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Abstract 

The generalized delta rule (which is also known as error back-
propagation) is a significant advance over previous procedures for 
network learning. In this paper, we compare network learning 
using the generalized delta rule to human learning on two concept 
identification tasks: 
• Relative ease of concept identification 
• Generalizing from incomplete data 

Introduct ion 

The generalized delta rule for network learning has received a 
great deal of attention recently. The generalized delta rule is a 
learning procedure for associative networks which contain hidden 
units. It is a significant advance over previous network learning 
procedures which either (1) were limited to two-layer networks 
[23] which are incapable of solving a number of interesting 
problems [12], or (2) required stochastic units [9] and a large 
amount of computation for each learning cycle. 

INPUT HIDDEN OUTPUT 

Figure 1: A multi-layer network which contains hidden 
units 

Figure 1 presents a simple network with two input units, three 
hidden units, and one output unit. For each unity in a network, the 
output o given an input pattern p is: 

where is the weight from unit i to j and is a "threshold" for unit 
j-

The generalized delta rule indicates how the weight on the 
connection from unit i to unit j should be changed after 
presentation of an input pattern p. 

where n is a parameter which controls the learning rate; is the 
target output for unit j with input pattern p; is the error 
propagated back to unit j from a unit k whose input is and wkj is 
the weight of the connection from unit j to unit k. The interested 
reader is referred to [16] for a derivation of the generalized delta 
rule. 

The concept identification task [3] has been extensively studied 
in psychology. In this paper, we review a number of findings on 
concept identification in human subjects, and compare these 
findings to network learning with the generalized delta rule. In a 
typical concept identification experiment, a subject is shown a set 
of cards with different objects on them. The cards are presented to 
the subject one at a time in a random order and the subject is to 
determine whether the card belongs to the class to be learned. 
After each presentation, the subject is given feedback on the 
correctness of his response. Typically, the subject is told which 
attributes of the objects on the card (e.g., the number of objects, 
the shape of the objects, and the color of the objects) are 
potentially relevant. The trials continue until the subject makes no 
errors. 

The concept identification task seems ideal for network learning. 
The attributes on the card are treated as input to the network. In 
most of the experiments, the attributes are two valued, so a binary 
encoding of the input is possible (e.g., for shape 1 = square and 0 
= circle). The output of the network is 1 if the card is an instance of 
the concept and 0 otherwise. After the network classifies an input 
pattern, it is given feedback on the correctness of its output so that 
the weights on connections between units can be modified. 

For all of the simulations, the network learning algorithm is 
simulated on a Symbolics 3600. To ensure that the algorithm has 
been correctly implemented, we have run it on many of the 
examples in [16] and obtained similar results. 

The issue addressed in this paper is an evaluation of what might 
be called the strong PDP hypothesis: that all cognitive processes 
are realized directly in a homogeneous network of connected units. 
This hypothesis has been entertained by Churchland [5]. At the 
other extreme is the physical symbol system hypothesis [14]: that 
all cognitive processes are symbolic manipulations of the sort in 
logic and lisp. 

The most fundamental contribution so far of artificial 
intelligence and computer science to this joint enterprise has 
been the notion of a physical symbol system. This concept of a 
broad class of systems that is capable of having and 
manipulating symbols, yet is also realizable within our physical 
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universe, has emerged from our growing experience and 
analysis of the computer and how to program It to perform 
intellectual and perceptual tasks. The notion of symbol that it 
defines is internal to this concept of a system. Thus, it is a 
hypothesis that these symbols are in fact the same symbols that 
we humans have and use everyday of our lives. Stated another 
way, the hypothesis is that humans are instances of physical 
symbol systems. [14] 

In between these two extremes, there are a number of possible 
hypotheses. After presenting the results of our simulations, we 
shall comment on other alternative hypotheses. 

Relative ease of concept identif ication 

There have been a large number of experiments investigating 
the ease of learning combination of attributes. For example, Bower 
and Trabasso [2] have reported that concept identification by a 
single affirmative attribute (e.g., blue) is easier than concept 
identification on a conjunction of cues (e.g., blue and square). 
Others [3] have found that conjunctive concepts are easier than 
disjunctive concepts (e.g., blue or square) and that disjunctive 
concepts are easier than exclusive disjunctive concepts (e.g., blue 
or square but not blue and square) [22]. Finally, polymorphous 
concepts, also called m-out-of-n, (e.g., at least two of square, blue 
and symmetric) have been found to be more difficult than 
disjunctive concepts [7]. To our knowledge, there has been no 
comparison of polymorphous and exclusive disjunctive concepts; 
both are more difficult than disjunctive. Figure 2 summarizes the 
relative ease of acquiring concepts. 

1. 
2. 
3. 
4. 

Affirmation 
Conjunction 
Disjunction 
Exclusive Disjunction 
Polymorphous 

Figure 2: Relative ease of 
determined by the 
learn the concept 

concept Identification, as 
number off trials required to 

We tested the generalized delta rule in a large number of 
different networks and conditions. In all of the tests, there were 
three input units, one output unit, and a number of hidden units 
connected to the output unit. The following parameters were varied 
in the trials: 
• Number of hidden units: two, eight, and twenty-four. 
• Connections between units: For all of the tests each input unit 

was connected to every hidden unit. In addition, Mi the case of 
the twenty-four hidden unit test, random connections between 
the input and hidden units were tested. 

• The value of n. varied from .1 to .8 in increments of .1. 
The weights W:jk were set to random numbers between -5.5 and 
5.5. The threshold 6, of the hidden units were also set to random 
values between -5.5 and 5.5 subject to the constraint that the 
output was never more than than .995 or less than .005 for any 
input combination,1 An output value of greater than .85 was 
considered to be 1, and less than .15 was considered to be 0. For 
each condition, five concepts corresponding to one of the classes 
of concepts were learned from 1000 random initial conditions and 
the number of presentations of each input pattern was recorded. 

In the conditions tested, the number of hidden units and the 
value of r\ did not affect the relative ordering of the ease of concept 
identification considerably. Results from several simulations are 
shown in Figure 3. For all of the simulations, If the network failed to 
learn after 5000 presentations of each input pattern, the simulation 
was terminated. 

Hidden uni ts: 

Affirmation 

Conjunction 
Disjunction 
Polymorphous 
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Exclusive Disjunction 764 324 450 291 
Figure 3: Mean number of presentations of each Input 

pattern before correctly Identifying the concept. 
There are several conclusions which can be drawn from this 

simulation. 
• Affirmation is always easier than other classes of concepts (p 

< .001). This result is identical to the result with human 
subjects. 

• Usually, there is no significant difference between conjunctive 
disjunctive, and polymorphous concepts.2 This result differs 
from the findings on human subjects [22]. A bit of analysis 
indicates why conjunction and disjunction are equally difficult, 
since by interchanging Vs and 0's the disjunction becomes 
conjunction (i.e., in digital circuits, an or-gate in positive logic 
is an and-gate in negative logic). Bruner[3] has argued that 
disjunction is more difficult for human subjects because they 
find it more difficult to work with negative Instances. The 
generalized delta rule does not share this difficulty. 

• Exclusive disjunctions were always significantly (p < .001) 
more difficult than disjunctions. This result is identical to the 
result with human subjects. 

• The average number of presentations required for learning in 
all conditions is much greater than that required by human 
subjects. For example, in [7], with three two-valued attributes 
the mean number of cards presented was nine for conjunctive, 
twenty-eight for disjunctive, and forty for polymorphous 
concepts. Note that in Figure 3, the results are reported in 
decks of cards (i.e., presentations of all eight input patterns). 
The results in Figure 3 must be multiplied by eight before 
being compared to human performance on this task. 

Redundant relevant cues 

Bower and Trabasso have extensively investigated concept 
identification when there are redundant attributes [2]. For example, 
if two attributes always vary together, (i.e. squares are always blue, 
and blue things are always squares), then human subjects fall into 
three classes: those that use one of the relevant attributes (e.g.. 
blue), those that use the other relevant attribute (e.g.. square) and 
those that use both [2]. Since Bower and Trabasso were primarily 
concerned with determining whether or not subjects attended to 
both attributes, they group together those subjects who 
conjunctively and disjunctively combined the redundant attributes. 

Encouraged by the results in the earlier simulation where the 
value of r\ did not alter the result, in these simulations we did not 
vary the value of r\ (.25). We simulated networks with 8 and 1 
hidden unit(s)3. In this simulation there were three input attributes, 

1The rationale for constraining the threshold value was to Increase the rate of 
learning. From the generalized delta rule, it it easy to see that learning is slowest 
when the output approaches 0 or 1. 

2Although with twenty-four hidden units and n=.6. conjunction was significantly (p 
<05) more difficult than disjunction and poiymorphy. 

3The networks generalize better with fewer hidden units. If there a large number 
of hidden units, there can be one hidden unit unit which "looks for each possible 
input combination. 
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xty and x.4 The value of z was always the same as the value of x. 
Presentation of the four input patterns were repeated until the 
network would respond with 1 when x (and, therefore, t) was 1 and 
with 0 otherwise. After the network had learned this concept, it was 
presented with all eight possible input patterns. The output value 
of the network determined what function it had learned. For 
example, if the network reported 1 only when x was 1, then It had 
learned that x was the relevant attribute. 

In this simulation, for some input patterns which were never seen 
the output value might not be greater than .85 (which we consider 
1) or less than .15 which we consider 0. In their simulations on 
generalization, Rumelhart, Hinton, and Williams [16] accept a value 
of greater than or equal to .5 for 1, and less then .5 for 0. We also 
adopted this strategy. The results of these simulations are in 
Figure 4. 

Figure 4: Distribution of concepts learned when there are 
redundant relevant cues. 

There are sixteen possible boolean functions consistent with the 
four input patterns which were presented. Of these, human 
subjects only report the first four z, x, xz and xvi in Figure 4. in 
human subjects, the attribute which is not at all correlated with the 
output (?) is not considered relevant. The exact distribution among 
the four functions depends on a number factors such as the 
saliency of the cues. In the Trabasso and Bower experiment, 34% 
classified on one attribute, 51% classified on another, and 15% 
classified on both attributes. In network learning with eight hidden 
units, the rule learned to classify the concept contains the irrelevant 
attribute (?) slightly more than 50% of the time. With just one 
hidden unit, the irrelevant attribute was included more than 25% of 
the time. 

The results of this simulation question the ability of the 
generalized delta rule to arrive at a reasonable generalization when 
some input configurations have not presented. The concept 
descriptions of human subjects in the redundant relevant cue 
experiments are simpler than those which are learned by the 
generalized delta rule. Occam's razor favors a simpler hypothesis 
over a more complex hypothesis when both are consistent with the 
data. Note that "simpler is defined symbolically. A distributed 
network which computes x is just a complex as one that computes 

Discussion 

In the psychology literature, the models of the concept 
identification task (e.g., [2,11]) are consistent with the physical 
symbol system hypothesis. These models postulate that subjects 
generate a potential concept description in an a!l-or-none fashion 
and then confirm (or reject) the potential concept description with 
future examples. When learning simple affirmative concepts, in 
which only one attribute is relevant (i.e., discrimination learning) the 
pattern of performance remains at chance for a period of time and 
then suddenly jumps to perfect [20]. These results are in contrast 
with the strong PDP hypothesis. 

Some have criticized the concept identification task because the 
categories learned are artificial [17]. Many natural categories such 
as "games" do not appear to have a set of necessary and sufficient 
features. Instead, It is argued [24] that many concepts are 
polymorphous. One encouraging result of our simulation is that the 
polymorphous concepts are no harder for the generalized delta rule 
to learn than conjunctive or disjunctive concepts.5 However, a full 
model of concept identification should be able to account for the 
acquisition of simple concepts like "square" which have necessary 
and sufficient features. 

Others have criticized the concept identification task because the 
learning takes place in an artificial environment without regard to 
the learner's goals or prior knowledge [13,10]. For example, 
consider the following more realistic redundant relevant cue 
experiment. Someone familiar with many sports but who has never 
seen a game of basketball notices that there are five players with 
green shirts, blond hair, and various color sneakers. When one of 
these players has the ball, all the players run to one end of the 
court. Five other players have yellow shirts, black hair, and various 
color sneakers. When one of these players has the ball, everyone 
runs to the other end of the court.6 Two opposing players collide, 
and are injured. Two replacements come in, one with a green shirt 
and black hair, the other with a yellow shirt and blond hair. The 
new player with the green shirt and black hair gets the ball. To 
which end will everyone run? An intelligent person would use his 
prior knowledge of sports (i.e., players on the same team wear the 
same color uniform) to determine that shirt color is relevant and 
hair color is not relevant and make the correct prediction. This Is in 
sharp contrast to an artificial situation in which a learner must 
decide whether the color or the size of a rectangle is relevant. 
However, the nature of the concept identification task makes no 
difference to the networks we have been simulating. One way to 
bias the saliency of attributes in network learning is to set the initial 
weights differently (e.g., shirt color is initially stronger than hair 
color). However, a simple bias would not suffice for all problems. 
To see this, consider the following different task: One of the 
players with the green shirt and blond hair also endorses hair 
products. He is arrested on drug charges and the company 
decides to find another basketball player to represent their 
products. In this situation, hair color may be more important than 
uniform color. Instead of always favoring one attribute over 
another, a more complex process is required which takes Into 
account the goals of the learner. 

In our simulations, network learning with the generalized delta 
rule failed to exhibit a number of similarities with human learning on 
a number of concept identification tasks. This is in contrast with 
the results of network learning on other tasks, such as classical 

4ln an experiment with human subjactt, x might represent shape with 0 - square 
and 1 - circle, y might represent color with 0 - red and 1 = blue, and x might 
represent size with 0 - big and 1 - small 

5However, it should be noted that the results on the relative ease of oonotpt 
identification assume that the learner has no prior knowledge. A theory which 
explains a particular combination of features facilitates teaming For example, when 
causal explanations are present, linearly separable categories are easier to learn 
than nonNneariy separable categories. The reverse is tiue when there is no 
explanation (13). It is not dear how these results could be modeled olreotiy in 
network approaches to ooncept learning, since the generalized delta rule is not 
affected by the ability to oonstruct a causal explanation. 

•Some may recognize this as a Lakers-Celtics game. 
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conditioning in animals [1] and human skill learning [6]. Models 
such as these seem to weaken support for the strongest version of 
the physical symbol system hypothesis. 

Conclusion 

Human learning is a very complex process and It is not clear that 
any single rule or strategy can account for all human learning [15]. 
Tulving [21] has distinguished three types of human memory, each 
with Its own type of learning (following Rumelhart and Norman [15]) 
and retrieval: 
• In procedural memory, which retains connections between 

stimuli and responses, the learning mechanism is tuning. 
Retrieval from procedural memory is by performing (i.e., acting 
or perceiving). 

• In semantic memory, which represents knowledge of the 
world, the learning mechanism is called restructuring. 
Retrieval from semantic memory is called knowing. 

• In episodic memory, which represents knowledge about 
personally experienced events, the learning mechanism is 
termed accretion. Retrieval from episodic memory Is called 
remembering. 
The generalized delta rule seems to correspond most directly 

with tuning. Indeed, it has been most successful at simulating the 
learning of those activities of humans and animals which improve 
gradually over time. 

We conclude that although (1) manipulating symbolic 
representation is not a necessary condition for intelligent behavior 
[8], and (2) the symbolic level is not the best level of description for 
some intelligent behaviors, the symbolic level is the appropriate 
level of description of other human behaviors. For example, in the 
redundant relevant cue experiment, human subjects consistently 
generate concept definitions which are simpler symbolically. There 
are two possible ways of unifying these different levels of 
description within the parallel distributed processing framework: 
1. Look for network architectures which implement "virtual 

machines" which manipulate symbols [18,19]. This approach 
ackowledges that humans have "connectionist" hardware, but 
admits that (at least by adulthood) humans have built up some 
capabilities which are better characterized at the symbolic 
level. 

2. Look for network architectures and learning rules which 
explain intelligent behaviors without reference to symbols [4]. 
For example, it is possible that such an architecture can follow 
Occam's razor without explicitly representing hypotheses as 
symbols and Occam's razor as a rule. 
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