 2%). A SYNTHETIC SPECULARITY WAS ADDED TO 25% OF THE SURFACESUSED BY ADDING A RANDOM FACTOR, UNIFORMLY DISTRIBUTED BETWEEN
1 AND 2, OF A PERFECTREFLECTANCE OTHERWISE THESE RESULTS AREANALOGOUS TOTHAT IN TABLE |

Algorithm Illuminant Illuminant {lluminant Illuminant | Scene Scene
Estimate Estimate rg | Estimate RGB | Estimate Mapping | Mapping
Angular Error | Error Error R+G+B RMSrg RMS RGB
(degrees) Error error Error
NOTHING 16.4 0.114 * * 0.114 *
AVE-ILLUM 11.8 0.086 * * 0.090 *
GW 4.8 0.035 132 216.5 0.041 104
DB-GW 4.5 0.033 448 731.4 0.038 170
SCALE-BY-MAX 4.5 0.033 257 427.8 0.039 140
CIP-MV 26.5 0.202 * * 0.245 *
CIP-AVE 18.3 0.131 * * 0.143 *
CIP-ICA 10.6 0.078 * * 0.082 *
NEURAL-NET 4.1 0.031 * * 0.037 *
C-by-C-01 10.9 0.079 * * 0.083 *
C-by-C-MAP 4.2 0.031 * * 0.037 *
C-by-C-MLM 3.7 0.027 * 0.034 *
C-by-C-MMSE 3.5 0.026 * * 0.032 *
CRULE-MV 3.8 0.029 349 577 0.035 156
CRULE-AVE 7.5 0.053 1027 1632 0.054 219
ECRULE-MV 3.6 0.027 350 579 0.033 156
ECRULE-AVE 6.6 0.046 825 1353 0.049 210
ECRULE-ICA 6.5 0.046 811 1331 0.048 209
TABLE 1lI one extreme, clipping under these circumstances has little effect

MEASURES FORGENERATED SCENESWITH SPECULARITIESWITH THREE
LEVELS OF SIMULATED CLIPPING (UNCERTAINTY IS ROUGHLY 2%). ALL

@G, or B over that level were discarded. The three clipping levels

TO THAT FOR TABLE I

GENERATED (R, G, B) VALUES WITH ANY OF R, G, OR B OVER THE
CLIPPING LEVEL WERE DISCARDED. IN ALL OTHER REGARDS THE
EXPERIMENT WHICH PRODUCED THENUMBER HERE IS ANALOGOUS

Iluminant Estimate Angular Error

(degrees)
Clipped at | Clipped | Clipped at

Algorithm 400 at 300 250

NOTHING 16.4 16.4 16.4
AVE-ILLUM 11.8 11.8 11.8
GW 6.2 7.3 7.8
DB-GW 5.4 6.2 6.6
SCALE-BY-MAX 6.3 7.9 8.7
CIP-MV 26.5 26.5 26.5
CIP-AVE 8.3 18.3 18.3
CIP-ICA 10.6 10.6 10.6
NEURAL-NET 4.6 5.1 5.4
C-by-C-01 10.9 10.9 10.9
C-by-C-MAP 4.7 5.5 5.8
C-by-C-MLM 4.4 5.0 52
C-by-C-MMSE 4.0 4.5 4.7
CRULE-MV 5.2 6.3 6.8
CRULE-AVE 8.0 8.3 8.6
ECRULE-MV 4.8 5.6 6.1
ECRULE-AVE 6.9 7.1 7.3
ECRULE-ICA 6.8 7.0 7.2

on the Color in Perspective algorithms. This is understandable
because the level of clipping used was such that only specular
pixels are clipped, and these pixels, having chromaticities near
white, are not of much use to those algorithms.

At the other extreme, clipping essentially disables the ability
of SCALE-BY-MAX to use specularities to improve the il-
lumination chromaticity estimate. As the number of surfaces
increases (see [1] for a plot), the effect becomes less dam-
aging because it becomes more likely that there is at least
one specular pixel just below the clipping level, which helps
the algorithm. However, as the number of surfaces becomes
very large, SCALE-BY-MAX degrades quite rapidly. This is
in contrast to all other algorithms tested, where the negative
effect of clipping decreases monotonically with the number
of synthetic surfaces.

The reason for the increase in SCALE-BY-MAX error with a
large number of surfaces and therefore many random speculari-
ties, is that the nondiscarded pixels now tend to have a maximum
in each channel that approaches the clipping level. For example,
in the case of the clipping level of 300, then the illuminant esti-
mate will converge to (300, 300, 300). This is the same answer
as the NOTHING algorithm! It is important to note that even
though we do not normally have this diversity of colors in real
images, a similar effect does in fact occur in images with fewer
colors but with a wide variety of strengths of specularities.

VII. CONCLUSIONS

used were 250, 300, and 400. We remind the reader that the ilAll algorithms studied here make some assumptions about
luminants are normalized so that perfect white has a maximuhe statistics of the reflectances to be encountered, and
response of 255 among the three channels. The results with eiglast make assumptions about the illuminants that will be
surfaces are shown in Table Ill. Additional results are availabéscountered. The gray world algorithms make assumptions

in [1].

about the stability of the expected value of scene averages;

Naturally, clipping degraded most algorithms, but the alg&CALE-BY-MAX makes a similar assumption about the
rithms differ with respect to the degree of degradation. On timaximum in each channel; the gamut mapping algorithms
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make assumptions about the ranges of expected reflectandes
and (for some variants) illuminants. Each method for choosing
the solution makes additional assumptions. The neural nef,
method and color by correlation methods go further and model
the occurrence distributions. As assumptions get stronger, tH&3!
prospect for success increases. It remains an open question to
the extent that vulnerability to failures of the assumptions als@4]
increases. We seek algorithms which can exploit reasonable
assumptions, preferably backed by empirical studies, bujg,
which are not overly sensitive to common failures of these
assumptions. [16]

Our experiments indicate that the methods which emphasize
the use of input data statistics, specifically Color by Correlatiori17]
and the neural net algorithm, are potentially the most effective
at estimating the chromaticity of the scene illuminant. Some of;g;
the 3-D variants of Forsyth’s gamut-mapping method also do
well, and these algorithms have the advantage that they are al B]
to also estimate the illuminant brightness. When specularitie
are present, these methods do even better, emphasizing thzd]
even when only chromaticity is of interest, full color algorithms
should be considered. [21]

Our detailed study of the effect of specularities on algorithms
showed that their effect is significantly algorithm dependent 22]
We also found that the effect of subsequent clipping of specular
values is again algorithm dependent. Specularities are ver
common and are often clipped in standard cameras, especiaﬁéﬁ]
when the aperture is automatically controlled. On the other
hand, high dynamic range systems for robotics and higi4]
quality imaging will want to take advantage of the illuminant
information carried by specularities. Thus, our study is relevanps;
to both applications.

The work in this paper has laid the foundation for future work[26]
with image data. We have developed a comprehensive undgpz)
standing on how a number of the leading algorithms perform in
controlled circumstances, and we are therefore in an excelleff]
position to interpret results from image data obtained with comsogj
plementary methodology. Results of such a study will be made
available in part two of this paper.
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