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A Comparison of Computational Color Constancy
Algorithms—Part I: Methodology and Experiments

With Synthesized Data
Kobus Barnard, Vlad Cardei, and Brian Funt

Abstract—We introduce a context for testing computational
color constancy, specify our approach to the implementation of
a number of the leading algorithms, and report the results of
three experiments using synthesized data. Experiments using
synthesized data are important because the ground truth is
known, possible confounds due to camera characterization and
pre-processing are absent, and various factors affecting color
constancy can be efficiently investigated because they can be
manipulated individually and precisely.

The algorithms chosen for close study include two gray world
methods, a limiting case of a version of the Retinex method,
a number of variants of Forsyth’s gamut-mapping method,
Cardei et al.’s neural net method, and Finlaysonet al.’s Color
by Correlation method. We investigate the ability of these al-
gorithms to make estimates of three different color constancy
quantities: the chromaticity of the scene illuminant, the overall
magnitude of that illuminant, and a corrected, illumination
invariant, image. We consider algorithm performance as a
function of the number of surfaces in scenes generated from
reflectance spectra, the relative effect on the algorithms of added
specularities, and the effect of subsequent clipping of the data.
All data is available on-line at http://www.cs.sfu.ca/~color/data,
and implementations for most of the algorithms are also available
(http://www.cs.sfu.ca/~color/code).

Index Terms—Algorithm, color by correlation, color constancy,
comparison, computational, gamut constraint, neural network.

I. INTRODUCTION

T HE IMAGE recorded by a camera depends on three
factors: the physical content of the scene, the illumination

incident on the scene, and the characteristics of the camera.
The goal of computational color constancy is to account for the
effect of the illuminant, either by directly mapping the image
to a standardized illuminant invariant representation, or by
determining a description of the illuminant which can be used
for subsequent color correction of the image. This has important
applications such as object recognition and scene understanding,
as well as image reproduction and digital photography (see
[1] for additional overview).
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In this paper we discuss a number of the leading algorithms
and characterize their performance using synthesized data (all
data is available on-line [2], as are implementations for most
of the algorithms [3]). Experiments using synthesized data are
important because the ground truth is known, possible con-
founds due to camera characterization and pre-processing are
absent, and factors affecting color constancy can be efficiently
investigated because they can be manipulated individually and
precisely. These factors include input characteristics such as
specularities, camera behaviors such as pixel clipping, and the
statistics of illuminant and surface reflectance occurrence in
training data and in testing data. Understanding these factors
under controlled conditions is a necessary first step toward
dealing with them in images taken with a real camera. Further-
more, the methodology used in this work has been informed by
our work with a large data set of real images [1], [4]. This has
enabled us to make our experiments with synthetic data closely
relevant to the problems faced with when real image data is
encountered.

II. A PPROACHES TOCOMPUTATIONAL COLOR CONSTANCY

The goal of computational color constancy is to find a
nontrivial illuminant invariant description of a scene from an
image taken under unknown lighting conditions. This is often
broken into two steps. The first step is to estimate illuminant
parameters, and then a second step uses those parameters to
compute illumination independent surface descriptors [5]–[7].
These descriptors can be quite abstract, but here we simplify
matters by specifying that the illumination invariant description
is an image of the scene as if it were taken under a known,
standard, canonical, light [8]. The choice of the canonical
illuminant is somewhat arbitrary. For image reproduction ap-
plications it makes most sense to use an illuminant for which
the camera is balanced, and this is the choice we have used.

We assume a diagonal model of illumination change which
maps the image taken under one illuminant, to the image taken
under another illuminant (e.g., the canonical), by scaling each
channel independently. For concreteness, consider a scene with
a white patch. Suppose that the camera response to the white
patch under the unknown illuminant is , and
that the response under the known, canonical, illuminant is

. Then the response to the white patch can be
mapped from the unknown case to the canonical case simply by
scaling the three channels by , , and
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respectively. To the extent that this same scaling works for
the other, nonwhite patches, we say that the diagonal model
holds. The efficacy of the diagonal model is largely a function
of the vision system sensors, specifically whether or not they
are narrow band, and whether or not they overlap1 [9]–[12]. In
the case of the camera used for the present work, the diagonal
model is a good approximation. If the diagonal model leads
to large errors, then performance may be improved by using
sensor sharpening [13], [14].

The variants of Forsyth’s gamut mapping method [8] directly
estimate the diagonal mapping from the input image to the “cor-
rected” image. The other algorithms considered in this paper
estimate the color of the illuminant as defined by the camera re-
sponse to a pure white, or a projection thereof (chromaticity).
Using the diagonal model we can easily convert between these
two approaches. An estimate of the illuminant can
be used to correct an image. Conversely, an estimate of the diag-
onal map also gives us an estimate of the illuminant ,
found by applying the inverse transform to the of
white under the canonical illuminant.

Often we are most interested in the chromaticity of
the illuminant and/or a correction for chromaticity only.
We remind the reader that chromaticity is color nor-
malized by overall magnitude-one chromaticity space is

. Chromaticity
is often sufficient because an illuminant magnitude is often
implicitly present. For example, when a picture is taken, either
a human operator or some mechanism has often set the aperture
to a reasonable value. Thus, a correction for chromaticity,
which leaves the overall brightness the same, is often sufficient
for image reproduction applications. A number of color con-
stancy algorithms have been developed which work entirely
in some chromaticity space [15]–[18], and much progress has
been made by taking advantage of the simplifications afforded
by this strategy. However, since these algorithms ignore the
magnitude of the image pixels, they are potentially less pow-
erful than algorithms which attempt to use information that
may be implicit in those values. For example, it is commonly
recognized that specular highlights carry information about the
illuminant chromaticity [19]–[23], and the fact that they are
relatively bright is of use to some algorithms. This means that
it can be beneficial to use an algorithm which estimates three
parameters even if the goal is chromaticity correction.

III. ERRORMEASURES

We consider six error measures. The first treats the
illuminant , and the corresponding estimate
thereof, as vectors in space, and computes
the angle between these two vectors in degrees. Specif-
ically, if is the target illuminant

, and is the estimate, then
the angular error is given by .
The second error measure is the vector distance in
space of the illuminant chromaticity and the estimate
thereof. Specifically, if

1The world (surfaces and illuminants) encountered by the camera also affects
the diagonal model error.

where is the target illuminant
chromaticity and where

is the estimate, this second error is
given by . These two measures
are roughly interchangeable, but the first makes more sense
for the algorithms, whereas the second is closer to
the quantity that several of the chromaticity algorithms try to
minimize.

To measure illuminant error it is perhaps most nat-
ural to consider the vector distance in between the
illuminant and the estimate thereof,

, and thus, we include some results
using this error measurement. However, given the application
dependent asymmetry between illuminant chromaticity and il-
luminant brightness, we find it more useful to look at the con-
junction of a chromaticity error measure and the error in bright-
ness. For the latter we use a fourth error measure, that being the
difference in between the illuminant and the estimate
thereof, .

Finally, for our last two error measures we consider the error
in the final color constancy result, which is the difference be-
tween the corrected image, and the exact target image taken
under the canonical illuminant. These results are difficult to ob-
tain with image data, because they require registered images
with exactly the same geometry for each illuminant. This is only
feasible if all illuminants are produced from a single source in
conjunction with filters, which precludes the use of a general
illuminant set like ours. The problems are diminished in the re-
stricted case of chromaticity mappings, but even here, variations
in geometry cause problems. With synthetic data it easy and
useful to look at mapping results, and we use the RMS error
over synthetic scene surfaces in and between
the target data and the mapped estimate thereof. Specifically, if

is the observed response for channel or chromaticity com-
ponent for pixel , and is the analogous quantity for the
target image, then the RMS error is computed by

where is the number of channels (usually 3) or chromaticity
components (usually 2) and is the number of synthetic
surfaces (or image pixels).

IV. A SSUMPTIONS ANDCONTEXT

Most color constancy algorithms assume that the world con-
sists of perfectly diffuse reflecting surfaces. Color constancy has
also been attempted by making use of specularities [19]–[24]. In
this paper we do not test any algorithms which specifically re-
quire specularities to be present. However, specularities are very
common, and therefore we have study their effect on the various
algorithms. We further assume that the illumination is the same
for the entire (synthetic) scene.

Color constancy algorithms also generally make assumptions
about the diversity, and possibly the statistics, of the surfaces
and the illuminants that will be encountered. Typically the
surfaces and illuminants are supplied as collections of surface
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Fig. 1. Chromaticity distributions of the various sets of illuminants used in this study. The 11 illuminants used for creating test images are shown in(a). In (b),
we plot the chromaticities of an additional set composed of more sources, including a number illuminations measured in and around our university campus. The
training set constructed from these sources is shown in (c). A similar set used for testing with the chromaticity space more densely populated is shownin (d).

reflectances and illuminant energy spectra. The required data
sets are then computed using an appropriate camera model.

For surface reflectances we used a set of 1995 spectra
compiled from several sources. These surfaces included the
24 Macbeth color checker patches, 1269 Munsell chips, 120
Dupont paint chips [25], 170 natural objects [25], the 350
surfaces in the Krinov data set [26], and 57 additional surfaces
measured by ourselves. This set was chosen to be a superset
of the reflectance sets used by others for color constancy
research. This set was used both for modeling the world for
algorithm calibration (training) and testing the algorithms.

The illuminant spectra for all parts of this study were chosen
to roughly uniformly cover the chromaticities of common
illumination conditions. All illuminant spectra were normalized
so that a perfect white seen by our camera under each illuminant
would have a maximum response among the three channels of
255. To obtain the appropriate illuminant sets, we first selected
11 sources to be used for image data experiments. These were
selected to span the range of chromaticities of common natural
and man made illuminants as best as possible, while bearing
in mind the other considerations of stability over time, spec-
tral nearness to common illuminants, and physical suitability
for our experimental setup (using the sun would have been dif-
ficult). These 11 sources include three fluorescent lights (Syl-
vania warm white, Sylvania cool white, and Philips Ultralume),

four different 12 volt incandescent lights, and those four used
in conjunction with a blue filter (Roscolux 3202). The spectra
of one of the incandescent lights (Sylvania 50MR16Q) is very
similar to a regular incandescent light bulb. The other three are
bulbs developed to provide spectra similar to daylight of three
different color temperatures (Solux 3500K, Solux 4100K, Solux
4700K). When used in conjunction with the blue filter these
three bulbs provide a reasonable coverage of the range of out-
door illumination. The chromaticities of all 11 illuminants are
shown in Fig. 1(a).

To create the illuminant set used for training, we divided
space into cells 0.02 units wide, and placed the 11

illuminants described above into the appropriate cells. We
then added illumination spectra from a second set of 97,
provided that their chromaticity bins were not yet occupied.
This second set consisted of additional sources and a number
of illumination spectra measured in and around our university
campus. The chromaticities of this additional illuminant set
are shown in Fig. 1(b). Finally, to obtain the desired density of
coverage, we used random linear combinations of spectra from
the two sets. This is justified because illumination is often
the blending of light from two or more sources. In addition,
to the extent that the diagonal model holds, these constructed
illumination spectra will behave like physical sources with the
same chromaticities as the constructed ones. Fig. 1(c) shows the
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chromaticities of the training set obtained using this method.
Finally, to produce the illuminant set for testing, we followed
the same procedure, but filled the space 4 times more densely.
The resultant chromaticities are shown in Fig. 1(d).

We characterized our Sony DXC-930 CCD camera as de-
scribed in [27] and used these sensors for generating camera
responses for synthesizing scenes and algorithm training/cali-
bration. The ideal (linearized) camera response for channel,

, is computed from a surface spectra and illuminant
spectra and sensor function by

(1)

In practice, all the functions are replaced by vectors. In our case
we use 101 samples from 380 nm to 780 nm in steps of 4 nm
which is the sampling provided by our PhotoResearch PR-650
spectrometer. The camera sensors, as well as the data used to
estimate them, are available on-line [2].

Where relevant we use the Sylvania 50MR16Q for the canon-
ical illuminant, as this is the illuminant for which the camera
is best balanced. Specifically, under this illuminant, the camera
response to perfect white is roughly the same across the three
channels. The chromaticities of the reflectance data set
as imaged under the canonical illuminant and with the Sony
DXC-930 camera are shown in Fig. 2.

V. ALGORITHMS

We endeavored to include the most promising computation
color constancy algorithms, as well as several simple, yet
effective, commonly used algorithms. Several algorithms that
were not implemented bear mentioning. First, we did not test
the innovative Maloney–Wandell algorithm. Despite being an
important contribution to the development of many ideas, this
algorithm simply does not work well in the general context in
which we test color constancy. The reason for this is that, for
a three sensor vision system, this algorithm requires that the
surface reflectances of the world can be well approximated
by two basis functions. This is not true in general. Several
authors have noted that this problem leads to poor performance
[28], [29].

A second important algorithm not tested is Brainard and
Freeman’s Bayesian method [28]. Instead we investigate the
related Color by Correlation method as originally introduced
for chromaticity input [16], [30], [31] (Brainard and Freeman’s
approach [28] use a three-dimensional (3-D) space; a 3-D
version of Color by Correlation has also recently been proposed
[32]; also see [33] for another approach related to Color by
Correlation).

We also exclude Buchsbaum’s gray world variant [6], as well
as that of Gershonet al. [7] which use linear models in con-
junction with gray world like assumptions. An additional part
of Gershonet al.’s algorithm is the idea that gray world aver-
aging should be done over segmented components of an image,
rather than the image pixels. This is implicit when synthesized
data is used. With image data this strategy can be implemented
with appropriate pre-processing.

Fig. 2. Chromaticities of the reflectance data set as imaged under the canonical
illuminant and with the Sony DXC-930 camera.

Finally, the extensive body of work on the Retinex theory of
human vision has yielded several algorithms. The emphasis of
Retinex theory is on human vision, and goes beyond simple il-
luminant estimation. Hence, computational color constancy al-
gorithms emerge from Retinex more as a process of analogy
than through specification by the original researchers. Nonethe-
less, at least three algorithms for simple illuminant estimation in
our context can be identified. We investigate the one closest to
[34]–[36]. We do not test the method in [37], [38] (analyzed in
[39]), nor the method in [40], as they are essentially gray world
algorithms. We now discuss the algorithms chosen for detailed
study.

A. Gray World Methods

The gray world method assumes that the average of the sur-
face reflectances of a typical scene is some pre-specified value,
which is referred to as “gray.” The exact definition of “gray”
requires some clarification. One possibility is simply true gray;
specifically, a 50% uniform reflectance. This leads to the algo-
rithm labeled GW in the results. A second choice is to use the
average of the reflectance database. This is expected to perform
better then GW with synthesized data, and the result is guaran-
teed to be excellent if a large number of surfaces are used. With
image data, however, the actual average surface reflectance is
not knowna priori, and thus, this method is expected to fare rel-
atively less well. We denote this algorithm by DB-GW. We note
that since these algorithms work on camera sensor responses,
the actual assumption about scene averages is weaker than stated
above. Specifically, the algorithms simply assume that the scene
average is identical to the camera response to the chosen “gray”
under the scene illuminant. Then, under the diagonal assump-
tion, the color of white can be estimated from that average. In
the case of GW, the average is simply multiplied by two. In the
case of DB-GW, we scale the result by the ratio of the camera
response to white under the canonical illuminant, to the camera
response to gray, again under the canonical illuminant.
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B. Illuminant Estimation by the Maximum of Each Channel

The SCALE-BY-MAX algorithm estimates the illuminant
by the maximum response in each channel. It is

a limiting case of one version of Retinex [34], [35], [39],
[41]. This method is clearly sensitive to the dynamic range
of the vision system. We also note that for a world of matte
reflectances, the estimate of the illuminant magnitude provided
will be biased, as the maximum reflectance in the scene will
always be less than that of a pure white. It would seem feasible
to compensate for this bias, but it would be a significant
undertaking to accurately estimate it, as it changes with the
number of surfaces in the scene. Also, if specularities are
present, then the maximum reflectance can easily be greater
than that of pure white. On the positive side, we note that if
significant specularities are present, and the vision system has
sufficient dynamic range to prevent them from being clipped,
then this method provides an excellent estimate of illuminant
chromaticity. In doing so, the algorithm is implicitly making
use of pixel brightness information and thus, can potentially
out-perform algorithms which use only chromaticity input.

C. Gamut Mapping Methods

We present the results of a number of algorithms based on
Forsyth’s gamut-mapping approach [8] (see also [1], [12], [15],
[17], [42]). The first step of the approach is to form the set
of all possible due to surfaces in the world under
a known, “canonical” illuminant. This set is convex and we rep-
resent it by its convex hull. Similarly, we represent the set of all
possible under the unknown illuminant by its (un-
known) convex hull. Under the diagonal assumption of illumi-
nation change, these two hulls are a unique diagonal mapping
(a simple 3-D stretch) of each other. The goal is to estimate that
diagonal mapping.

Fig. 3 illustrates the situation using triangles to represent
the gamuts. In the full version of the algorithm,
the gamuts are actually 3-D polytopes. The upper thicker
triangle represents the unknown gamut of the possible sensor
responses under the unknown illuminant, and the lower thicker
triangle represents the known gamut of sensor responses
under the canonical illuminant. We seek the mapping between
the sets, but since the one set is not known, we estimate it
by the observed sensor responses. These responses form a
subset, the convex hull of which is illustrated by the thinner
triangle. Because the observed set is normally a proper subset,
the mapping to the canonical is not unique, and Forsyth [8]
provides a method for effectively computing the set of possible
diagonal maps which is a convex set in the space of mapping
coefficients.

Since each observed must be mapped into the
canonical gamut, a candidate diagonal map must
satisfy , where is the canonical
gamut. This means in turn that ,
were is obtained from by dividing each (hull)
point by element-wise. Each such set is a (convex)
constraint on the possible diagonal maps, and the final solution
set is determined by intersecting the collection of convex sets
obtained by considering each observed —in fact, it

Fig. 3. Illustration of the basic idea of gamut-mapping color constancy.

suffices to intersect only the sets corresponding to the vertex
points of the convex hull of the observed . To find
convex hulls we use the freely available program “qhull” [43].
Convex sets can intersected by breaking space into cubes and
collecting those which are in all hulls, or much more elegantly
by taking the convex hull of the appropriate quantities in dual
space [44].

It is possible that the sets to be intersected have no point in
common as a result of failures in the assumptions or other er-
rors such as noise. Here we augment the observed data with
the corner points of error boxes around the data, and compute
contributions to for each corner point. The modified

is again the convex hull of the contributing maps, and
is expanded as a result of modeling the error. Note that this is
not that same as simply mapping an expanded observed hull, as
the observed points need to be inverted to find . We
threshold the error box corner points so that all, , or used
are larger than a small positive value to avoid problems when
they are inverted. The amount of error is slowly increased until
the intersection is nonempty.

Finlayson’s Color in Perspective algorithm [15] adds two ad-
ditional ideas to the gamut mapping method. First, the method
can be used with the chromaticity space . Second,
the diagonal maps can be further constrained by restricting them
to ones corresponding to expected illuminants. This new con-
straint is nonconvex in the space of diagonal maps. In [15] the
combined solution set was considered to be the intersection of
the convex constraint set due to the original surface constraints,
and the nonconvex illuminant constraint set. In [42] the illumi-
nant constraint set was approximated by its convex hull and also
used in the full case.

Once the set of possible maps has been computed, an
important second stage of the algorithm is to choose a solution
from the feasible set. Several different methods for doing this
have been proposed. The original method chose the solution
which maximized the volume of the mapped set [8], which
is simply the diagonal transform with maximal determinant.



BARNARD et al.: PART I: METHODOLOGY AND EXPERIMENTS WITH SYNTHESIZED DATA 977

The Color in Perspective method uses the same heuristic in
chromaticity space. However, this solution method is quite
biased, and in [42] the average of the constraint set was
investigated, both in the chromaticity based algorithm and the

algorithm. This method for choosing the solution is
still biased in the chromaticity case, and in [17] the averaging
was done in three dimensions. Specifically, the constraints
on the mappings in perspective space correspond to cones in
the space of mappings between gamuts. In order
to average over the nonconvex illumination constraint, Monte
Carlo integration was used. In this work, we approximate this
average using a more direct form of numerical integration, both
in the chromaticity and cases. We simply divide
space into cubes (or squares) and average those for which the
implied illuminant is in the cone of possible illuminants. The
implied illuminant is found by dividing the canonical illuminant

[or ] by the mapping corresponding
to the chosen cube (or square) element-wise.

To summarize, we investigate three methods of forming the
solution set. These are Forsyth’s original method, designated
by CRULE (for “coefficient-rule,” the name of the original
algorithm), the Color in Perspective method, designated by CIP,
and the illumination constraint set applied to CRULE designated
by ECRULE (for “extended-CRULE”). We do not consider the
chromaticity case without the illumination constraint. These
solution sets are paired with three methods of selecting a solution
from them. We use MV to denote the original maximum volume
heuristic, AVE to specify that the constraint set is averaged,
using a convex approximation to the illumination constraint
if necessary, and ICA to specify that the constraint set is
numerically integrated because it is nonconvex (“illumination
constrained average”).

For our experiments the canonical gamut is determined by
first calculating all of the reflectance set under
the canonical illuminant (the Sylvania 50MR16Q), and then
computing the convex hull of that set. The of the
canonical illuminant is simply the of a pure white
as imaged under that illuminant. We assume that the illuminant
set is conical (all illuminants can be arbitrarily bright), and
it is computed by projecting the of the illuminant
data set onto the chromaticity plane , and
taking the convex hull of the projected points. The illumination
gamut is then the cone defined by the origin and the hull
points on the plane. Rather than use this cone as a 3-D entity,
we can often simply use it implicitly by observing that an

is inside the cone, if the corresponding is
in the convex hull of the projected points used to define the
cone.

D. Color by Correlation

Recently, Finlaysonet al. introduced Color by Correlation
[16], [30], [31] as an improvement on the Color in Perspective
method. The basic idea of Color by Correlation is to pre-com-
pute a correlation matrix which describes the extent to which
proposed illuminants are compatible with the occurrence of
image chromaticities. Each row in the matrix corresponds to a
different training illuminant. The matrix columns correspond to

possible chromaticity ranges resulting from a discretization of
space, ordered in any convenient manner. Two versions

of Color by Correlation are described in [16]. In the first
version, the elements of the correlation matrix corresponding
to a given illuminant are computed as follows: First, the
chromaticities of the reflectances in the training set under that
illuminant are computed using the camera sensors. Then the
convex hull of these chromaticities is found, and all chro-
maticity bins within the hull are identified as being compatible
with the given illuminant. Finally, all entries in the row for the
given illuminant corresponding to compatible chromaticities
are set to one, and all other elements in that row are set to zero.

To estimate the illuminant chromaticity, the correlation ma-
trix is multiplied by a vector whose elements correspond to the
same bins used in the correlation matrix. The elements
of this vector are set to one if the corresponding chromaticity
occurred in the image, and zero otherwise. Theth element of
the resulting vector is then the number of chromaticities which
are consistent with the illuminant. Under ideal circumstances,
all chromaticities in the image will be consistent with the ac-
tual illuminant, and that illuminant will therefore have maximal
correlation. As is the case with gamut-mapping methods, it is
possible to have more than one plausible illuminant, and in our
implementation we use the average of all candidates close to the
maximum. This algorithm is quite close to Color in Perspective
and provides a convenient alternative implementation. We label
this algorithm “C-by-C-01.”

In the second version of Color by Correlation, the correlation
matrix is set up to compute the probability that the observed
chromaticities are due to each of the training illuminants.
The best illuminant can then be chosen using a maximum
likelihood estimate, or using some other estimate as discussed
below. To compute the correlation matrix, the set of for
each illuminant is again found using our database of surface
reflectances. The frequency of occurrence of each discrete

is then recorded. If additional prior information about
the probability of occurrence of these reflectances is available,
then the counts are weighted accordingly. Illuminant priors
are also supported. In our implementation we simply use
uniform statistics. The constructed counts are proportional to
the probability that a given would be observed, given
the specific illuminant. The logarithms of these probabilities
for a given illuminant are stored in a corresponding row of the
correlation matrix. The application of the correlation matrix,
done exactly as in the C-by-C-01 case, now computes the
logarithm of the posterior distribution.

This computation of the posterior distribution is a simple
application of Bayes’s rule. Specifically, the probability that
the scene illuminant is , given a collection of observed
chromaticities , is given by

(2)

Since we are assuming uniform priors for, and since is
a normalization which is not of interest, this reduces to

(3)
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Assuming that the observed chromaticities are independent,
itself is the product of the probabilities of observing

the individual chromaticities, given the illuminant

(4)

Taking logarithms gives

(5)

This final quantity is exactly what is computed by the applica-
tion of the correlation matrix to the vector of chromaticity oc-
currences. Specifically, theth element of the resulting vector is
the logarithm of the posterior probability for theth illuminant.

There are several potential problems with the method as de-
scribed so far. First, due to noise, and other sources of mis-
matches between the model and the real world, an observed set
of chromaticities can yield zero probability for all illuminants,
even if the illuminant, or a similar one, is in the training set.
Second, the illumination may be a combination of two illumi-
nants, such as an arbitrary mix of direct sunlight and blue sky,
and ideally we would like the method to give an intermediate an-
swer. We deal with these problems as follows. First, as described
above, we ensure that our illuminant set covers space, so
that there is always a possible illuminant not too far from the
actual illuminant. Second, as we build the correlation matrices,
we smooth the frequency distribution of observed with a
Gaussian filter . This ensures that there are no holes
in the distribution, and compensates for noise.

The final step is to choose an answer, given the posterior
probability distribution. The original work [16] suggests three
choices: The maximum likelihood, mean likelihood, and the
local area mean, introduced in [28]. That work discusses these
methods in detail with respect to a related Bayesian approach to
color constancy, where they are referred to as the MAP, MMSE,
and MLM estimators, respectively. We will adopt this notation
here as suffixes to “C-by-C.” The MAP estimate is simply the
illuminant which has the maximum posterior probability. To
compute the MMSE estimate of the chromaticity estimate we
take the average weighted by the posterior distribution.
The MLM estimator is computed by convolving the posterior
distribution with a Gaussian mask, and then finding the max-
imum. For our purposes, we would like to choose the particular
Gaussian mask sigma which minimizes the error of some spe-
cific task. Unfortunately, the bulk of our results are not of much
help here, as they are based on RMS error, and thus, we already
know that the MMSE method will work better. Brainard and
Freeman argue that the MLM estimate should be considered in
favor of the MMSE estimate because the latter penalizes large
errors too much. They would prefer that once errors are beyond
a certain size, they are considered equally bad. Without addi-
tional knowledge about the application, it is difficult to quantify
such an error measure, but we can take a small step in that di-
rection by considering the average absolute error, as opposed to
the RMS error. This yields a sigma where the MLM estimate
is slightly better than the MMSE estimate for average absolute
error, and we use this sigma (8.0) for the MLM estimates re-

ported. However, demonstrating the virtues of the MLM method
would require error measures which are different than the ones
used for this study.

E. Neural Net Methods

We also provide the results from a neural network trained to
estimate the color of the illuminant [18], [45], [46] (Labeled
NEURAL-NET in the results). The neural net is a multilayer
Perceptron with two hidden layers. As is common, the general
structure is pyramidal. The input layer consists of 2500 nodes,
the first hidden layer has 400 nodes, the second hidden layer
has 30 nodes, and the output layer has 2 nodes. We divide
chromaticity space into discrete bins, with each input neuron
corresponding to one of the discrete bins. The input to each
neuron is a binary value representing the presence or absence
of a scene chromaticity falling in the corresponding bin.
Thus, we form a histogram of the image, and then bina-
rize that histogram.

The output signal from the two output neurons are real valued,
and correspond to an estimate of the chromaticity of the scene
illuminant. Output signals are computed as a weighted sum of
values of input neurons put through a sigmoid function. The
network is trained to compute this estimate by being presented
with many synthesized images, generated from the training sets
described above, together with the chromaticity of the illumi-
nant used to generate each image. The training of the neural net
occurs by re-adjustment of neuron weights using back-propa-
gation without momentum, based on the discrepancy between
predicted and actual scene illuminant chromaticity. Extensive
details are provided in [45], [46].

VI. EXPERIMENTS

In each of three experiments we computed the performance
of the algorithms for synthetic scenes with 4, 8, 16, 32, 65,
128, 256, 512, and 1024 surfaces. For each number of surfaces,
we generated 1000 scenes with the surfaces randomly selected
from the reflectance database and a randomly selected illumi-
nant from the test illuminant database. For each error measure,
algorithm, and number of scenes we computed the root mean
square error (RMS) over the 1000 results. More specifically, for
a given error measure, let be the error for theth synthesized
scene. Then the RMS error is given by

where is 1000 in this case. We chose RMS over the average
because, on the assumption of roughly normally distributed er-
rors with mean zero (approximately true for most algorithms
[1, pp. 82–86]), the RMS gives us an estimate of the standard
deviation of the algorithm estimates around the target. This is
preferable to using the average of the magnitude of the errors, as
those values are not normally distributed. Finally, given normal
statistics, we can estimate the relative error in the RMS estimate
by [47, p. 269]. For , this is roughly 2%.

For each experiment we consider the results for eight sur-
faces in detail. This number of surfaces is closest in difficulty
to the data from a comprehensive set of images taken with a
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real camera [1], [4]. Although absolute errors found with syn-
thesized and captured data are not generally comparable, we are
interested in studying the changes in relative performance over
the two conditions. This is most valid if the numbers are roughly
the same, and we ensure this by specifying eight synthetic sur-
faces for comparison with our image data results.

We include the results of two minimal color constancy
methods. The first (NOTHING) is to do nothing, which
implicitly assumes that the vision system is already properly
calibrated for the actual illuminant, and, in our context, is
equivalent to guessing that the actual illuminant is the canon-
ical (target) illuminant. The second method (AVE-ILLUM) is
similar, but instead, the illuminant is assumed to be the average
of the normalized illuminants in our database.

A. Experiment With Matte Data

In Fig. 4, we plot the error in for selected algorithms
as a function of the number of matte surfaces. As the number of
surfaces in the scenes increases, there is more information avail-
able for the algorithms, and performance generally increases.
For a sense of the absolute scale, we offer the heuristic that an
error of 0.02 is adequate color constancy for most tasks; the cur-
rent state of the art falls short of this mark. In Table I, we pro-
vide the results of all algorithms using several error measures
for eight surfaces.

Both NOTHING and AVE-ILLUM are independent of the
scene, and thus, their error is constant with respect to the
number of surfaces. Since the test illuminants are distributed
throughout the data set, and since the canonical illuminant is
toward the periphery of the set (it is redder than average), AVE-
ILLUM is a more effective minimal algorithm than NOTHING.
A similar consideration explains the poor performance of
the CIP-MV algorithm. As found in [1], this algorithm is
biased. Specifically, in the chromaticity space,
the maximum volume constraint chooses essentially the bluest
illuminant consistent with the observed chromaticities. With our
comprehensive illuminant data set, many surfaces are required
before the algorithm CIP-MV performs better than the two
minimal algorithms. Similarly, many surfaces are also required
to obtain a good result using the somewhat less biased CIP-HA
algorithm. Finally the CIP-ICA algorithm was consistently
better than both NOTHING and AVE-ILLUM, and performed
much better than the other two Color in Perspective methods.
Also, as expected, the C-by-C-01 algorithm behaved similarly
to the CIP-ICA method.

The rank order of algorithm performance is a function of the
number of surfaces. For example, the CIP-ICA and C-by-C-01
methods performed better than SCALE-BY-MAX for a small
number of surfaces, but the error with SCALE-BY-MAX
dropped rapidly as the number of surfaces increased, becoming
lower than that for the Color in Perspective methods at around
eight surfaces. The methods based on 3-D gamut-mapping
generally did better than SCALE-BY-MAX, although the
variants which average their constraint set to obtain the final
solution (CRULE-AVE, ECRULE-AVE, and ECRULE-ICA)
were exceeded by SCALE-BY-MAX at around 16 surfaces.
The maximum volume heuristic was better than averaging for
estimating illuminant chromaticity, except in the important

Fig. 4. Error in(r; g) chromaticity as a function of the number of surfaces
for some of the better performing algorithms. The results of NOTHING,
AVE-ILLUM, CIP-MV, and CIP-HA are largely off the scale, and, thus, are
omitted. Numeric results for the case of eight surfaces (corresponding tox = 3
in this plot) for all algorithms are available in Table I.

case of a small number of surfaces, where the ECRULE-ICA
method was the best gamut-mapping algorithm.

In general, the methods which make use of the distribution
of the input chromaticities, specifically Color by Correlation
and the neural net, gave the best chromaticity estimates. As
expected, the C-by-C-MMSE algorithm performed better than
the C-by-C-MAP algorithm, as it is known to be optimal for
RMS error. The error for the neural net method was between
C-by-C-MAP and C-by-C-MMSE, as was C-by-C-MLM. We
emphasize that these results are for the particular statistical envi-
ronment we chose for testing. In fact, the environment we chose
is difficult in two regards: First, we use a relatively large range
of illuminants, especially in the direction away from the day-
light illuminant locus. Our choice is based on illumination en-
vironments which we have measured in and around our univer-
sity campus, but for some applications it is quite possible that
the illuminant set could be significantly restricted, or suitable
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TABLE I
ALGORITHM PERFORMANCEWITH RESPECT TO ANUMBER OF ERRORMEASURES. THE VALUES LISTED ARE THERMS OVER 1000 SYNTHETICALLY

GENERATED SCENES, EACH HAVING EIGHT SURFACESRANDOMLY SELECTED FROM THE REFLECTANCE DATA SET, AS VIEWED UNDER AN

ILLUMINANT RANDOMLY SELECTED FROM THE TEST ILLUMINANT DATA SET. THE UNCERTAINTY IN THESE NUMBERS IS ROUGHLY 2%.
AN ASTERISK ISUSED FORMISSING ORNONAPPLICABLE VALUES

priors could be placed on the illuminants, and this would help
the algorithms which make use of prior knowledge about the
illuminant. In this work we have imposed a relatively uniform
prior on the illuminant , which is difficult to exploit—for
a typical error measure, averaging of feasible solutions will do
just as well.

Second, we expect our reflectance data is also relatively
difficult for the methods which attempt to exploit detailed
statistics of the world. Although it is not uniform in
space (which would be even more difficult), the over-riding
characteristic, as exemplified by the Munsell data (a significant
subset), is that it covers the range of colors reasonably well. If
we had first generated data with a more peaked distribution,
then we would expect that both the neural net and Color by
Correlation would do even better. However, a model of what
to expect in a random image is not readily available, and
thus, we chose to investigate the algorithms in the context of
no preference for any given surface beyond that implied by
our data set. This means that the results presented here are
likely to be closer to the worst rather than best case for these
algorithms. In fact we expect that some of the excellent results
reported using Color by Correlation [30] are due to narrower
assumptions regarding the statistics of illuminants and surface
reflectances. Unfortunately, the details of the algorithm as it
is used in [30] are not available due to commercial interests,
and therefore it is difficult to provide further analysis.

We note that for a large number of synthetic surfaces, which
is much better input than normally available in practice, the er-
rors of most algorithms did not converge exactly to zero. In the
case of the Color by Correlation methods, this is simply due
to the discretization of the input. We chose to break the
space into 50 units by 50 units, which corresponds to bins which
are 0.02 units square. Thus, we cannot expect the algorithm to
do much better than an error of 0.01 in each ofand , which

corresponds to a vector distance error of , which is
consistent with our findings. We chose the resolution to be con-
sistent with that of the neural network, and we assume that the
limiting error for the neural net is also largely due to the same
problem. This error could be reduced by using a more accurate
discretization, but doing so is not particularly important, as we
rarely have this kind of input outside of simulation.

The gamut-mapping methods also did not converge to zero
error. Here the problem is the failure of the diagonal model
which relates the solution set (in the space of diagonal maps)
to illumination estimates. The error for SCALE-BY-MAX, on
the other hand, did get close to zero. It does not go exactly to
zero because we did not include a perfect reflectance in the data
set. The GW algorithm converged to a specifiable error, due to
the difference between the actual database average, and a perfect
gray. Finally, when we used the database average for gray with
the DB-GW algorithm, the error converged to zero as expected.

We turn briefly to brightness. In general, none of the al-
gorithms provide good estimates of illuminant
with eight surfaces. The lowest error is 145 (DB-GW) which
is large given the range (0, 765). The superior performance
of the DB-GW algorithm is due to its calibration on the true
mean reflectance of the surfaces. Unfortunately, this statistic
is not typically availablea priori for image data. Among
the other algorithms, the best choice is invariably one of the
gamut-mapping algorithms. We make the observation that
the preferred gamut mapping algorithm depends on the error
measure. If the goal is to estimate the illuminant or

then we prefer the maximum volume heuristic.
On the other hand, if we wish to accurately map the image to
a similar one of the same scene under the canonical illuminant
[ mapping error—rightmost column in Table I],
then we prefer choosing the solution from the constraint set
by averaging. This is consistent with the easily demonstrated



BARNARD et al.: PART I: METHODOLOGY AND EXPERIMENTS WITH SYNTHESIZED DATA 981

claim that, under uniform statistics, the average minimizes the
expected RMS mapping error [42], which was the reason for
introducing this solution selection method.

Given that the illuminant and the selected trans-
form are related through the diagonal model, the observation
that the preferred solution selection method depends on the error
measure requires further explanation. The important observa-
tion is that a given diagonal map is approximately proportional
to the element-wiseinverseof the illuminant . This is
most easily visualized by noting that as we approach the origin
in the mapping space, we are dealing with an increasingly bright
illuminant. This inversion relating the mapping space to the illu-
minant space means that averaging in one space (diagonal maps)
is not equivalent to averaging in the other (illuminants). The in-
version also means that an assumption of uniform statistics in
the one space does not mean uniform statistics in the other. Thus,
we do not necessarily expect the average of the diagonal maps
to give the best illuminant estimate.

B. Experiment With Simulated Specularities

In a second experiment, we simulated scenes where each sur-
face was made specular with a probability of 25%. To each of
these reflectance spectra, we added a random factor times a per-
fect reflectance. The random factors were uniformly distributed
between zero and two. Thus, the surface reflectances could now
be up to three times as bright as in the previous experiment.

We plot the change in the chromaticity results from the
nonspecular case as a function of the number of surfaces
(Fig. 5), and provide a variety of absolute results for the case of
eight surfaces (Table II). Here we see that when specularities
are present, most algorithms estimate chromaticity more accu-
rately (but with widely differing improvements), even though
they were not designed to take advantage of specularities. For
example, with specular reflection, the maximum value in each
channel is more likely to be close to the color of white under
the scene illuminant, and thus, in this test, SCALE-BY-MAX
does especially well.

Chromaticity based algorithms cannot make use of the bright-
ness information, but as argued in [15] specularities should not
have an overly negative impact because they simply move ob-
served chromaticities toward white. These modified chromatic-
ities are valid for some physically realizable surface, and thus,
basic assumptions are not violated. However, we do expect some
degradation given our experimental paradigm, because colors
which are more saturated tend to lead to stronger constraints on
the illuminant. This is consistent with the drop in the perfor-
mance of the Color in Perspective method, clear in Fig. 5.

We also expected gray world algorithms to estimate the
illuminant chromaticity better when specularities are present
because the extra part added to the sum used in the average
has the same chromaticity as a perfect gray. We note that the
extra part does not have the same chromaticity as the gray used
by the DB-GW algorithm, which explains why that algorithm
degrades in the case of a large number of surfaces.

Amongst the 3-D gamut-mapping algorithms, the largest per-
formance increase due to specularities was when the maximum
volume heuristic was used to choose the solution. This was ex-
pected, as this heuristic tends to choose the map which takes
a bright (and thus, in this experiment, specular) pixel to the

Fig. 5. Change in(r; g) error due to the addition of simulated specularities.
The experiment used to produce Fig. 3 was rerun with added specularities. This
plot is the difference of the errors, as a function of the number of surfaces. The
absolute errors for the case of eight surfaces (corresponding tox = 3 in this
plot) are available in Table III.

for white under the canonical, which yields a good
chromaticity result.

The results in Table II also show that specular reflection has
a generally negative impact on the estimation of the overall
brightness of the illuminant. This is expected, as none of the
algorithms model the effect of specular reflection on pixel
brightness. The decrease in error in the GW case is simply
due to a brightness bias in that algorithm in the nonspecular
case, and thus, it essentially works better by accident.

C. Experiment With Simulated Specularities and Clipping

When strong specularities are present in real images, they are
often clipped, which can significantly affect algorithm perfor-
mance. This motivated our third experiment where we inves-
tigated the performance of the algorithms in the specular case
with simulated clipping of the brightest pixels. Three levels of
artificial clipping were used. For each level, all pixels with,
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TABLE II
ALGORITHM PERFORMANCEWITH RESPECT TO ANUMBER OFERRORMEASURES FORSYNTHETIC SCENES(8 SURFACES) WITH SPECULARITIES(UNCERTAINTY IS

ROUGHLY 2%). A SYNTHETIC SPECULARITY WAS ADDED TO 25%OF THESURFACESUSED BY ADDING A RANDOM FACTOR, UNIFORMLY DISTRIBUTED BETWEEN

1 AND 2, OF A PERFECTREFLECTANCE. OTHERWISETHESERESULTS AREANALOGOUS TOTHAT IN TABLE I

TABLE III
ALGORITHM CHROMATICITY PERFORMANCEWITH RESPECT TOTWO ERROR

MEASURES FORGENERATED SCENESWITH SPECULARITIESWITH THREE

LEVELS OFSIMULATED CLIPPING (UNCERTAINTY IS ROUGHLY 2%). ALL

GENERATED (R, G, B) VALUES WITH ANY OF R, G, ORB OVER THE

CLIPPING LEVEL WERE DISCARDED. IN ALL OTHER REGARDS, THE

EXPERIMENT WHICH PRODUCED THENUMBER HERE IS ANALOGOUS

TO THAT FOR TABLE II

, or over that level were discarded. The three clipping levels
used were 250, 300, and 400. We remind the reader that the il-
luminants are normalized so that perfect white has a maximum
response of 255 among the three channels. The results with eight
surfaces are shown in Table III. Additional results are available
in [1].

Naturally, clipping degraded most algorithms, but the algo-
rithms differ with respect to the degree of degradation. On the

one extreme, clipping under these circumstances has little effect
on the Color in Perspective algorithms. This is understandable
because the level of clipping used was such that only specular
pixels are clipped, and these pixels, having chromaticities near
white, are not of much use to those algorithms.

At the other extreme, clipping essentially disables the ability
of SCALE-BY-MAX to use specularities to improve the il-
lumination chromaticity estimate. As the number of surfaces
increases (see [1] for a plot), the effect becomes less dam-
aging because it becomes more likely that there is at least
one specular pixel just below the clipping level, which helps
the algorithm. However, as the number of surfaces becomes
very large, SCALE-BY-MAX degrades quite rapidly. This is
in contrast to all other algorithms tested, where the negative
effect of clipping decreases monotonically with the number
of synthetic surfaces.

The reason for the increase in SCALE-BY-MAX error with a
large number of surfaces and therefore many random speculari-
ties, is that the nondiscarded pixels now tend to have a maximum
in each channel that approaches the clipping level. For example,
in the case of the clipping level of 300, then the illuminant esti-
mate will converge to (300, 300, 300). This is the same answer
as the NOTHING algorithm! It is important to note that even
though we do not normally have this diversity of colors in real
images, a similar effect does in fact occur in images with fewer
colors but with a wide variety of strengths of specularities.

VII. CONCLUSIONS

All algorithms studied here make some assumptions about
the statistics of the reflectances to be encountered, and
most make assumptions about the illuminants that will be
encountered. The gray world algorithms make assumptions
about the stability of the expected value of scene averages;
SCALE-BY-MAX makes a similar assumption about the
maximum in each channel; the gamut mapping algorithms
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make assumptions about the ranges of expected reflectances
and (for some variants) illuminants. Each method for choosing
the solution makes additional assumptions. The neural net
method and color by correlation methods go further and model
the occurrence distributions. As assumptions get stronger, the
prospect for success increases. It remains an open question to
the extent that vulnerability to failures of the assumptions also
increases. We seek algorithms which can exploit reasonable
assumptions, preferably backed by empirical studies, but
which are not overly sensitive to common failures of these
assumptions.

Our experiments indicate that the methods which emphasize
the use of input data statistics, specifically Color by Correlation
and the neural net algorithm, are potentially the most effective
at estimating the chromaticity of the scene illuminant. Some of
the 3-D variants of Forsyth’s gamut-mapping method also do
well, and these algorithms have the advantage that they are able
to also estimate the illuminant brightness. When specularities
are present, these methods do even better, emphasizing that
even when only chromaticity is of interest, full color algorithms
should be considered.

Our detailed study of the effect of specularities on algorithms
showed that their effect is significantly algorithm dependent.
We also found that the effect of subsequent clipping of specular
values is again algorithm dependent. Specularities are very
common and are often clipped in standard cameras, especially
when the aperture is automatically controlled. On the other
hand, high dynamic range systems for robotics and high
quality imaging will want to take advantage of the illuminant
information carried by specularities. Thus, our study is relevant
to both applications.

The work in this paper has laid the foundation for future work
with image data. We have developed a comprehensive under-
standing on how a number of the leading algorithms perform in
controlled circumstances, and we are therefore in an excellent
position to interpret results from image data obtained with com-
plementary methodology. Results of such a study will be made
available in part two of this paper.
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