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Abstract: Objective: Radiomics and deep transfer learning are two popular technologies used to
develop computer-aided detection and diagnosis (CAD) schemes of medical images. This study
aims to investigate and to compare the advantages and the potential limitations of applying these
two technologies in developing CAD schemes. Methods: A relatively large and diverse retrospective
dataset including 3000 digital mammograms was assembled in which 1496 images depicted malignant
lesions and 1504 images depicted benign lesions. Two CAD schemes were developed to classify breast
lesions. The first scheme was developed using four steps namely, applying an adaptive multi-layer
topographic region growing algorithm to segment lesions, computing initial radiomics features,
applying a principal component algorithm to generate an optimal feature vector, and building a
support vector machine classifier. The second CAD scheme was built based on a pre-trained residual
net architecture (ResNet50) as a transfer learning model to classify breast lesions. Both CAD schemes
were trained and tested using a 10-fold cross-validation method. Several score fusion methods were
also investigated to classify breast lesions. CAD performances were evaluated and compared by
the areas under the ROC curve (AUC). Results: The ResNet50 model-based CAD scheme yielded
AUC = 0.85 ± 0.02, which was significantly higher than the radiomics feature-based CAD scheme
with AUC = 0.77 ± 0.02 (p < 0.01). Additionally, the fusion of classification scores generated by
the two CAD schemes did not further improve classification performance. Conclusion: This study
demonstrates that using deep transfer learning is more efficient to develop CAD schemes and it
enables a higher lesion classification performance than CAD schemes developed using radiomics-
based technology.

Keywords: computer-aided diagnosis (CAD) schemes; radiomics; deep transfer learning; breast
lesion classification; assessment of CAD performance

1. Introduction

Medical images are routinely used in clinical practice to detect and to diagnose diseases
including cancer. However, reading and interpreting medical images is often a difficult
and time-consuming task for radiologists, which does not only reduce diagnostic accuracy
but also generates large intra- and inter-reader variability [1]. For example, full-field
digital mammography (FFDM) is the most popular imaging modality used in the general
population-based breast cancer screening in order to detect breast cancer at an early stage.
However, due to two-dimensional projection imaging, FFDM has a relatively lower cancer
detection sensitivity and specificity [2], particularly to detect and to classify subtle breast
lesions in women of a younger age and/or having dense breast tissue [3]. Additionally, the

Bioengineering 2022, 9, 256. https://doi.org/10.3390/bioengineering9060256 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering9060256
https://doi.org/10.3390/bioengineering9060256
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-6857-9408
https://orcid.org/0000-0002-7682-6648
https://doi.org/10.3390/bioengineering9060256
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering9060256?type=check_update&version=1


Bioengineering 2022, 9, 256 2 of 13

higher false-positive recall and biopsy rates do not only increase healthcare cost but also
add anxiety to patients with potentially long-term psychosocial consequences [4].

Thus, in order to address and to overcome this challenge to help radiologists to
more accurately and efficiently read and diagnose medical images (i.e., FFDM images),
developing computer-aided detection and diagnosis (CAD) schemes of medical images
has been attracting broad research interest in the last several decades [5,6]. For CAD
of mammograms, the computer-aided detection (CADe) schemes of suspicious lesion
detection have been implemented in many medical centers or hospitals to assist radiologists
in reading screening mammograms [7]. However, although great research effort has been
made to develop computer-aided diagnosis (CADx) schemes of lesion classification [8,9],
no CADx schemes have been approved and accepted in clinical practice. In this study,
we focus on developing computer-aided diagnosis schemes of mammograms in order
to help improve accuracy of lesion classification. In the following sections of this paper,
CAD represents computer-aided diagnosis. If successful, applying CAD schemes to assist
radiologists in classifying between malignant and benign breast lesions will have high
clinical impact to help to significantly reduce false-positive recalls and unnecessary biopsies
in future clinical practice.

In recent years, most CAD schemes are developed using either radiomics image
features or deep learning models. When using radiomics concept, CAD schemes initially
extract and compute large number of handcrafted features (i.e., >1000) in order to detect
the underlying phenomenon of suspicious breast lesions [10]. These radiomic features
can be obtained from a wide range of characteristics, covering lesion morphology, density
heterogeneity, texture patterns, and other frequency domain features. The previous studies
have demonstrated the feasibility to identify differently optimal feature vectors that may
highly associate with lesion type (i.e., malignant vs. benign) [11], grade [12] and/or
prognosis [13]. However, using a radiomics approach often creates a challenge for how
to accurately segment lesions from the images. The accuracy or scientific rigor of the
computed radiomics features often depends on the accuracy of lesion segmentation. Lesion
segmentation errors may have a negative impact in the final performance of CAD schemes.

When applying deep learning technology, CAD schemes automatically extract and
compute image features from the existing deep learning models using the transfer learning
concept [14]. In this approach, a deep learning model pre-trained using a large database of
non-medical images is selected. Then, a small set of medical images are used to finetune the
model and to extract the automated features for the specific application tasks. In addition,
in this approach, the image features are typically computed from the fixed regions of
interest (ROIs) or image patches without lesion segmentation. Many previous studies have
demonstrated the feasibility of developing CAD schemes using automated features directly
extracted by deep transfer learning [15,16]. However, the physicians (i.e., radiologists)
often do not have a higher confidence to accept such “a black box” type of image-in and
prediction-out scheme as a decision-making support tool [17]. Thus, how to provide more
convincing scientific data or evidence to increase the confidence of physicians to accept or to
consider deep learning model generated classification results is an important research task.

Since in previous studies, CAD schemes were separately developed using either
handcrafted radiomics features or deep transfer learning model generated automated
features using different and relatively small image datasets, it is difficult to compare
the performance of CAD schemes developed using these two types of image features.
As a result, the advantages and/or potential limitations of CAD schemes trained using
the radiomics and automated features or methods have not been well investigated to
date. In order to address this issue, we conducted a new study to explore the association
between the traditional radiomics feature-based CADs and a deep transfer learning model-
based CAD scheme in classifying between malignant and benign breast lesions using a
relatively large and diverse image dataset, as well as the same 10-fold cross-validation
method. Additionally, we also investigated whether fusion of classification scores generated
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by these two types of CAD schemes can further improve CAD performance in breast
lesion classification.

2. Materials and Methods
2.1. Image Dataset

In our medical imaging research laboratory, we previously assembled a large and
diverse de-identified retrospective database of full-field digital mammography (FFDM)
images with multiple year screenings. All FFDM images were acquired using Hologic
Selenia (Hologic Inc., Bedford, MA, USA) digital mammography machines, which have a
fixed pixel size of 70 µm. The detailed patients’ demographic information, breast density
distribution, and other image characteristics were reported in our previous studies [9,18].
In this study, we selected 3000 FFDM images from this existing database to assemble a
specific dataset for this study. Each image in this dataset depicts a detected soft tissue mass
lesion with biopsy verified clinical diagnostic result. Table 1 shows the distribution of the
lesions, depicting craniocaudal (CC) and mediolateral oblique (MLO) views of left and
right FFDM images. In summary, this dataset includes 1496 images that depict malignant
lesions and 1504 images that depict benign lesions.

Table 1. Distribution of breast lesions depicting on CC and MLO view of left and right FFDM images.

Image View Malignant Lesions Benign Lesions Total Lesions

Left–CC 362 368 730

Right–CC 376 409 785

Left–MLO 371 361 732

Right–MLO 387 366 753

The center location of each suspicious lesion was previously marked by the radiologist.
Since we focus only on the classification of soft tissue mass lesions in this study, all original
FFDM images were first subsampled using a pixel averaging method with a kernel of
5 × 5 pixels, which increased the image pixel size to 0.35 mm. Then, using each marked
lesion center as a reference, we extracted a region of interest (ROI) or patch that had a
pixel size of 150 × 150 to cover all mass lesions in the dataset. The lesion center and
the extracted ROI center overlapped. If part of the ROI was beyond the boundary of the
original FFDM image (i.e., a small lesion that is detected close to the edge of the image), a
zero-pad correction method was applied. The examples of ROIs with zero-pad correction
will be demonstrated in the sample ROIs in the Results section of the paper. The same sized
ROI or patch has been affectively used in our previous CAD studies (i.e., [8,9]).

Based on these extracted image ROIs, we built two CAD schemes, including a tradi-
tional CAD scheme implemented with a conventional machine learning classifier that was
optimized using radiomics features and an automated CAD scheme implemented with
a deep transfer learning model (ResNet50). Figure 1 illustrates the steps to build these
two CAD schemes and to evaluate their performance to classify breast lesions. The de-
tailed information of each image processing and analysis step is described in the following
three subsections.
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Figure 1. Illustration of each step to build two CAD schemes and to evaluate their performance in
breast lesion classification.

2.2. A CAD Scheme Using Radiomics Features

As shown in Figure 1, developing the radiomics feature based CAD scheme includes
the following steps. First, we applied an adaptive multi-layer topographic region grow-
ing algorithm to segment lesion depicting in each ROI. Specifically, based on change of
local lesion contrast in different topographic layers (j), adaptive region growing thresh-
olds (Tj, j = 1, · · · n) were computed using Equation (1) for the first growth layer and
Equation (2) for the sequential layers.

T1 = Iseed + αIseed, α = 0.1 (1)

Tj = Tj−1 + βCj−1, β = 0.5 j = 2, . . . n (2)

where Iseed is the pixel value of the marked lesion center (growth seed), α and β are
two pre-determined coefficients, Cj−1 is the region contrast at previous topographic layer
(j − 1), which is computed by a difference between the average pixel value of the lesion
boundary contour and the internal lesion region in this layer.

Lesion segmentation was performed layer-by-layer until the growing resulted in the
new layer violating one of two predetermined thresholds including (1) the ratio of lesion
region size (Sj) increase and (2) the ratio of lesion circularity (Vj) reduction as defined and
computed using Equations (3) and (4).

Gsize−growth−ratio =
Sj − Sj−1

Sj−1
> 2.0 (3)

Vcircularity−reduction−ratio =

∣∣Vj−1 − Vj
∣∣

Vj−1
> 0.5 (4)
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These two growth termination thresholds prevent leakage of lesion growth to the
surrounding background tissue region. Thus, if one of the above two thresholds was
violated, the multi-layer topographic region growing stopped and the previous layer (j − 1)
was used to represent the final lesion regions segmented by the CAD scheme. This lesion
segmentation algorithm has been tested in our previous studies (i.e., [18]). After applying
this automated lesion segmentation algorithm, we also visually examined lesion segmenta-
tion results and manually corrected the possible segmentation errors (if any). Thus, we can
reduce the errors or variations in computing lesion-associated radiomics features.

Second, after lesion segmentation, the CAD scheme initially computes a total of
235 traditional handcrafted image features that cover a variety of radiomic information rep-
resenting lesion characteristics such as morphology, density heterogeneity, boundary con-
trast, texture patterns, and wavelet-based frequency domain features. These lesion-specific
features explore and represent local patterns such as lesion shape, boundary spiculation,
and density distribution within and around the boundary region of the lesion. The details
of computing these radiomics features have been reported in our previous studies [19,20].

Third, many initially computed radiomics features can be highly redundant or irrel-
evant to lesion classification. Thus, we applied a standard principal component analysis
(PCA) algorithm to process this initial feature pool of 235 features. The PCA was set to
generate a new principal component feature vector with a variance rate of 95%, which has
been proven as quite effective in reducing feature dimensionality and redundancy [20]. As
a result, the PCA-generated optimal feature vector has a significantly smaller number of
features, which can reduce feature redundancy and overfitting risk to train and to build a
machine learning (ML) model to classify between malignant and benign lesions.

Fourth, although many different types of ML models have been investigated and
applied in CAD schemes of medical images, we selected a support vector machine (SVM)
as an ML model in this study because an SVM model uses a constructive ML process
based on statistical learning theory to classify feature vectors into two classes of images
(i.e., the images depicting malignant and benign lesions). By comparing with many other
ML models, SVM has been approved with a minimal generalization error or a higher
robustness [21], which makes SVM an optimal choice in medical image application with a
relatively small image dataset. Thus, based on our previous experience [22], we selected
a polynomial kernel to build the proposed SVM model in this study. A 10-fold cross-
validation method was applied to train and to test this SVM classification model.

2.3. A CAD Scheme Using Deep Transfer Learning Model

The second CAD scheme used a deep learning architecture that was finetuned to
extract automated image features. In recent years, many different deep learning models
including AlexNet, VGG, DenseNet, Inception, and ResNet have been investigated as
transfer learning models used in CAD schemes of image or lesion classification. Previous
studies have compared the performance of applying different deep learning models in CAD
schemes of medical images. For example, one recent study compared 32 deep learning
models to detect and to classify different lung diseases. Among them, ResNet50 yields
the highest classification accuracy [23]. Another study compared VGG-16, VGG-19, and
ResNet50 and concluded that ResNet 50 was the best architecture framework for image
classification task with the highest accuracy and efficiency to train [24]. Thus, in this
study we selected the popular image classification architecture of residual net architecture
(ResNet50) to build a deep transfer learning model used in our CAD scheme. The detailed
architecture of ResNet50 has been previously described in reference [25]. In the original
ResNet50, all network connection weights are pre-trained using a large color ImageNet
dataset (with 3 RGB channels) to recognize or to classify 1000 different object classes.

In our CAD scheme, the original architecture of ResNet50 remained unchanged until
the last fully connection (FC) feed-forward neural network, which was remodeled to classify
only two classes namely, two classes of malignant and benign lesions. The following steps
were applied to finetune the ResNet50 model to acquire transfer learning features and to
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train the lesion classifier. First, in order to use the ResNet50 model to extract automated
features relevant to lesion characteristics depicted on mammograms, we applied several
image preprocessing methods, which included (1) the originally extracted image ROI or
patches of size 150 × 150 resized to the required size of 224 × 224 pixels using a bilinear
interpolation algorithm, (2) the same grayscale FFDM image patch repeatedly input to the
three channels of the ResNet50 model, and (3) a minimal augmentation step (involving
random centered crop, random horizontal, and random vertical flip with p = 0.5) was added
to introduce a slight variation of a sample image for different epochs (ROIs) during the
training phase.

Next, due to the nature of medical images, a simple feature extractor type training
involves the freezing of all unchanged layers and updates only the weights and biases of
the modified last fully connection (FC) layer, which often does not yield satisfactory results.
Thus, in this study, we finetune and optimize the weights of all layers of the ResNet50
model during the training. Specifically, given the limitation of our dataset size relative to
other computer vision field, we maximize the training and consider the time required for
this network-tuning. Specifically, we used a 10-fold cross-validation (CV) method. During
each fold, the data was split randomly into training (90%) and testing (10%) without data
repetition, and each sample case was used only once in the test phase. We investigated
various batch sizes (i.e., 4, 8, 16, etc.) and observed that a batch size of four worked well for
our analysis. Additionally, we selected an Adam optimizer with an initial learning rate of
10−4 at the beginning of each cross-validation fold. We updated the learning rate scheduler
with an exponential decay function using a gamma value of 0.4 after each epoch. After
each epoch, the network was evaluated to monitor training and validation loss during the
training process, thereby deciding the stopping criterion. We noticed that by 10 epochs,
the network was saturated, and any further training resulted in overfitting. Thus, we only
trained the network for 10 epochs during each cross-validation fold. After model finetuning
and training, images in the testing fold were then processed by the model. The last FC
feed-forward neural network of the modified ResNet50 model generated a classification
score of each testing image, which predicted a likelihood of the testing image depicting a
malignant lesion.

2.4. Performance Evaluation and Comparison

After applying the 10-fold cross-validation method to train and to test the classifiers
of two CAD schemes, each image in the dataset had two classification scores representing
the probability or likelihood (from 0 to 1) of the image depicting a malignant breast lesion.
We define the support vector machine (SVM) classifier used in a radiomics feature-based
CAD scheme and a neural network (NN) used in the last fully-connected (FC) layer of
ResNet50-based CAD scheme as Model-I and Model-II, with the classification scores as S1
and S2, respectively. In addition, we also test four fusion methods to build new models
(Model-III) that combine two classification scores (S1 and S2). In model-III.1, S1 and S2 are
used as two new features to build another SVM classifier. In model-III.2 to model-III.4, the
following three simple score fusion methods are applied.

(1) Model-III.2, S3.2 = W1 × S1 + W2 × S2. In this study, W1 = 0.5 representing that the
average score is used as the final classification score.

(2) Model-III.3, S3.3 = min(S1, S2). The minimum score between Model-I and Model-II
is used as the final classification score.

(3) Model-III.4, S3.4 = max(S1, S2). The maximum score between Model-I and Model-II
is used as the final classification score.

The similar CAD score fusion methods have been tested and applied in our previ-
ous studies, aiming to improve the lesion detection or the classification performance of
CAD schemes [26,27].

Next, to evaluate and to compare the performance of each ML model, we applied the
following two statistical data analysis steps. First, we used a receiver operating characteris-
tic (ROC) type data analysis method. In order to reduce the potential bias of directly using
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raw scoring data to generate an unsmoothed ROC curve and to compute the area under
the ROC curve (AUC), we used a maximum likelihood-based ROC curve fitting program
(ROCKIT, http://metz-roc.uchicago.edu/MetzROC/software accessed on 8 May 2022) to
generate a smoothed ROC curve. The corresponding AUC value along with the standard
deviation (STD) was computed and used as an index to evaluate the performance of a
CAD model to classify between malignant and benign breast lesions. The significant differ-
ences (p-values) between AUC values were also computed for comparing the classification
performance of different models. Second, after applying an operation threshold on the
model-generated classification scores (T = 0.5) to divide all testing cases into two classes
(namely, score ≤ 0.5 represents a benign lesion and score > 0.5 represents a malignant le-
sion), we also computed and compared the overall classification accuracy (ACC) of different
classification models as computed using Equation (5):

ACC =
TM + TB

All Images
(5)

where TM and TB represent the numbers of correctly classified images depicting with
malignant and benign lesions, respectively. All Images include the total number of images
in the dataset. Both AUC and ACC along with the standard deviation (STD) are tabulated
for comparison.

3. Results

Figure 2 shows 24 sample images included in our dataset with an overlay of lesion
boundary segmentation results. The images with a segmentation overlay marked in a
red or a green color represent malignant or benign lesions, respectively. The figure also
shows that in seven images, zero paddings (black strips) are performed because these
seven lesions are located near the edge or the corner inside the original image. From the
density distribution of these lesions, we can observe both solid and diffused lesions. It is
often challenging to segment the diffused or hidden lesions. The computed features and
analysis results may not accurately represent the underlying lesion image marker. Despite
such a challenge, our study results show that the lesion segmentation results are in general
satisfactory and only a small subset (<5%) of images need a minor manual correction of
CAD-segmented lesion boundary.
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Table 2 summarizes and compares the lesion classification performance of six models
including (1) AUC values and standard deviation (STD) computed from ROC curves and
(2) overall classification accuracy (ACC) and STD after applying an operation threshold
(T = 0.5) to the model-generated classification scores. In Model-I, PCA generates an
optimal feature vector with 50 features, which is significantly reduced from the original
235 radiomics features in the initial feature pool. However, the AUC value of Model-I
trained using a PCA-generated feature vector is 0.77 ± 0.02, which is significantly lower
than the AUC value of 0.85 ± 0.02 generated by Model-II optimized using a deep transfer
learning (ResNet50) model (p < 0.01). The four Model-III, which test four different fusion
methods to combine classification scores generated by Model-I and Model-II, yield very
comparable AUC values and no statistically significant differences are detected among
these AUC values.

Table 2. Summary and comparison of the computed areas under ROC curves (AUC) and overall
classification accuracy (ACC) along with the standard deviations (STD) after applying an operation
threshold (T = 0.5) to the classification scores generated by six models tested in this study.

Model (Output Score) Feature Description AUC ± STD ACC (%) ± STD

Model-I (S1) PCA-generated
feature vector 0.77 ± 0.02 71.23 ± 2.44

Model-II (S2) Transfer learning
classification of ResNet50 0.85 ± 0.02 77.31 ± 2.65

Model-III.1 (S3.1) SVM (S1, S2) 0.85 ± 0.01 77.42 ± 2.47

Model-III.2 (S3.2) W1 × S1 + W2 × S2 0.85 ± 0.01 77.31 ± 2.83

Model-III.3 (S3.3) Min (S1, S2) 0.83 ± 0.02 73.35 ± 2.17

Model-III.4 (S3.4) Max (S1, S2) 0.85 ± 0.02 74.07 ± 2.24

After applying the operation threshold to divide images into two classes depicting
malignant and benign lesions, the overall classification accuracy (ACC) of Model-II was
also significantly higher than Model-I (as shown in Table 2). Additionally, Figure 3 shows
the trend of bar patterns that represent the average ACC values and their overall dis-
tribution ranges among six models in which Model-III.1 that uses a new SVM model
fusing with two classification scores generated by Model-I and Model-II yields the high-
est ACC = 77.42% ± 2.47%. However, it is not a statistically significant difference from
ACC = 77.31% ± 2.65% generated by Model II (p = 0.87).
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4. Discussion

Although many CAD schemes aiming to classify between malignant and benign breast
lesions have been developed using different image processing algorithms and machine
learning models, the reported classification performances vary greatly due to the use of
different and smaller image datasets (i.e., AUCs ranging from 0.70 to 0.87 using datasets
with 38 to 1200 images [28] or AUC = 0.76 ± 0.04 using a state-of-the-art VGG16 transfer
learning model and an image dataset of 1535 images [29]). Thus, objectively comparing
different CAD schemes and discussing their advantages or limitations is difficult. In this
study, we investigate and systematically compare the performance of two CAD schemes
that are developed using a popular conventional SVM model trained by a PCA-generated
optimal radiomics feature vector and a deep transfer learning framework (ResNet50) to
classify between malignant and benign breast lesions. Both CAD schemes are trained and
tested using a 10-fold cross-validation method with a much larger image dataset involving
3000 lesion regions as compared to most previous studies (i.e., reviewed in [28]). Thus, this
unique study generates several new and interesting observations, which may be useful to
guide future CAD research to develop new CAD schemes with an improved classification
accuracy and high scientific rigor or robustness.

First, radiomics and deep learning are two new concepts or advanced technologies
widely adopted in the current CAD field. Although which approach can yield a significantly
higher performance is still debatable, particularly when using small training image datasets.
This study demonstrated that a CAD scheme optimized using a deep transfer learning
model (i.e., ResNet50) yields a significantly higher performance for classifying breast
lesions than using the scheme optimized using radiomics features, when using a relatively
large image dataset (i.e., 3000 images in this study). This new observation supports the
importance of building large and diverse image datasets in developing CAD schemes
based on deep learning technologies. In addition, compared to our own previous studies
that used other deep learning models, including an AlexNet [30] and a VGG-16 [29], we
also observed that ResNet50 yields a higher accuracy in breast lesion classification, which
supports conclusions previously reported by other researchers [23,24].

Second, after observing that the CAD scheme using radiomics features yields a lower
classification performance, we conducted additional studies to analyze the contribution
of using different types of radiomics features. Specifically, we divided radiomics features
into three subgroups namely, (1) lesion morphology (i.e., shape) and density heterogeneity
features, (2) wavelet-generated frequency domain features, and (3) texture pattern dis-
tribution features. We then applied the same PCA to create an optimal feature vector
from the features in each subgroup and trained and tested the SVM model using the same
10-fold cross-validation method. We observed that performance of the three SVM models
optimized using subgroups of radiomic features was lower than using the initial radiomics
feature pool. The classification accuracy values for ACCs = 65.68 ± 3.02, 64.39 ± 3.14,
61.94 ± 3.42 for using three subgroups of features, respectively. However, combining all
features, ACC significantly increased to 71.23 ± 2.44 (p > 0.01), which indicates different
types or subgroups of radiomics features contain complementary discriminatory informa-
tion that can be fused together to help to improve CAD performance. As a result, other
types of radiomics features should also be explored in future studies.

Third, a CAD scheme implemented with a deep transfer learning ResNet50 (Model-II)
yields a higher lesion classification performance (as shown in Table 2). We believe that the
significant classification performance improvement in comparison to Model-I is achieved
by retraining or finetuning a transfer learning model to update the weights of all the layers
in the network. The results demonstrate that initializing the deep learning framework with
weights from pre-trained ImageNet and customizing for a binary classification task (i.e.,
classifying between malignant and benign breast lesions in this study) works well. This
step of careful customization and training all network layers for certain epochs is essential
for optimally applying the deep transfer learning network to learn the parameters used in
the CAD schemes of medical images. In addition, we further analyzed the performance of
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Model-II in a 10-fold cross-validation. Figure 4 shows the classification accuracy (ACC) of
Model-II in 10 folds. Inter-fold variation is observed, particularly, fold one has a significantly
lower accuracy. The observation indicates the importance of conducting a valid statistical
data analysis method (i.e., using cross-validation or a bootstrapping method) to minimize
the potential bias in data partitions and to test the robustness of the deep learning models.
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Fourth, in this study, we also built and tested four fusion models (Model-III.1 to
Model-III.4) to detect potential performance improvement by combining Model-I and
Model-II generated classification scores. In model-III.1 and Model-III.2, we used a new
SVM approach and the weighted averaging methods to combine classification scores of
Model-I (S1) and Model-II (S2). The results show that the classification performance metrics
are very similar to Model-II, which indicates that both Model-I using radiomics features
and Model-II using deep transfer learning generated automated features converge toward
classification scores with a high correlation. It also supports that applying our deep transfer
learning method to finetune all weights used in the ResNet50 model using mammograms
is effective to characterize the lesion information difference between malignant and benign
lesions. Additionally, a negative effect on performance was observed when selecting either
the minimum or maximum classification score from Model-I and Model-II to serve as the
final classification score of new models (Model-III.3 and Model-III.4).

Despite the above encouraging and unique observations, we also recognize some
limitations in our study. First, even though we used a wide range of radiomic features
(morphology, density heterogeneity, texture patterns, and wavelets-generated features) for
Model-I, more radiomics features can be computed from mammograms and analyzed [11].
In addition, besides PCA, other feature dimensionality reduction methods (i.e., a locality
preserving projection algorithm [31] and a random projection algorithm [9]) need to be
investigated to build optimal feature vectors. Second, although an adaptive multi-layer
topographic region growing algorithm is a simple and relatively robust lesion segmentation
algorithm, minor manual correction is needed in a small fraction (<5%) of study cases in
this large image dataset. In the future study, we will investigate the feasibility of applying
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deep learning-based lesion segmentation methods such as those we have investigated and
used in other types of image segmentation tasks [32]. Third, we use only the standard
method to finetune the ResNet50 model to conduct deep transfer learning. We need to
further investigate and compare other methods, including optimal image pre-processing
technologies [33] to better finetune ResNet50 or other deep learning models in the future.
Fourth, we tested only four simple fusion methods to combine the classification scores
of two CAD models, which is different from a more comprehensive fusion method that
directly fuses radiomics features and automated features to build a new multi-feature
fusion SVM model, as reported by another recent study [29]. Thus, in the future, we will
try to investigate and to test more effective fusion methods after identifying more clinically
relevant radiomics features, and we will try to improve the performance of radiomics
feature-based machine learning models.

5. Conclusions

In this paper, we present a unique study that develops and tests two CAD schemes
of digital mammograms to classify between malignant and benign breast lesions using
two popular and advanced approaches based on radiomics and deep transfer learning
concepts and technologies. Two CAD schemes or machine learning models were trained
and tested, using a relatively large and diverse image dataset of 3000 images and a 10-fold
cross-validation method. The study results demonstrate that although a deep transfer
learning model-based CAD scheme is widely considered “a black-box” type model with a
high degree of difficulty for human users to understand its learning or decision-making
logic or reasoning, the automated features generated by the deep transfer learning model
(i.e., ResNet50) can provide more highly discriminatory information or power than the
traditional handcrafted radiomics features. More comprehensive analysis covering both
radiomics and deep learning architectures needs to be further investigated to validate these
observations in future studies.

Author Contributions: Conceptualization, G.D. and B.Z.; methodology, G.D.; software, G.D. and
S.K.M.; validation, W.I., R.F. and M.J.; formal analysis, Y.Q.; investigation, G.D.; resources, B.Z.; data
curation, W.I., R.F. and M.J.; writing—original draft preparation, G.D.; writing—review and editing,
B.Z.; visualization, S.K.M.; supervision, B.Z.; project administration, Y.Q.; funding acquisition, B.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Institutes of Health, USA, under the grant
numbers P20GM135009 and P30CA225520.

Institutional Review Board Statement: This study does not acquire new image data from the
hospitals or clinical sites. It uses the existing de-identified image data that are selected from a
pre-established retrospective database in our medical imaging laboratory.

Informed Consent Statement: This is a retrospective study using the existing de-identified image
data and no informed consents from the patients are required.

Data Availability Statement: For the detailed information of image data availability for research
purpose, please contact the corresponding authors.

Conflicts of Interest: All authors declare no conflict of interest.

References
1. da Silva, L.L.C.; Torres, U.S.; Torres, L.R.; Fong, M.S.; Okuyama, F.H.; Caiado, A.H.M.; Chamie, L.P.; Moura, A.P.C.; Novis, M.I.;

Warmbrand, G.; et al. Performance of imaging interpretation, intra- and inter-reader agreement for diagnosis of pelvic en-
dometriosis: Comparison between an abbreviated and full MRI protocol. Abdom. Radiol. 2021, 46, 4025–4035. [CrossRef]
[PubMed]

2. Fenton, J.J.; Egger, J.; Carney, P.A.; Cutter, G.; D’Orsi, C.; Sickles, E.A.; Fosse, J.; Abraham, L.; Taplin, S.H.; Barlow, W.; et al. Reality
check: Perceived versus actual performance of community mammographers. Am. J. Roentgenol. 2006, 187, 42–46. [CrossRef]
[PubMed]

http://doi.org/10.1007/s00261-021-03052-5
http://www.ncbi.nlm.nih.gov/pubmed/33772612
http://doi.org/10.2214/AJR.05.0455
http://www.ncbi.nlm.nih.gov/pubmed/16794153


Bioengineering 2022, 9, 256 12 of 13

3. Carney, P.A.; Miglioretti, D.L.; Yankaskas, B.C.; Kerlikowske, K.; Rosenberg, R.; Rutter, C.M.; Geller, B.M.; Abraham, L.A.;
Taplin, S.H.; Dignan, M.; et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on
the accuracy of screening mammography. Ann. Intern. Med. 2003, 138, 168–175. [CrossRef]

4. Brodersen, J.; Siersma, V.D. Long-term psychosocial consequences of false-positive screening mammography. Ann. Fam. Med.
2013, 11, 106–115. [CrossRef]

5. Shaukat, F.; Raja, G.; Frangi, A. Computer-aided detection of lung nodules: A review. J. Med. Imaging 2019, 6, 020901. [CrossRef]
6. Henriksen, E.L.; Carlsen, J.F.; Vejborg, I.M.; Nielsen, M.B.; Lauridsen, C. The efficacy of using computer-aided detection (CAD)

for detection of breast cancer in mammography screening: A systematic review. Acta Radiol. 2018, 60, 13–18. [CrossRef]
7. Gur, D.; Stalder, J.; Hardesty, L.A.; Zheng, B.; Sumkin, J.H.; Chough, D.; Shindel, B.; Rockette, H.E. CAD performance on

sequentially ascertained mammographic examinations of masses: An assessment. Radiology 2004, 233, 418–423. [CrossRef]
8. Chen, X.; Zargari, A.; Hollingsworth, A.B.; Liu, H.; Zheng, B.; Qiu, Y. Applying a new quantitative image analysis scheme based

on global mammographic features to assist diagnosis of breast cancer. Comput. Methods Programs Biomed. 2019, 179, 104995.
[CrossRef]

9. Heidari, M.; Lakshmivarahan, S.; Mirniaharikandehei, S.; Danala, G.; Maryada, S.K.R.; Liu, H.; Zheng, B. Applying a Random
Projection Algorithm to Optimize Machine Learning Model for Breast Lesion Classification. IEEE Trans. Biomed. Eng. 2021, 68,
2764–2775. [CrossRef]

10. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; Van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.;
Dekker, A.; et al. Radiomics: Extracting more information from medical images using ad-vanced feature analysis. Eur. J. Cancer
2012, 48, 441–446. [CrossRef]

11. Mao, N.; Jiao, Z.; Duan, S.; Xu, C.; Xie, H. Preoperative prediction of histologic grade in invasive breast cancer by using
con-trast-enhanced spectral mammography-based radiomics. J. X-ray Sci. Technol. 2021, 29, 763–772. [CrossRef] [PubMed]

12. Gai, T.; Thai, T.; Jones, M.; Jo, J.; Zheng, B. Applying a radiomics-based CAD scheme to classify between malignant and benign
pancreatic tumors using CT images. J. X-ray Sci. Technol. 2022, 30, 377–388. [CrossRef] [PubMed]

13. Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.;
Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quan-titative radiomics approach. Nat. Commun.
2014, 5, 4006. [CrossRef] [PubMed]

14. Chen, X.; Wang, X.; Zhang, K.; Fung, K.-M.; Thai, T.C.; Moore, K.; Mannel, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Recent advances and
clinical applications of deep learning in medical image analysis. Med. Image Anal. 2022, 79, 102444. [CrossRef] [PubMed]

15. Du, Y.; Zhang, R.; Zargari, A.; Thai, T.C.; Gunderson, C.C.; Moxley, K.M.; Liu, H.; Zheng, B.; Qiu, Y. Classification of tumor
epithelium and stroma by exploiting image features learned by deep convolutional neural networks. Ann. Biomed. Eng. 2018, 46,
1988–1999. [CrossRef]

16. Widodo, C.S.; Naba, A.; Mahasin, M.M.; Yueniwati, Y.; Putranto, T.A.; Patra, P.I. UBNet: Deep learning-based approach for
automatic X-ray image detection of pneumonia and COVID-19 patients. J. X-ray Sci. Technol. 2022, 30, 57–71. [CrossRef]

17. Baselli, G.; Codari, M.; Sardanelli, F. Opening the black box of machine learning in radiology: Can the proximity of annotated
cases be a way? Eur. Radiol. Exp. 2020, 4, 30. [CrossRef]

18. Zheng, B.; Sumkin, J.H.; Zuley, M.L.; Lederman, D.; Wang, X.; Gür, D. Computer-aided detection of breast masses depicted on
full-field digital mammograms: A performance assessment. Br. J. Radiol. 2012, 85, e153–e161. [CrossRef]

19. Danala, G.; Thai, T.; Gunderson, C.C.; Moxley, K.M.; Moore, K.; Mannel, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Applying quantitative
ct image feature analysis to predict response of ovarian cancer patients to chemotherapy. Acad. Radiol. 2017, 24, 1233–1239.
[CrossRef]

20. Danala, G.; Patel, B.; Aghaei, F.; Heidari, M.; Li, J.; Wu, T.; Zheng, B. Classification of breast masses using a computer-aided
diagnosis scheme of contrast enhanced digital mammograms. Ann. Biomed. Eng. 2018, 46, 1419–1431. [CrossRef]

21. Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998.
22. Heidari, M.; Mirniaharikandehei, S.; Liu, W.; Hollingsworth, A.B.; Liu, H.; Zheng, B. Development and assessment of a new

global mammographic image feature analysis scheme to predict likelihood of malignant cases. IEEE Trans. Med. Imaging 2019, 39,
1235–1244. [CrossRef] [PubMed]

23. Bressem, K.K.; Adams, L.C.; Erxleben, C.; Hamm, B.; Niehues, S.M.; Vahldiek, J.L. Comparing different deep learning architectures
for classification of chest radiographs. Sci. Rep. 2020, 10, 13590. [CrossRef] [PubMed]

24. Mascarenhas, S.; Agarwal, M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image
Classification. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research
and Applications (CENTCON), Bengaluru, India, 19–21 November 2021; Volume 1, pp. 96–99. [CrossRef]

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 7, pp. 770–778.

26. Tan, M.; Pu, J.; Cheng, S.; Liu, H.; Zheng, B. Assessment of a four-view mammographic image feature based fusion model to
predict near-term breast cancer risk. Ann. Biomed. Eng. 2015, 43, 2416–2428. [CrossRef] [PubMed]

27. Emaminejad, N.; Qian, W.; Guan, Y.; Tan, M.; Qiu, Y.; Liu, H.; Zheng, B. Fusion of quantitative image features and genomic
biomarkers to improve prognosis assessment of early stage lung cancer patients. IEEE Trans. Biomed. Eng. 2016, 63, 1034–1043.
[CrossRef] [PubMed]

http://doi.org/10.7326/0003-4819-138-3-200302040-00008
http://doi.org/10.1370/afm.1466
http://doi.org/10.1117/1.JMI.6.2.020901
http://doi.org/10.1177/0284185118770917
http://doi.org/10.1148/radiol.2332040277
http://doi.org/10.1016/j.cmpb.2019.104995
http://doi.org/10.1109/TBME.2021.3054248
http://doi.org/10.1016/j.ejca.2011.11.036
http://doi.org/10.3233/XST-210886
http://www.ncbi.nlm.nih.gov/pubmed/34151880
http://doi.org/10.3233/XST-211116
http://www.ncbi.nlm.nih.gov/pubmed/35095015
http://doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/pubmed/24892406
http://doi.org/10.1016/j.media.2022.102444
http://www.ncbi.nlm.nih.gov/pubmed/35472844
http://doi.org/10.1007/s10439-018-2095-6
http://doi.org/10.3233/XST-211005
http://doi.org/10.1186/s41747-020-00159-0
http://doi.org/10.1259/bjr/51461617
http://doi.org/10.1016/j.acra.2017.04.014
http://doi.org/10.1007/s10439-018-2044-4
http://doi.org/10.1109/TMI.2019.2946490
http://www.ncbi.nlm.nih.gov/pubmed/31603818
http://doi.org/10.1038/s41598-020-70479-z
http://www.ncbi.nlm.nih.gov/pubmed/32788602
http://doi.org/10.1109/centcon52345.2021.9687944
http://doi.org/10.1007/s10439-015-1316-5
http://www.ncbi.nlm.nih.gov/pubmed/25851469
http://doi.org/10.1109/TBME.2015.2477688
http://www.ncbi.nlm.nih.gov/pubmed/26390440


Bioengineering 2022, 9, 256 13 of 13

28. Wang, Y.; Aghaei, F.; Zarafshani, A.; Qiu, Y.; Qian, W.; Zheng, B. Computer-aided classification of mammographic masses using
visually sensitive image features. J. X-ray Sci. Technol. 2017, 25, 171–186. [CrossRef]

29. Jones, M.A.; Faiz, R.; Qiu, Y.; Zheng, B. Improving mammography lesion classification by optimal fusion of handcrafted and deep
transfer learning features. Phys. Med. Biol. 2022, 67, 054001. [CrossRef]

30. Wang, Y.; Heidari, M.; Mirniaharikandehei, S.; Gong, J.; Qian, W.; Qiu, Y.; Zheng, B. A hybrid deep learning approach to predict
malignancy of breast lesions using mammograms. In Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and
Applications; SPIE: Bellingham, WA, USA, 2018; Volume 10579, pp. 192–197. [CrossRef]

31. Heidari, M.; Khuzani, A.Z.; Hollingsworth, A.B.; Danala, G.; Mirniaharikandehei, S.; Qiu, Y.; Liu, H.; Zheng, B. Prediction of
breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm. Phys. Med. Biol.
2018, 63, 035020. [CrossRef]

32. Shi, T.; Jiang, H.; Zheng, B. A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical
image segmentation. Comput. Methods Programs Biomed. 2020, 197, 105678. [CrossRef]

33. Heidari, M.; Mirniaharikandehei, S.; Khuzani, A.Z.; Danala, G.; Qiu, Y.; Zheng, B. Improving the performance of CNN to predict
the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. Int. J. Med. Inform. 2020, 144, 104284.
[CrossRef]

http://doi.org/10.3233/XST-16212
http://doi.org/10.1088/1361-6560/ac5297
http://doi.org/10.1117/12.2286555
http://doi.org/10.1088/1361-6560/aaa1ca
http://doi.org/10.1016/j.cmpb.2020.105678
http://doi.org/10.1016/j.ijmedinf.2020.104284

	Introduction 
	Materials and Methods 
	Image Dataset 
	A CAD Scheme Using Radiomics Features 
	A CAD Scheme Using Deep Transfer Learning Model 
	Performance Evaluation and Comparison 

	Results 
	Discussion 
	Conclusions 
	References

