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Abstract

Conflict tasks are one of the most widely studied paradigms within cognitive psychol-

ogy, where participants are required to respond based on relevant sources of information

while ignoring conflicting irrelevant sources of information. The flanker task, in particular,

has been the focus of considerable modeling efforts, with only three models being able

to provide a complete account of empirical choice response time distributions: the dual-

stage two-phase model (DSTP), the shrinking spotlight model (SSP), and the diffusion

model for conflict tasks (DMC). Although these models are grounded in different theoreti-

cal frameworks, can provide diverging measures of cognitive control, and are quantitatively

distinguishable, no previous study has compared all three of these models in their ability

to account for empirical data. Here, we perform a comparison of the precise quantitative

predictions of these models through Bayes factors, using probability density approxima-

tion to generate a pseudo-likelihood estimate of the unknown probability density function,

and thermodynamic integration via differential evolution to approximate the analytically

intractable Bayes factors. We find that for every participant across three data sets from

three separate research groups, DMC provides an inferior account of the data to DSTP

and SSP, which has important theoretical implications regarding cognitive processes en-

gaged in the flanker task, and practical implications for applying the models to flanker

data. More generally, we argue that our combination of probability density approximation

with marginal likelihood approximation – which we term pseudo-likelihood Bayes factors –

provides a crucial step forward for the future of model comparison, where Bayes factors can

be calculated between any models that can be simulated. We also discuss the limitations

of simulation-based methods, such as the potential for approximation error, and suggest

that researchers should use analytically or numerically computed likelihood functions when

they are available and computationally tractable.
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Introduction

Understanding human decision-making has been a topic of enduring interest for sev-

eral different fields of research, such as psychology, neuroscience, and economics (Tversky

& Kahneman, 1974; Ratcliff, 1978; Kahneman & Tversky, 1979; Roitman & Shadlen, 2002;

Purcell et al., 2010; Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown, 2015; Ratcliff,

Smith, Brown, & McKoon, 2016). One of the most widely studied decision paradigms

within cognitive psychology involves both decision-relevant and decision-irrelevant sources

of information, with the irrelevant sources of information either being consistent with, or

in conflict to, the relevant sources of information. Several experimental paradigms have

been developed to create different types of conflicting information, such as the Stroop task

(Stroop, 1935), the Simon task (Simon & Rudell, 1967; Simon, 1969), and the flanker task

(B. A. Eriksen & Eriksen, 1974), with the general finding that conflict slows down and

impairs responding. Our focus in this article will be on the flanker task, where participants

are instructed to respond according to the identity of a central target (e.g., a left response

to the letter H, and a right response to the letter S) flanked on each side by distractors ei-

ther associated with the same (compatible display) or the opposite response (incompatible

display). The flanker task has been the focus of several key findings on conflict process-

ing, and more importantly, the basis for the development of several computational models.

Specifically, we aim to provide the first quantitative comparisons between all three diffu-

sion models of the flanker task, and to perform this comparison using pseudo-likelihood

Bayes factors, in the first (to the best of our knowledge) application of marginal likelihood

approximation techniques to cognitive models without a tractable likelihood function.

Several computational models have been developed to better understand how con-

flicting information influences decisions in the flanker task (Yu, Dayan, & Cohen, 2009;

Hübner, Steinhauser, & Lehle, 2010; White, Ratcliff, & Starns, 2011; Ulrich, Schröter,
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Leuthold, & Birngruber, 2015; Logan, 1980, 1996; Cohen, Servan-Schreiber, & McClel-

land, 1992). However, to date only three models provide a complete account of the choice

response time distributions (i.e., response time and accuracy data; see Hübner et al., 2010

and White, Brown, & Ratcliff, 2012 for models of the flanker task that do not capture re-

sponse time distributions): the dual-stage two-phase model (DSTP; Hübner et al., 2010),

the shrinking spotlight model (SSP; White et al., 2011), and the diffusion model for con-

flict tasks (DMC; Ulrich et al., 2015). These models all build upon the diffusion framework

(Stone, 1960; Laming, 1968; Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & Tuer-

linckx, 2002), which proposes that information is integrated for each alternative at some

rate (known as the “drift rate”) until the evidence for one alternative reaches some level

(known as the “threshold”), and a decision is triggered. Importantly, the diffusion model

has been shown to provide an accurate account of choice response time distributions in

a range of non-conflict tasks (Ratcliff, 1978; Ratcliff & Rouder, 1998; Evans & Brown,

2017; Evans, Hawkins, Boehm, Wagenmakers, & Brown, 2017). Each model extends upon

the diffusion framework by assuming that the drift rate is the result of both task-relevant

and task-irrelevant information, with the influence of task-irrelevant information being a

time-varying process via mechanisms of either selective attention or automatic processing.

However, these models differ in their theoretical basis for how the irrelevant stimulus infor-

mation affects the decision variable, and therefore, have different mathematical functional

forms that make different quantitative predictions about the shapes of the choice response

time distributions.

DSTP (Hübner et al., 2010) is theoretically based on visual attention research, and

proposes that information processing is performed in two phases, with the first phase having

two separate sub-processes. In the first phase attention is spread, and the integration of

information is based on information from both the target and the irrelevant stimuli. While
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information is being integrated to select the correct alternative, a second (also diffusion)

identification process attempts to select a stimulus to narrow attention on. If this second

process finishes before a decision is made, the second phase of information integration

begins. In the second phase attention is focused on the stimulus previously identified as

the target, which results in fast evidence accumulation either for (if the target was focused

on) or against (if a distractor was focused on) the correct responses. The theoretical

framework of DSTP is generalizable to all conflict tasks (Hübner et al., 2010; Hübner &

Töbel, 2019).

SSP (White et al., 2011) is also theoretically grounded in visual attention research,

and proposes that the amount of relevant and irrelevant information integrated is the

result of a gradually shrinking spotlight of attention (C. W. Eriksen & James, 1986). At

the beginning attention is spread, and the integration of information is based upon the

amount of attention focused on the target compared to the flankers. As time continues the

attentional spotlight continues to shrink and the integration of information is increasingly

based on only the target. The theoretical framework of SSP has been specifically developed

to account for data in the flanker task, making the flanker task ideal for providing a fair

comparison of all three models.

DMC (Ulrich et al., 2015) is theoretically based on automaticity research, and

proposes that independent information for task-relevant and task-irrelevant factors are

summed during the decision process, which creates some overall time-varying accumula-

tion process. Specifically, information is integrated for both a controlled process and an

automatic process. The controlled process is only based on the target stimulus and re-

mains constant over time, whereas the automatic process is based on irrelevant stimuli and

varies over time (according to a scaled gamma function), with the largest impact being in

early stages and almost no impact remaining in later stages. The theoretical framework of
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DMC is generalizable to all conflict tasks (Ulrich et al., 2015; Servant, White, Montagnini,

& Burle, 2016; Ambrosi, Servant, Blaye, & Burle, 2019; Servant, van Wouwe, Wylie, &

Logan, 2018), and was specifically developed to be a general account of all conflict tasks.

Previous studies involving these models have both attempted to assess their ability

to explain trends in empirical data, as well as the relationship between them and their mea-

surement of cognitive control (i.e., ability to suppress conflict-based interference). White,

Servant, and Logan (2018) attempted to provide a detailed comparison in the latter cate-

gory, assessing the mimicry between the models in fit and inferences. Specifically, White

et al. (2018) found that the models could be quantitatively distinguished from one an-

other, with a cross-fitting procedure showing that each model was able to better fit its

own data than the other models, suggesting that each model makes unique quantitative

predictions about the choice response time distributions. Interestingly, White et al. (2018)

found that these differences were also present between some models in the measurement of

cognitive control: although the measurements from DSTP and SSP were highly correlated,

the measurements from DMC greatly diverged from both DSTP and SSP. Therefore, it is

important to determine whether certain models provide a more accurate explanation than

others, as there are meaningful practical differences between the models in the conclusions

drawn about cognitive control.

As mentioned above, the findings of White et al. (2018) showed that DSTP, SSP,

and DMC make quantitatively distinguishable predictions about the response time distri-

butions. Several previous studies have attempted to compare these precise quantitative

predictions of DSTP and SSP in their ability to account for empirical response time dis-

tributions. Findings have been mixed, with some studies providing a slight superiority

of DSTP (Hübner & Töbel, 2012; Servant, Montagnini, & Burle, 2014; Servant, White,

Montagnini, & Burle, 2015), and others providing a superiority of SSP (White et al., 2011).
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However, no previous studies have compared DMC to DSTP and/or SSP, which is the most

theoretically and practically important comparison, as White et al. (2018) found DMC to

produce different inferences about cognitive control than DSTP and SSP.

In addition, previous comparisons of DSTP and SSP have contained limitations re-

garding their implementations of the models. Firstly, previous studies have only used the

“simple diffusion” variants of the models (though see White et al., 2011, Exp5, for a “full

diffusion” SSP), which does not allow between-trial variability in any of the parameter

values. However, previous research involving the diffusion model has found that between-

trial variability in the parameters for the rate of evidence accumulation (i.e., drift rate;

Ratcliff, 1978), the starting amount of evidence (i.e., starting point; Ratcliff & Rouder,

1998), and the time dedicated to non-decision processes (i.e., non-decision time; Ratcliff &

Tuerlinckx, 2002) are required to meet key benchmark phenomena. Secondly, the models

have been fit via quantile-based methods (i.e., �2/G2), which when used to make infer-

ences about the entire response time distribution make the implicit assumption that the

distribution can be described in a minimal number of response time quantiles: that is,

that the summary statistic based on these quantiles is a sufficient statistic for the response

time distributions. Although these quantile-based statistics may lead to identical results in

most situations, this is not guaranteed for all cases (unless the statistic is sufficient), and

may be questionable for conflict models where the key distinction is in the precise shape of

the distribution (see Robert, Cornuet, Marin, & Pillai, 2011 for potential issues that arise

when summary statistics are not sufficient). Lastly, quantitative comparisons between the

models have been made with “parameter counting” methods of model selection, such as

the Bayesian Information Criterion (BIC; G. Schwarz, 1978), which assume that the flex-

ibility of the model is purely a function of its number of free parameters. However, these

methods ignore the concept of “functional form flexibility”, where the true flexibility of
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the model is a combination of both its free parameters and the “functional form” of the

model, with “functional form” referring to the mathematical equations of the model and

how the parameters combine within them. In essence, different functional forms will result

in parameters that are able to have a larger/smaller impact on the predictions of the model,

which is ignored by methods that treat all free parameters equally (Myung & Pitt, 1997;

Myung, 2000; Evans, Howard, Heathcote, & Brown, 2017).

Our study aims to provide the first comprehensive quantitative comparison between

the three key models of the flanker task: DSTP, SSP, and DMC. Importantly, previous

research has found differences between the models based on visual attention (DSTP and

SSP) and the model based on automaticity (DMC) in their measurement of cognitive

control, meaning that it is crucial to understand which model(s) provide a better account

of the data from the flanker task. Our study uses flanker data from three previous studies

– each from a different group of researchers (White et al., 2011; Servant et al., 2015; Ulrich

et al., 2015) – to ensure generalizablility of inferences, and also makes large improvements

on the previous studies that compared DSTP and SSP. Firstly, we implement each of

the models both in the “simple” (i.e., no between-trial variability parameters) and “full”

(i.e., between-trial variability in drift rate, starting point, and non-decision time) diffusion

frameworks, as opposed to previous studies that only used the simple versions.

Secondly, and most notably, we compare these models through a unique combina-

tion of probability density approximation and marginal likelihood estimation, which we

term pseudo-likelihood Bayes factors. Specifically, we apply recently developed probabil-

ity density approximation (PDA; Turner & Sederberg, 2014; Holmes, 2015) methods to

obtain a pseudo-likelihood for each of the models through simulation. PDA allows these

models – which have intractable likelihood functions – to be fit with likelihood-based meth-

ods that use the entire choice response time distributions, rather than the quantile-based
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methods used in previous studies. Importantly, we combine the pseudo-likelihood obtained

through PDA with a recently developed method for efficiently estimating marginal likeli-

hoods, TIDE (Evans & Annis, 2019), which allows us to compare these models with Bayes

factors (Kass & Raftery, 1995) instead of the “parameter counting” methods of previous

studies. The “marginal likelihood” quantifies how likely the data are when assuming a spe-

cific model, which is integrated over all possible parameter values, meaning that it does not

depend on a specific set of parameters. The marginal likelihoods of two models can then

be expressed as a ratio, which provides the Bayes factor: a widely used method of model

inference that is considered to provide an ideal balance between the ability to account for

empirical data and the functional flexibility of the model (Kass & Raftery, 1995; Myung

& Pitt, 1997; Gronau et al., 2017; Evans & Brown, 2018). To the best of our knowledge,

this is the first instance of Bayes factors being calculated with pseudo-likelihood methods

for cognitive models, with previous applications of Bayes factors for response time mod-

els being limited to models with analytically solvable likelihoods (Evans & Brown, 2018;

Annis, Evans, Miller, & Palmeri, 2019; Evans, Bennett, & Brown, 2018; Evans & Annis,

2019). Importantly, combining these methods provides the potential for broad improve-

ments in the ability to compare computational models, where the marginal likelihood can

be computed for any model that can be simulated.

Method

Our study provides a comparison between DSTP, SSP, and DMC using the flanker

data from three previous studies (and three different research groups): White et al. (2011),

Servant et al. (2015), and Ulrich et al. (2015). Here, we first briefly detail each of these

studies. Following this, we outline the mathematical functions of each of the models that

our study compares. Next, we provide a detailed description of the two key methods that
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we combine to compute pseudo-likelihood Bayes factors – PDA and TIDE – including a

discussion about the general classes of methods that each of these specific methods originate

from: simulation-based Bayesian methods and marginal likelihood estimation methods,

respectively. Lastly, we detail how the pseudo-likelihood Bayes factor model comparison

was performed within our study.

For all experiments we excluded trials that were faster than 150ms or slower than

1500ms, in order to create some level of consistency between studies. Participant exclusion

criteria were identical to those used in the original studies.

Details of studies

White et al. (2011). We analyse the data from Experiment 1 of White et al. (2011),

where 25 participants completed a standard flanker experiment. Specifically, participants

were presented with a sequence of five arrows (i.e., < or >) presented vertically. Partici-

pants were instructed to identify whether the central arrow, which was always presented

in the centre of the screen, was pointing towards the left or right of the screen. Par-

ticipants were told to do so as quickly and accurately as possible, though there was no

explicit deadline for responses, and the stimulus remained on screen until a response was

made. After each response there was a 350ms inter-trial interval, with the next stimulus

being presented immediately after this interval (i.e., no central fixation cue before the next

stimulus). Compatible trials were those where the target and flankers pointed in the same

direction, whereas incompatible trials were those where the flankers pointed in the opposite

direction to the target. Participants completed 48 practice trials followed by 8 blocks of

96 trials each.

Ulrich et al. (2015). We analyse the flanker data from the only experiment of Ulrich

et al. (2015), where 18 participants completed a flanker task consisting of the letters ‘H’
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and ‘S’, though two participants were excluded for high error rates (>10%). Participants

were presented with a string of 5 letters presented horizontally, and had to identify whether

the central letter, which was always presented in the centre of the screen, was a ‘H’ or an

‘S’. Each trial began with a fixation cross presented in the center of the screen for 500ms,

followed by the presentation of the stimulus array for 150ms. A response deadline was set

at 1,500ms, where participants were required to respond within 1,500ms of the stimulus

array presentation or the trial would be counted as a “miss”, and the next trial would

begin. After each trial there was a 1,000ms inter-trial interval before the onset of the

fixation cross for the next trial. Participants were provided with visual feedback during

this time period if their previous response was anticipatory (< 50ms), a miss, or incorrect.

Compatible trials were those where the target and flankers matched, whereas incompatible

trials were those where the flankers supported the opposite response to the target (e.g., an

‘S’ target flanked by ‘H’). Participants completed 56 practice trials followed by 4 blocks of

56 flanker trials each. Participants in this experiment also completed a Simon task, which

was presented in alternating blocks with the flanker task, though we do not analyse the

Simon data within this study.

Servant et al. (2015). We analyse the data from the only experiment of Servant et

al. (2015), where 12 participants completed a flanker task consisting of the letters ‘H’ and

‘S’. Participants were presented with a string of 5 letters presented horizontally, and had to

identify whether the central letter, which was always presented in the centre of the screen,

was a ‘H’ or and ‘S’. Participants were told to do so as quickly and accurately as possible,

though there was no explicit deadline for responses, and the stimulus remained on screen

until a response was made. After each response there was a 1,000ms inter-trial interval,

with the next stimulus being presented immediately after this interval (i.e., no central

fixation cue before the next stimulus). Compatible trials were those where the target and
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flankers matched, whereas incompatible trials were those where the flankers supported the

opposite response to the target (e.g., an ‘S’ target flanked by ‘H’). Participants completed

96 practice trials followed by 15 blocks of 96 trials each. Participants were also subject

to electromyographic (EMG) recordings to assess their motor movement in responding,

though we do not analyse these data within this study.

Model definitions

Each of the three models – DSTP, SSP, DMC – were defined within the diffusion

framework. The diffusion model (Ratcliff, 1978; Ratcliff et al., 2016) is one of the most

widely applied models of decision-making, which is able to an analyse choice and response

time data in unison, allowing it to account for the well-known speed-accuracy tradeoff.

The diffusion model proposes that decisions are made through a process of evidence ac-

cumulation, where noisy evidence from the environment accumulates in favour of the two

alternatives at some rate (known as the “drift rate”), until the evidence for one alterna-

tive reaches a threshold level of evidence, and a decision is triggered for that alternative.

Formally, the evidence accumulation process can be written as a stochastic differential

equation:

dx = v dt+ c dW (1)

where x is the evidence, W is the Wiener process (noise from the standard normal distri-

bution that evolves with the square root of time), and c is the diffusion coefficient, with c

being fixed to 0.1 to solve a scaling property within the model.

The “simple” diffusion model contains 4 free parameters, which correspond to the

drift rate (v), the threshold level of evidence (a), the starting amount of evidence at the

beginning of the process (z), and the time required for processes unrelated to the decision
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process, such as perceptual encoding and motor activation (ter). The “full” diffusion

model includes 3 additional parameter, which provide between-trial variability in the drift

rate (sv), starting point (sz), and non-decision time (ster) parameters. The between-trial

variability in drift rate is defined as a normal distribution with mean v and standard

deviation sv, whereas the between-trial variability in both starting point and non-decision

time are defined as uniform distributions, centered on z and ter with widths sz and ster,

respectively.

Note that the piecewise (DSTP) or time-varying (SSP and DMC) drift rate contained

within each of the conflict diffusion models make their likelihood functions computation-

ally intractable, and hence our use of PDA to create simulation-based pseudo-likelihood

functions. Specifically, the likelihood function derived for DSTP in Hübner et al. (2010) re-

quires computing the density for three different diffusion processes, with the final diffusion

process containing computationally burdensome integrals, as they depend on the states of

the previous two diffusion processes. This becomes even more computationally burdensome

when combined with the three dimensional integral required for the “full diffusion” vari-

ant, which must be computed numerically, meaning that although it is technically possible

to calculate the likelihood for DSTP, the large amount of numerical integration required

makes the process computationally intractable. For models with time-varying drift rates,

such as SSP and DMC, previous research has suggested that the likelihood function is

mathematically intractable (Ratcliff, 1980; Ulrich et al., 2015). Although numerical solu-

tions can technically be computed for SSP and DMC using the equations of Smith (2000),

this method for computing the likelihood function comes with a high computational bur-

den, which becomes computationally intractable in the case of the “full diffusion” variants

(Evans & Hawkins, 2019; Evans, Hawkins, & Brown, 2019)
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DSTP. DSTP (Hübner et al., 2010) proposes that information processing is per-

formed in two phases, with the first phase having two separate sub-processes. In the first

phase the integration of information is based on both the target and the flankers, and in

the second phase it is based on only a single, selected stimuli. Formally, this can be written

as a piecewise drift rate with two stages:

vp1 = vta + vfl; vp2 = vp2 (2)

where vp1 is the overall drift rate in the first phase, vta is the rate of evidence accumulation

for the target, vfl is the rate of evidence accumulation for the flankers, and vp2 is the drift

rate for the second phase (discussed below). The flanker drift rate (vfl) is positive for

compatible trials, and negative for incompatible trials.

While information is being integrated to select the correct alternative, a second

diffusion process attempts to identify a stimulus to narrow attention on, and if this second

process reaches the threshold before a decision is made, the second phase of information

integration begins. Formally, this second process has a drift rate vss, where reaching the

upper threshold results in the selection of the target to focus on, and reaching the lower

threshold results in the selection of a flanker.

In the second phase, a single drift rate (vp2) takes over from the overall drift rate from

the first phase (i.e., vp1). The second phase drift rate (vp2) is always positive for compatible

trials, as both the targets and flankers have the same identity, meaning only the correct

type of stimulus can be selected. For incompatible trials, the drift rate is positive when

the upper threshold is reached by the stimulus selection process, and negative when the

lower threshold is reached by the stimulus selection process.

Overall, this means that DSTP can have up to 9 free parameters: vta, vfl, vss, vp2, a,

ass, z, zss, ter. However, we fixed zss to be the mid-point of the two thresholds, assuming
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that participants could not be biased for the stimulus identification process, reducing the

model to only 8 free parameters in the “simple” framework. To extend DSTP to the

“full” diffusion framework, we added 3 between trial variability parameters, which were

distributed in the same manner as the regular “full” diffusion: one for all drift rates (sv),

one for all starting points (sz), and one for non-decision time (ster).

SSP. SSP (White et al., 2011) proposes that information processing is based on the

amount of attention focused on the target compared to the flankers, with attention for the

flankers decreasing over time as a “shrinking spotlight”. Formally, this can be written as

a time-varying drift rate, where the drift rate at time t (i.e., v(t)) is given by:

v(t) = sta(t)× pta + sfl(t)× pfl (3)

where sta(t) is the area of the spotlight focused on the target at time t, pta is the perceptual

strength of the target, and sfl(t) and pfl are the same variables, respectively, for the flankers

instead of the target. The pta and pfl values are free parameters of the model, which are

usually estimated as the same value, p, assuming that the target and flankers have equal

perceptual strength. The flanker perceptual strength (pfl) is positive for compatible trials,

and negative for incompatible trials.

The area of focus is governed by a normal distribution centred on 0 with a standard

deviation that decreases over time, to reflect the shrinking spotlight of attention. Formally,

the standard deviation can be given by:

SD(t) = SD0 − SDr × t (4)

where SD0 is the initial spotlight width, and SDr is the linear rate of decrease in the

spotlight width, which are both free parameters of the model. When SD(t) decreases to
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a value of 0.001 the spotlight of attention is assumed to have reached maximum focus,

and SD(t) stops decreasing for the remainder of the decision. From here, the area under

the spotlight for the target and the flankers is calculated from integrating the normal

distribution:

sta(t) =

Z 0.5

−0.5
Φ(x|0, SD(t)) dx (5)

sfl(t) =

Z
−0.5

−∞

Φ(x|0, SD(t)) dx +

Z
∞

0.5
Φ(x|0, SD(t)) dx (6)

where Φ(x|µ,�) is the probability density function of the normal distribution. Each stim-

ulus is assumed to be one unit wide, with the spotlight centrally focused on the target.

In order to ensure that the total area of attention sums to 1, attention exceeding stimulus

boundaries is allocated to the outer flankers, as in the original implementation of White et

al., 2011. This gave the “simple” SSP 6 free parameters: p, SD0, SDr, a, z, and ter. To

extend SSP to the “full” diffusion framework, we added 3 between trial variability param-

eters, which were distributed in the same manner as the regular “full” diffusion and were

not time-varying: one for the combined drift rate (sv), one for the starting point (sz), and

one for non-decision time (ster).

DMC. DMC (Ulrich et al., 2015) proposes that information is integrated for both a

constant, controlled process based on the target stimulus, and a time-varying automatic

process based on the flankers. Formally, this can be written as a time-varying drift rate,

where the drift rate at time t (i.e., v(t)) is given by:

v(t) = vc + va(t) (7)
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where vc is the drift rate for the controlled process, which is a free parameter of the model,

and va(t) is the drift rate for the automatic process at time t. The automatic process drift

rate varies over time according to the first derivative of a (rescaled) gamma function:

va(t) = ⇣ × e
−t

τ × [
t× e

(↵− 1)× ⌧
](α−1)

× (
↵− 1

t
−

1

⌧
) (8)

where ↵ is the shape, ⇣ is the peak amplitude, and ⌧ is the characteristic time. This

gave the “simple” DMC 7 free parameters: vc, ↵, ⌧ , ⇣, a, z, and ter. To extend DMC to

the “full” diffusion framework, we added 3 between trial variability parameters: one for

all of the drift rates (sv), one for the starting point (sz), and one for non-decision time

(ster). Note that these definitions of the between-trial variability parameters differ from the

original definitions of Ulrich et al. (2015). To ensure that this difference did not influence

our results, we also performed the analyses using definitions similar to Ulrich et al. (2015),

and our key conclusions remained unchanged (see the Supplementary Materials).

PDA and simulation-based Bayesian methods

Probability density approximation (PDA; Turner & Sederberg, 2014; Holmes, 2015)

is a method for likelihood-free inference and estimation. Most common methods of in-

ference and estimation – such as Bayes factors and Bayesian parameter estimation – are

likelihood-based, meaning that in order to be applied they require the model to have a

known and tractable likelihood function. Likelihood-free methods provide a means to ap-

ply likelihood-based methods to models with unknown or intractable likelihood functions,

where a simulation-based process is used instead of the likelihood function. This means

that the only requirement for likelihood-free methods is that the model can be simulated

from. Most likelihood-free methods fall into one of two categories: Approximate Bayesian

Computation (ABC) methods, which remove the need for a likelihood, or PDA methods,
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which replace the likelihood with a pseudo-likelihood.

ABC methods provide a likelihood-free methodology through removing the need for

a likelihood, and instead use the discrepancy between the observed data and simulated

data (Grelaud et al., 2009; Cornuet et al., 2008; Tavare, Balding, Griffiths, & Donnelly,

1997; Beaumont, Zhang, & Balding, 2002; Csilléry, Blum, Gaggiotti, & François, 2010;

Pritchard, Seielstad, Perez-Lezaun, & Feldman, 1999; see Turner & Sederberg, 2012; Turner

& Van Zandt, 2012; Turner, Dennis, & Van Zandt, 2013; Turner & Van Zandt, 2014 for

examples in cognitive modelling). This typically involves reducing the data – both observed

and simulated – to a single or set of summary statistic(s), and assessing the discrepancy

between the observed and simulated data in these summary statistics. This discrepancy

is then used to decide whether the proposed posterior sample will be accepted or rejected:

if the parameter values produce a discrepancy that is below some predefined minimum

level, then the posterior sample is accepted, and otherwise the sample is rejected. This

process allows the posterior distributions of the parameters to be estimated without a

likelihood function, providing a likelihood-free method of Bayesian parameter estimation.

Furthermore, ABC can be combined with transdimensional Markov Chain Monte Carlo

(MCMC) methods, which also propose transitions between model spaces, and provide

an estimate of the Bayes factor based on the relative time spent in each model space

(Green, 1995; Carlin & Chib, 1995; Pritchard et al., 1999). Recent advancements have also

combined ABC methods with neural networks, which attempt to provide efficient methods

of estimating the posterior distribution by learning the summary statistics of simulated

data from parameter values across the range of the parameter space, and using this to

efficiently sample from the posterior distribution (Lueckmann, Bassetto, Karaletsos, &

Macke, 2018) or directly estimate the early moments of the posterior distribution (Radev,

Mertens, Voss, & Köthe, 2019).
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However, the principles underlying ABC methods are reliant on sufficient statistics:

that is, a summary statistic, or set of summary statistics, which are sufficient to capture

all of the information contained within the data. In many situations this is a problematic

assumption, as a small number of summary statistics are insufficient to capture the infor-

mation contained within the specific type of empirical data being investigated, such as the

genetics data that ABC is commonly applied to (Robert et al., 2011), and the response

time data in our current study. Applying ABC methods when this assumption is violated

can also have practical consequences, where using a summary statistic that lacks sufficiency

results in some unknown loss function of information, which can result in misleading ac-

ceptance behaviour between model spaces in transdimensional MCMC, and therefore, a

misleading estimate of the Bayes factor (Robert et al., 2011).

PDA methods replace the likelihood with a pseudo-likelihood, with the pseudo-

likelihood being an approximation to the likelihood obtained through simulation and den-

sity estimation (Turner & Sederberg, 2014; Holmes, 2015; Evans, Holmes, & Trueblood,

2019). This typically involves simulating a large number of instances (e.g., decision-making

trials) from the model to create model predictions, using these predictions to create a likeli-

hood function through a method of density estimation, and then obtaining the likelihood of

each observed data point under this constructed pseudo-likelihood function. Importantly,

PDA methods remove the need for sufficient statistics, as an estimate of the likelihood can

be obtained for each data point. PDA methods were originally introduced to psychology

research by both Turner and Sederberg (2014) and Holmes (2015), who proposed creating

the pseudo-likelihood function through non-parametric kernel density estimation, which

estimates a large number of discrete density points across a continuous function according

to a specified smoothing bandwidth (e.g., Silverman’s rule of thumb; Silverman, 1986) and

kernel (e.g., Epanechnikov, Gaussian), and obtaining the likelihood for each data point
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using linear interpolation, which takes the likelihoods at the two closest estimated density

points and uses a linear function to infer the likelihood at the location of the observed data

point. Previous studies within cognitive psychology have already applied PDA for Bayesian

parameter estimation (e.g., Evans, Holmes, & Trueblood, 2019), and our study provides a

key advancement by combining PDA with TIDE to create a likelihood-free method of infer-

ence through Bayes factors, which does not contain the potentially problematic assumption

of sufficient statistics that transdimensional ABC methods of Bayes factor estimation rely

on.

More generally, an overarching limitation of simulation-based methods is the noise

present in the simulation process, which leads to non-deterministic estimates of summary

statistics or pseudo-likelihoods. Although this issue can be mitigated by using a large num-

ber of simulations, as the noise reflected in the overall distribution of simulations decreases

as the number of simulations increase, increasing the number of simulations also increases

the computational burden, which eventually results in the simulation-based method becom-

ing computationally intractable (see Holmes, 2015 for a discussion). Therefore, researchers

must strike a careful balance between speed and precision, in order to obtain an accurate

distribution of predictions from the model within a reasonable time frame; a careful balance

that often still results in noise being present, which may cause approximation error. Our

current study takes several precautions to ensure that our inferences are not the result of

approximation error, using repeated, independent calculations of the marginal likelihood,

and performing several robustness analyses. However, due to the greater potential for

approximation error in simulation-based methods, we wish to make the general recommen-

dation that simulation-based methods should not be considered a first-step for comparing

models, and instead should be considered a last resort. Ideally, researchers should use

analytically or numerically computed likelihood likelihood functions in cases where they
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are available and computationally tractable. However, we believe that many psychologi-

cally interesting models result in situations where computing these deterministic likelihood

functions are not possible or feasible, and that our pseudo-likelihood Bayes factors provide

a principled, robust method of model comparison in these situations.

TIDE and marginal likelihood estimation methods

Thermodynamic Integration via Differential Evolution (TIDE; Evans & Annis, 2019)

is a method for estimating the marginal likelihood for a model in a specified data set. In

order to determine which of a series of models provides the best explanation of the un-

derlying psychological process, these models must be compared; however, simply assessing

which model provides the best fit to the data is inadequate, as more flexible models are

provided with an unfair advantage over simpler models. Previous research has suggested

that the Bayes factor provides the optimal balance between goodness-of-fit and flexibility

in model selection, with the Bayes factor being the ratio of the marginal likelihoods of

two models (Kass & Raftery, 1995; Myung & Pitt, 1997; Evans & Brown, 2018; Evans,

Howard, et al., 2017). Specifically, calculating the marginal likelihood involves integrating

the unnormalized posterior probability (i.e., P (D|θ,M)P (θ|M)) over the entire parameter

space, which provides a natural punishment for flexibility that accounts for the models

functional form. Models that are able to predict a broad range of data patterns a-priori –

based on their parameters, the prior distributions on their parameters, and their functional

form – will be more heavily penalized by this integration than models that make more con-

strained predictions about the data patterns. However, calculating the marginal likelihood

in complex models with multiple parameters requires the estimation of a multi-dimensional

integral, which can be computationally intractable, and has largely restricted the use of

Bayes factors to simple statistical models where the marginal likelihood can be calculated

analytically.
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Recent research has focused on developing methods for estimating this multi-

dimensional integral in complex cognitive models, through a means of either computing

technology (Evans & Brown, 2018), sophisticated sampling algorithms (Gronau et al.,

2017), or mathematical identities that change the integral to a single-dimensional estimate

(Annis et al., 2019). Although several potential methods exist for marginal likelihood esti-

mation, our study focuses on Thermodynamic Integration (TI), a method from the latter

category that has been applied to evidence accumulation models in several previous studies

(Annis et al., 2019; Evans & Annis, 2019; Evans, Bennett, & Brown, 2018; Evans, 2019a).

Specifically, TI involves the estimation of several “power posteriors”, which are posterior

distributions, but with the likelihood function of the model (i.e., the probability of the data

given the parameters; P (D|θ,M)) raised to a power between 0 and 1, known as tempera-

tures. As shown by Lartillot and Philippe (2006) and Friel and Pettitt (2008), integrating

the posterior mean log-likelihood over the dimension of temperature between the values

of 0 and 1 will provide the marginal likelihood, given that the number of temperatures

used is adequate to provide an accurate estimate of this integral. Therefore, TI requires

MCMC sampling at a range of temperatures to obtain the posterior mean log-likelihood

for each, which is then integrated over temperature using a simple integration rule (e.g.,

the trapezoidal rule) to obtain an estimate of the marginal likelihood. More details about

the specifics of TI and the mathematical definitions can be found in Annis et al. (2019).

However, TI (and other marginal likelihood estimation methods) still come with a sizeable

computational burden, meaning that previous applications have been restricted to models

with analytic likelihood functions.

One practical limitation of TI is that a large number of posterior distributions (ap-

proximately 40; Annis et al., 2019) needs to be estimated to obtain an accurate approxi-

mation of the log-marginal likelihood. TIDE attempts to reduce the practical limitation
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in TI of having to estimate a large number of independent posterior distributions by com-

bining TI with the posterior estimation method of Differential Evolution Markov chain

Monte Carlo (DE-MCMC; Ter Braak, 2006; Turner, Sederberg, Brown, & Steyvers, 2013).

DE-MCMC is a form of population MCMC, where a series of parallel chains each sam-

ples from the posterior, while interacting by informing the proposal jumps of one another.

Specifically, DE-MCMC uses the difference between the parameter values of two randomly

selected chains to create the proposal jump of a third chain:

θi,c = θi−1,c + �(θi−1,l − θi−1,m) + ✏, (9)

where i indexes the sampling iteration, c is the chain to be updated, l and m are randomly

chosen other chains, � is a tuning parameter that controls the size of proposal jump, and ✏ is

a random variable based on a tuning parameter that adds a small amount of uniform noise.

TIDE combines TI and DE-MCMC by using a series of parallel chains that interact via the

DE-MCMC proposal jumps, which each estimate the posterior of a different temperature,

allowing the marginal likelihood to be estimated in a single MCMC estimation procedure.

Similar to DE-MCMC, it is important that TIDE is implemented with at least 2k parallel

chains, where k is the number of free parameters in the largest updating block, to allow

the chains to adequately move through the parameter space.

Model comparison

Our study aims to provide insight into two important theoretical questions regarding

the flanker task. Firstly, and most notably, we assess which of the three conflict diffusion

models provide the best explanation of the cognitive process underlying the flanker task.

Secondly, we attempt to understand why some models provide a better explanation of the

underlying process than others.
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To gain insight into which models provide the best explanation of the cognitive

process underlying the flanker task, we used pseudo-likelihood Bayes factors1 to compare

the 6 different models (simple and full versions of DSTP, SSP, and DMC). We only include

the full diffusion comparisons within the main text for ease of communication, as a full

diffusion version was found to be the superior model for every participant in every data set.

We chose the Bayes factor as it closely aligns with our goal of attempting to find the model

that provides the best account of the underlying process (Evans, 2019a, 2019c; Gronau

& Wagenmakers, 2019). It should also be noted that many different methods – based

on different criteria – exist for selecting between competing theoretical models (Evans,

2019a), such as cross-validation methods that select models based on their ability to predict

unseen data (Browne, 2000). However, cross-validation methods have been shown to lack

the statistical property of consistency (Gronau & Wagenmakers, 2019), where they fail

to show increasing evidence for a data-generating simpler model with increasing amounts

of data (i.e., a bias towards more complex models; Evans, 2019a), meaning that cross-

validation methods appear to be inappropriate for selecting the model that provides the

best account of the underlying process. Regardless, the general concept of applying multiple

model selection methods can be a useful robustness check, as the agreement of different

methods increases the certainty that the choice of model does not depend on the specific

assumptions of the model selection method. Although our study focuses on Bayes factors,

as we believe that they are the most appropriate method for our goal, we do not wish

to discourage researchers from applying other (or multiple) model selection methods, and

future research should further explore which methods are most useful in which situations.

To calculate the Bayes factors, we used the recently developed method TIDE (Evans

& Annis, 2019) to approximate the log-marginal likelihood for each model. We implemented

1Note that in all cases we report the log-Bayes factor and log-marginal likelihood.
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TIDE with 40 parallel chains, each estimating the posterior of a different temperature, with

the first 2,000 samples per chain discarded as burn-in, and then 5,000 samples taken per

chain for use in TI. The approximated log-marginal likelihoods for all models can be found

in the Supplementary Materials.

For the estimation of the posterior of each temperature, we used the following prior

distributions:
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All models :

z ∼ TN(0.5, 0.5, 0, 1)

ter ∼ N(0.3, 0.3, 0,∞)

a ∼ N(0.2, 0.2, 0,∞)

All complex variants :

ster, sz ∼ TN(0.1, 0.1, 0,∞)

sv ∼ TN(0.2, 0.2, 0,∞)

DSTP :

ass ∼ TN(0.2, 0.2, 0,∞)

vta ∼ N(0.3, 0.3)

vfl ∼ N(0.2, 0.2)

vss ∼ N(0.4, 0.4)

vp2 ∼ N(1.2, 1.2)

SSP :

p ∼ TN(0.5, 0.5, 0,∞)

SD0 ∼ TN(4, 4, 0,∞)

SDr ∼ TN(70, 30, 0,∞)

DMC :

vc ∼ N(0.3, 0.3)

⇣ ∼ TN(30, 30, 0,∞)

↵ ∼ TN(3, 3, 1,∞)

⌧ ∼ TN(100, 100, 0,∞)
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where N is the normal distribution with parameters (µ, �), and TN is the truncated normal

distribution with parameters (µ, �, lower bound, upper bound). The priors for the general

diffusion model parameters were chosen based upon those that have been used in previous

Bayesian applications of the diffusion model (e.g., Evans & Brown, 2017; Evans, Bennett,

& Brown, 2018). The priors for the specific parameters of each conflict model were loosely

based upon the ranges of generating values used in White et al. (2018), though we made

these priors more uninformative due to the limited previous research on the empirical ranges

of values for these parameters, and the issues found by White et al. (2018) in identifying

the values of the individual parameters. However, to ensure that our choice of priors did

not influence our results, we also performed an empirical Bayes robustness analysis, and

our key conclusions remained unchanged (see the Supplementary Materials). Our reason

for computing Bayes factors individually for each participant in each study, rather than

hierarchically over all participants (e.g., Annis et al., 2019; Evans & Annis, 2019), was to

help assess the generalizability of any inferences about the models across people (see Evans,

Bennett, & Brown, 2018 for an example of how there can be large individual differences

in Bayes factors and models selected between people). However, it should also be noted

that several hierarchical methods have been developed that allow for differences between

people in the model selected, which estimate the proportion of people who belong to each

model (Stephan, Penny, Daunizeau, Moran, & Friston, 2009; Rigoux, Stephan, Friston, &

Daunizeau, 2014), meaning that performing a hierarchical analysis does not require the

assumption that all people follow the same model.

Due to each model having a computationally intractable likelihood function, we

used probability density approximation (PDA; Turner & Sederberg, 2014; Holmes, 2015)

to approximate the likelihood function of each model through simulation. We simulated

10,000 trials per pseudo-likelihood function for each model, using the simulation method of
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Evans (2019b), and re-calculated the likelihood for the current parameters every 5 iterations

to ensure that the variability between simulations had minimal effects on the estimated

posteriors. We simulated each of the models in seconds using Euler’s method (e.g., Brown,

Ratcliff, & Smith, 2006) with a time-step of 0.01 (though see the Supplementary Materials

for a robustness analysis with a time-step of 0.001, where the results are unchanged), which

for most participants was approximately the size of the bandwidth of the Gaussian density

kernel calculated by Silverman’s rule of thumb (Silverman, 1986; recommended by Holmes,

2015). It should also be noted that large time-steps (relative to the range of response times)

can result in inaccuracies (Brown et al., 2006), and care should be taken when simulating

using Euler’s method to ensure that the choice of time-step does not impact upon the

results.

As our assessment involved three levels of approximation/estimation – marginal like-

lihood approximation with TI, posterior estimation with DE-MCMC, and likelihood func-

tion approximation with PDA – we estimated the marginal likelihood for each model for

each person 5 independent times. When comparing models through log-Bayes factors (i.e.,

the natural logarithm of the Bayes factor), the superior model was decided by whichever

model had the maximum log-marginal likelihood over all 5 approximations. However, the

log-Bayes factor was obtained by taking the minimum log-marginal likelihood of the su-

perior model, and subtracting it by the maximum log-marginal likelihood of the inferior

model, meaning that our log-Bayes factors reflected the minimum difference between the

models. Therefore, if there were variability in the approximated log-marginal likelihoods

that was large enough to potentially affect which model was selected as the superior model,

then the log-Bayes factors that we calculated would provide negative values. In contrast,

positive log-Bayes factors would be indicative of systematic differences between the models

far the noise in the approximations. For positive log-Bayes factors, we interpreted the
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strength of evidence for the winning model in line with Jeffreys (1961), which can be seen

in Table 1.

Table 1: Displays our interpretations of the strength of evidence in favour of a model based upon
the log-Bayes factor. Note that our wording of the interpretations differ slightly from those of
Jeffrey’s (1961), as we believe “weak” and “moderate” more clearly and intuitive categorize the
strength of evidence across increasing Bayes factors.

loge(BF) Our interpretation Jeffrey’s (1961) interpretation

0 to 1.16 Weak Not worth more than a bare mention
1.16 to 2.3 Moderate Substantial
2.3 to 4.61 Strong Strong
> 4.61 Decisive Decisive

To gain insight into why some models provide a better explanation of the underlying

process than others, we used a series of qualitative visual assessments that are common

within the response time modelling and conflict task literature. These assessments each

require the parameter values to be estimated for each model, which we obtained through

Bayesian hierarchical estimation of the posterior distributions (Shiffrin, Lee, Kim, & Wa-

genmakers, 2008; see Evans, Rae, Bushmakin, Rubin, & Brown, 2017; Evans, Steyvers,

& Brown, 2018; Evans, Brown, Mewhort, & Heathcote, 2018 for applications). Bayesian

hierarchical estimation constrains the parameter estimates of each individual to follow a

group-level distribution for each parameter, allowing the data of different individuals to

mutually inform the parameter estimation of one another. Specifically, each group level

distribution was either defined as normal or truncated normal, with the priors on the mean

parameter being the same as those used in the TIDE marginal likelihood approximation

for each parameter. The prior on the standard deviations was a gamma distribution with

a shape and scale of 1, with gamma distributions being commonly used for the priors on

group-level standard deviations (Evans, Brown, et al., 2018; Evans & Brown, 2017; Evans,

Steyvers, & Brown, 2018). The posterior means for these estimated parameters can be
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seen in the Supplementary Materials.

Once the posterior distributions had been estimated, we took the posterior mean

of each parameter value for each model for each participant, and used these to generated

predicted data from the model. We then contrasted these predictions to the observed

data using several qualitative visual assessments: defective cumulative density function

(DCDF) plots, conditional accuracy function (CAF; Gratton, Coles, Sirevaag, Eriksen, &

Donchin, 1988 ) plots, error location index (ELI; Servant, Gajdos, & Davranche, 2018)

plots, and delta function (DF; De Jong, Liang, & Lauber, 1994; W. Schwarz & Miller,

2012) plots. DCDF plots show the response time distributions for correct responses and

different experimental conditions, plotted as the cumulative density (y-axis) at selected

response time quantiles (x-axis). Cumulative densities are then weighted by the proportion

of correct trials, allowing misfit in accuracy and misfit across each part of the response

time distribution to be simultaneously assessed. CAF plots are constructed by sorting the

response time data into x bins of equal size, and plotting the accuracy (y-axis) against

mean response time (x-axis) in each bin. CAF plots thus allow misfit in accuracy across

each part of the response time distribution to be visually assessed. ELI plots provides a

simple metric for the relative speed of correct and error responses in incompatible trials,

derived from the error location function. While CAF shows the proportion of errors in

a given response time bin (calculated with respect to the number of trials in the bin),

the error location function shows the proportion of all errors below each response time

quantile, and does not require data binning (for mathematical details, see Servant, Gajdos,

& Davranche, 2018). ELI is simply the area under the error location function; it is bounded

between 0 and 1, where a value of 0 indicates that all error trials are slower than all correct

trials, and a value of 1 indicates that all error trials are faster than all correct trials.

DF plots are constructed by plotting the difference (y-axis) against the average (x-axis) of
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equivalent correct response time quantiles between incompatible and compatible conditions,

allowing misfit in the time-course of the flanker compatibility effect to be visually assessed.

These analyses intend to provide insight into what qualitative aspects of the empirical

data different models are successfully capturing, and what aspects the models are failing

to account for, which should help to understand (1) why certain models perform better

than others, and (2) where future model development may be useful to provide an even

more accurate explanation of the flanker task.

Results

Determining which models provide better explanations of the flanker task

White et al. (2011). Figure 1 plots the Bayes factor analysis for the White et al.

(2011) data. Each plot displays a different subject, and different colours display the es-

timated log-marginal likelihoods for the different classes of models. Different points of

the same colour on the same point of the x-axis display the 5 different approximated log-

marginal likelihoods for the model. As mentioned previously, we only include comparisons

between the “full” versions of these models in the figures for brevity, as in all cases the best

model was a complex version. Figures with the marginal likelihoods for all models can be

seen in the Supplementary Materials, and the pattern of results were similar regardless of

the incorporation of between-trial variability parameters.
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Figure 1. Displays the log marginal likelihoods for DMC (blue crosses), DSTP (red crosses), and

SSP (green crosses), across 5 different estimation runs (different crosses), for each subject (different

plots) in the data of White et al. (2011). Note that the x-axis displays different models. Log-Bayes

factors are displayed for comparisons between these models, which are calculated as discussed in

the main text. Connecting lines show the marginal likelihood estimates being compared, with the

colour of the line and written log-Bayes factor indicating the winning model in the comparison. All

models shown are the complex versions, with equivalent plots including the simple versions being

shown in the Supplementary Materials.
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First and foremost, DMC performs systematically worse than DSTP and SSP for

every participant in these data. When looking at the log-Bayes factor analysis, SSP ranges

from 25.8 to 106.2 in log-Bayes when compared against DMC, meaning that in all cases the

data are at least 1.6 × 1011 more likely under SSP than DMC. DSTP shows a similar range

of log-Bayes factor when compared to DMC, ranging from 28.2 to 87.2, meaning that in all

cases the data are at least 1.77 × 1012 more likely under DSTP than DMC. These analyses

provide conclusive evidence that DMC provides a worse account of the White et al. (2011)

data than both DSTP and SSP, and that this inferiority is true for all participants within

the study.

When comparing the ability of DSTP and SSP to account for these data, the results

are less conclusive, though appear to show a general preference for SSP. Of the 25 subjects,

4 show no clear evidence for either model (log-Bayes factor < 0), 19 show evidence for SSP,

and 2 show evidence for DSTP. Although both participants who favour DSTP show strong

evidence in favour of DSTP (log-Bayes factors of 3.6 and 4), 17 of the participants who

favour SSP show at least strong evidence in favour of SSP, and 16 of those participants

show decisive evidence. Therefore, SSP appears to provide a better account of the data

from White et al. (2011) than DSTP, though not to the same extent that SSP and DSTP

outperform DMC.

Ulrich et al. (2015). Figure 2 plots the Bayes factor analysis for the Ulrich et al.

(2015) data. Interestingly, the trends within these data appear to be less conclusive than

the data of White et al. (2011), with all models performing more similarly. Importantly

though, DMC is again found to be the worst model for every participant, with the winning

model always being strongly preferred over DMC. However, the 2nd best model is not always

strongly preferred over DMC, with one participant (14) showing unclear evidence between

DSTP and DMC (log-Bayes factor = -1.9), and another three participants showing only
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moderate evidence. However, there is still at least strong evidence that DMC is the worst

model in 12/16 participants, and that DMC is not the best model in all 16 participants.
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Figure 2. Displays the log marginal likelihoods for DMC (blue crosses), DSTP (red crosses), and

SSP (green crosses), across 5 different estimation runs (different crosses), for each subject (different

plots) in the data of Ulrich et al. (2015). Note that the x-axis displays different models. Log-Bayes

factors are displayed for comparisons between these models, which are calculated as discussed in

the main text. Connecting lines show the marginal likelihood estimates being compared, with the

colour of the line and written log-Bayes factor indicating the winning model in the comparison. All

models shown are the complex versions, with equivalent plots including the simple versions being

shown in the Supplementary Materials.
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The comparison between DSTP and SSP for the Ulrich et al. (2015) data yields

mixed results, with many participants showing a limited strength of evidence in either

direction. Four participants show no clear evidence for either model (log-Bayes factors <

0), five participants show weak evidence in favour of DSTP, one participant shows moderate

evidence, and three participants show strong or decisive evidence, with the remaining

three participants showing strong evidence in favour of SSP. Although the evidence is

much weaker in these data than those from White et al. (2011), DSTP seems to provide a

slightly better account of the Ulrich et al. (2015) data than SSP.

Servant et al. (2015). Figure 3 plots the Bayes factor analysis for the Servant et

al. (2015) data. Like the White et al. (2011) data, there appears to be more conclusive

differences between the models, with stronger evidence than the Ulrich et al. (2015) data.

Importantly, DMC performs worse than DSTP and SSP for every participant in the Servant

et al. (2015) data, which has been the case in all three data sets that we have assessed.

The log-Bayes factor for SSP compared to DMC ranges from 14.8 to 58.6, and for DSTP

compared to DMC ranges from 6.4 to 65.8, meaning that for all participants there is decisive

evidence for the superiority of DSTP and SSP over DMC.
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Figure 3. Displays the log marginal likelihoods for DMC (blue crosses), DSTP (red crosses), and

SSP (green crosses), across 5 different estimation runs (different crosses), for each subject (different

plots) in the data of Servant et al. (2015). Note that the x-axis displays different models. Log-Bayes

factors are displayed for comparisons between these models, which are calculated as discussed in

the main text. Connecting lines show the marginal likelihood estimates being compared, with the

colour of the line and written log-Bayes factor indicating the winning model in the comparison. All

models shown are the complex versions, with equivalent plots including the simple versions being

shown in the Supplementary Materials.
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Like the Ulrich et al. (2015) data, the comparison between DSTP and SSP for the

Servant et al. (2015) data yields mixed results, though the overall strength of evidence for

each participant is stronger. Six participants show strong or decisive evidence in favour

of DSTP, five participants show strong to decisive evidence in favour of SSP, and one

participant shows moderate evidence in favour of SSP. These findings suggest that although

there is clear evidence in most cases for what model best accounts for a specific person’s

data, the participants are equally split between evidence in favour of DSTP and SSP.

Understanding why DMC provides a poorer explanation of the flanker task

To try and gain some insight into why DMC provided a poorer account of these data

than DSTP and SSP, we plotted the model predictions (based on the posterior mean) in

combination with the empirical data to assess which trends the models were/weren’t able

to capture. As discussed previously, we visualized the observed and predicted data for each

model using 4 different methods: DCDF plots, CAF plots, DF plots, and ELI plots.

Figure 4 shows the DCDF plots for each model (rows) in each data set (columns). For

the White et al. (2011) data set there are several clear discrepancies between the observed

data and the DMC predictions. Firstly, and most noticeably, DMC provides a poor fit

to the later quantiles of the correct response time distribution in both the compatible

and incompatible conditions, under-predicting these quantiles for compatible trials and

over-predicting these quantiles for incompatible trials. Secondly, DMC under-predicts the

accuracy in the incompatible condition, which can be seen in the lower response proportions

in the predicted defective density than the observed defective density. Lastly, DMC under-

predicts the leading edge of the response time distribution (i.e., the early quantiles) for

incompatible trials, predicting that it should be much closer to that of compatible trials

than is actually observed. Although the predictions of DSTP and SSP do not perfectly

match the observed data, their discrepancies are much more subtle than those of DMC,
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providing an initial indication of why DMC provided an inferior explanation of the White

et al. (2011) data set than DSTP and SSP. For the Ulrich et al. (2015) and Servant et

al. (2015) data sets, the misfit of DMC is much more subtle, and much closer to that of

DSTP and SSP. DMC again under-predicts the leading edge for incompatible trials in both

data sets, though the discrepancy is reduced compared to the White et al. (2011) data set,

and although DMC still provides some misfit to the later quantiles of both compatible and

incompatible trials in the Servant et al. (2015) data set, this is not the case for the Ulrich

et al. (2015) data set. In summary, the DCDF plots show that DMC provides a greater

misfit to the data than DSTP and SSP in all data sets, though this difference in misfit

ranges from large (White et al., 2011) to very minor (Ulrich et al., 2015).
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Figure 4. Defective cumulative density function (DCDF) plots for each model (rows) in each data

set (columns). The DCDF plots display 19 (0.05 to 0.95, in increments of 0.05) response time

quantiles (different points) of correct responses for each experimental condition, plotted by the

response time (x-axis) and response proportion (y-axis) for that quantile. Dots display observed

data, with black dots displaying the compatible condition and grey dots displaying the incompatible

condition. Crosses display model predictions, with green crosses displaying the compatible condition

and red crosses displaying the incompatible condition.
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Figure 5 shows the CAF plots for each model (rows) in each data set (columns). CAF

plots from the observed data in flanker studies typically show a pattern where in compatible

trials the accuracy is consistent and high across the entire response time distribution,

whereas in incompatible trials the accuracy is initially low, but then increases with longer

response times. All three studies show this typical pattern, though each to a different

extent: the White et al. (2011) data set shows the most extreme version of this pattern

with accuracy initially at chance in incompatible trials, the Ulrich et al. (2015) data set

shows a moderate version with accuracy initially around 70% in incompatible trials, and the

Servant et al. (2015) data set shows the most mild version with accuracy initially around

85% in incompatible trials. DSTP and SSP provide a good account of this pattern, and

the different extremities of this pattern, in all three data sets, though they do display some

minor misfit throughout. In contrast, DMC appears to have some difficulties capturing this

pattern in all three data sets, under-predicting the accuracy with longer response times in

incompatible trials. For the White et al. (2011) data set DMC under-predicts the accuracy

for much of the distribution, whereas for the Ulrich et al. (2015) data set DMC initially

over-predicts the accuracy, before under-predicting the accuracy for the remainder of the

distribution. In summary, the CAF plots show that DMC is unable to capture the change

in accuracy in incompatible trials over the response time distribution, providing an under-

prediction of accuracy in later parts of the distribution, and providing poor prediction –

in some cases under, and in other cases over – in the early parts of the distribution.
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Figure 5. Conditional accuracy function (CAF) plots for each model (rows) in each data set

(columns). The CAF plots display 10 response time bins (different points), with the upper limit

of each bin corresponding to response time quantiles (0.1 to 1, in increments of 0.1) for each

experimental condition, plotted by the mean response time (x-axis) and response accuracy (y-axis)

for that bin. Dots display observed data, with black dots displaying the compatible condition and

grey dots displaying the incompatible condition. Crosses display model predictions, with green

crosses displaying the compatible condition and red crosses displaying the incompatible condition.
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Figure 6 shows the ELI plots for each model (rows) in each data set (columns).

The distribution of error response times in incompatible trials is largely faster than the

distribution of correct response times in all three data sets, which is particularly the case

in the (White et al., 2011) data set, where errors are highly concentrated among the

fastest responses with an ELI of around 0.85. In all three data sets DMC provides a large

under-prediction of the ELI, instead predicting that the distributions of error and correct

response times in incompatible trials are quite similar (predicted ELI of around 0.5 in both

the White et al. (2011) and Ulrich et al. (2015) data sets). In contrast, DSTP and SSP

perfectly capture the ELI in both the Ulrich et al. (2015) and Servant et al. (2015) data sets,

showing that they capture the characteristic pattern of fast errors in incompatible trials.

Interestingly, the ELI plots also provide clear insight into why SSP provides a better

explanation than DSTP for most participants in the (White et al., 2011). Specifically,

DSTP under-predicts the ELI, predicting that the error and correct response times are

more similar than they actually are, whereas SSP predicts this trend near perfectly. As a

greater proportion of fast errors are observed in White et al. (2011) than both other data

sets, the advantage of SSP over DSTP in White et al. (2011) may be due to unique aspects

of the experimental paradigm (e.g., the 350ms inter-trial interval, which was faster than

the other studies), rather than any general superiority of SSP over DSTP. In summary,

the ELI plots show that DMC is unable to capture the fast errors observed within the

incompatible condition of the flanker task in all three data sets, whereas DSTP and SSP

both capture this pattern well.
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Figure 6. Error location index (ELI) plots for each model (rows) in each data set (columns). The

ELI plots display the relative speed of correct and error responses in incompatible trials across the

entire response time distribution, with a value of 1 indicating that all errors are concentrated among

the fastest incompatible responses, and a value of 0 indicating that all errors are concentrated among

the slowest incompatible responses (y-axis). Black bars display the observed data, and green bars

display the model predictions.
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Figure 7 shows the DF plots for each model (rows) in each data set (columns). DF

plots from the observed data show a consistent pattern where correct response times for

compatible trials are faster than incompatible trials, and this difference in relative speed

increases from early responses to median responses, though in later responses the difference

is more stable. DSTP and SSP provide a good account of the general pattern in the DF,

capturing the initial increase followed by the later stability. In contrast, DMC is unable to

capture this general pattern: although DMC captures the initial increase, DMC predicts a

continuing increase in the later responses, rather than the stability observed in the data.

Interestingly, DSTP and SSP do not perfectly capture the DF functions, showing under-

prediction and over-prediction for several parts of the data, suggesting that both DSTP

and SSP may still benefit from further model development. In summary, the DF plots show

that DMC is unable to capture the stabilization in the difference between correct response

times in compatible and incompatible trials (i.e., the flanker effect) for later responses, and

instead predicts that the flanker effect continues to grow larger in later responses.
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Figure 7. Delta function (DF) plots for each model (rows) in each data set (columns). The DF

plots display 19 (0.05 to 0.95, in increments of 0.05) response time quantiles (different points)

of correct responses for each experimental condition, plotted by the average response time across

conditions (x-axis) and the difference in response time between conditions (y-axis) for that quantile.

Black dots represent observed data, and green crosses represent model predictions.
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Overall, these qualitative trends suggest that DMC provides a poorer explanation

of the flanker task than DSTP and SSP for several reasons: (1) under-estimation of the

accuracy in later incompatible trials responses, (2) under-estimation of the response time

of errors relative to correct responses, and (3) over-estimation of the difference between

incompatible and compatible trial correct response time in later trials. Specifically, the

visual patterns predicted by DMC all appear to point to one common issue: a continuing

influence of DMC’s automatic process in later stages of the decision. Theoretically, the

automatic process within DMC is designed to provide an initial, automatic influence of

the task-irrelevant flanker stimuli, which then decreases over time until the flankers no

longer have any influence (for a review of experimental data supporting this hypothesis,

see Ulrich et al., 2015 p. 152). Practically, the expected mean of the automatic activation

(i.e., accumulated drift rate) is modelled as a scaled gamma function, which under many

parameterizations will show this pulse-like shape. However, the incorrect predictions of

DMC appear to suggest that this is not the case, and that the automatic activation is

still strong during the later parts of the decision process. To assess whether this was the

case, we used the posterior means (which can be seen in the Supplementary Materials) for

each data set to calculate the expected mean of the automatic activation E[Xa(t)], which

corresponds to the integral of the time-varying drift rate of the automatic process:

E[Xa(t)] =

Z
∞

0
va(t) dt = ⇣ × e

−t

τ × [
t× e

(↵− 1)× ⌧
](α−1) (10)

The expected mean of the automatic process averaged across subjects for each data set is

shown in Figure 8. Interestingly, under these parameterisations the expected mean of the

automatic activation either continues to increase (the Ulrich et al., 2015 and Servant et al.,

2015 data sets) or remains stable (the White et al., 2011 data set) over the course of time

that most decisions are made within (i.e., 0.8s from accumulation onset). This provides
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a clear explanation for DMC’s poor account of the flanker task: the model predicts a

continuous or increasing influence of flanker stimuli over the course of the decision, whereas

the empirical data appear to show trends consistent with a decreasing influence of flanker

stimuli. As a side note, these findings are in contrast to those of Ulrich et al. (2015),

who found that DMC provided an accurate account of the CAF and DF patterns in their

flanker data when fit directly to the group-averaged CAFs and correct response CDFs,

using a root mean squared error (RMSE) cost function with an arbitrary weight assigned

to the CAFs relative to the correct response CDFs. Importantly, the difference between

our findings and those of Ulrich et al. (2015) could be due to (1) our use of the entire

response time distributions, rather than the 19 quantiles for only correct responses used

by Ulrich et al. (2015), (2) our use of a Bayesian approach that weights all data equally,

rather the arbitrary weight between correct response CDFs and CAFs used by Ulrich et al.

(2015), and/or (3) our use of fits to individual participants, rather than the fitting of group-

level trends used by Ulrich et al. (2015) (a practice that has known averaging issues; see

Estes, 1956; Heathcote, Brown, & Mewhort, 2000; Evans, Brown, et al., 2018). However,

it should be noted that previous studies have suggested that individual participant and

group-level conflict diffusion model analyses lead to identical conclusions, meaning that

averaging issues may not be a practical concern in the context of conflict diffusion models

(Servant et al., 2016; Mahani, Bausenhart, Ahmadabadi, & Ulrich, 2018). Interestingly, our

findings suggest that DMC provides a poor account of the typical CAF and DF patterns in

flanker data when constrained by the entire response time distributions for each individual

participant, as it must sacrifice capturing these patterns to capture other patterns in the

data.
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Figure 8. Plots of the time-course of the expected mean of the automatic activation E[Xa(t)] from

the DMC. The y-axis displays E[Xa(t)], and the x-axis displays the time since accumulation onset.

Green lines display the compatible condition, and red lines display the incompatible condition.

Black lines indicate the unbiased starting point of accumulation, halfway between the two decision

bounds.

Discussion

Our study aimed to provide the first comprehensive quantitative comparison between

the three key models of the flanker task – the DSTP (Hübner et al., 2010), the SSP (White

et al., 2011), and the DMC (Ulrich et al., 2015) – using the flanker data from three previous

studies – White et al. (2011), Ulrich et al. (2015), and Servant et al. (2015). Each of these

models have been developed as theoretical extensions of the diffusion model (Ratcliff, 1978)

and provide an explanation for how interference effects occur in conflict tasks. Previous

research has found that these models make quantitatively distinguishable predictions about

the response time distributions, which suggests that they can be quantitatively compared

(White et al., 2018). In addition, White et al. (2018) showed that the models based on

theories of visual attention (DSTP and SSP) provide measures of cognitive control that



COMPARISON OF CONFLICT MODELS THROUGH BAYES FACTORS 51

differ from the model based on theories of automaticity (DMC). We attempted to establish

which model(s) provide the best account of the flanker task, and therefore, which mea-

sure(s) of cognitive control should be trusted. Previous studies have found mixed results

when quantitatively comparing “simple diffusion” variants of DSTP and SSP, and no previ-

ous studies have incorporated DMC into the comparison, which is a key limitation as DMC

diverges from DSTP and SSP about inferences for cognitive control. Our study compared

simple and full diffusion variants of all three models, using probability density approxi-

mation (PDA; Turner & Sederberg, 2014; Holmes, 2015) and thermodynamic integration

via differential evolution (TIDE; Evans & Annis, 2019) to calculate Bayes factors for these

models with computationally intractable likelihood functions.

Theoretical impacts of our study

Interestingly, our findings provided a clear answer to our central theoretical question:

which conflict diffusion models provide a better explanation of the flanker task than others.

For every participant within each of the three studies assessed (53 total participants),

DMC provided an inferior account of the data than DSTP and SSP when assessing the full

diffusion variants. For every participant in White et al. (2011) and Servant et al. (2015),

and 12/16 participants in (Ulrich et al., 2015), there was at least strong evidence for DMC

providing the poorest account of the data, and for every participant in every study there

was at least strong evidence for DMC not being the best model of the data. These findings

demonstrate that DMC provides a substantially poorer account of the flanker task than

DSTP and SSP. Consequently, SSP and DSTP should be favored when drawing inferences

(e.g., measures of cognitive control) from flanker data.

Our study also investigated why DMC provided a poorer explanation of the flanker

task than DSTP and DMC. Specifically, we assessed DCDF, CAF, ELI, and DF plots,

which unveiled several issues: an under-estimation of the accuracy in later incompatible
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trials responses, an under-estimation of the response time of errors relative to correct

responses, and an over-estimation of the difference between incompatible and compatible

trial correct response time in later trials. These misfits all appear to point to one common

issue: a continuing influence of DMC’s automatic process in later stages of the decision.

This issue was confirmed by an analysis of the expected mean of the automatic activation

(E[Xa(t)]) computed from parameters that best accounted for the entire response time

distributions. Under this parameterisation, E[Xa(t)] either remained stable or continued

to increase over decision time, resulting in a continued or increasing influence of the flankers

over time, and an inability to capture many aspects of the data. Note that this does not

indicate a failure of DMC to capture these trends under all possible parameterisations, but

rather, a failure of DMC to capture these trends under the parameter values that provide

the best account of the complete data.

Given the apparent failure of the DMC, it might be tempting to conclude that the

visual attention explanations of the flanker task appear to be better than the automaticity

explanation. However, prominent theories of automaticity, such as Logan’s instance theory

(Logan, 1988), assert that automaticity is a consequence of attention, suggesting that these

models have underlying theoretical similarities. The observed failure of the DMC might

be rooted in the general assumption of summing independent automatic and controlled

activations at the decision stage, or to ancillary assumptions such as the choice of a gamma

function to model the automatic activation.

It should also be noted that our study focused solely on the flanker task, and the

inferiority of DMC in the flanker task should not be extrapolated to a general failure of

DMC in all conflict tasks. We chose to compare these models on the flanker task as it is

the task that all three models were designed to account for, and therefore, provides the

fairest comparison. When considering other conflict tasks, such as the Simon task, DMC
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has previously been shown to be able to provide an accurate account of the qualitative

trends in these tasks, such as the delta functions (Ulrich et al., 2015). However, these

previous findings should also be taken with a grain of salt based on the findings of our

study. Specifically, DMC has also been shown to be able to provide an accurate account

of these qualitative trends in the flanker task, though as shown in our study, this is not

the case when DMC is fit to the entire empirical data. Therefore, we believe that future

research should investigate the ability of DMC to account for qualitative trends in conflict

tasks while constrained by the entire data. Note that we are in no way attempting to claim

that DMC fails to provide an accurate account of the qualitative trends in other conflict

tasks, such as the Simon task, and we believe that such a conclusion would be unjustified

based on the findings of our study. Furthermore, we again wish to emphasize that the

results of our study are only applicable to understanding the process that underlies the

flanker task, and not conflict tasks in general. However, we believe that investigating other

conflict tasks – or several conflict tasks jointly – with our proposed methodology is an

important avenue for future research, which would greatly aid our understanding of how

conflict processing generally operates. Moreover, we believe that connecting cognitive mod-

els with neurophysiological data is fundamental to understanding how cognitive processes

are implemented in the brain, and that future research should strive to better incorporate

theories about these connections within the frameworks of the conflict diffusion models,

and to compare these theories by constraining the models to account for both behavioural

and neurophysiological data (e.g., Purcell et al., 2010; Purcell, Schall, Logan, & Palmeri,

2012; Servant et al., 2015, 2016; Servant, Tillman, Schall, Logan, & Palmeri, 2019).

When comparing DSTP and SSP, the two models based on visual attention research,

the results were mixed. The White et al. (2011) data appeared to provide clear evidence in

favour of SSP, with 17/25 participants showing at least strong evidence in favour of SSP and
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only 2/25 participants showing strong evidence in favour of DSTP. Further investigation

revealed that DSTP’s poorer performance in these data appeared to be the result of an

under-prediction of the response time of errors relative to correct responses in incompatible

trials. However, both the Ulrich et al. (2015) and Servant et al. (2015) data sets showed

no clear winner. In Ulrich et al. (2015), 3/16 participants each showed at least strong

evidence in favour of each model, with several more showing weaker evidence in favour

of DSTP, suggesting that DSTP provided a slightly better account of these data. The

Servant et al. (2015) data set provided a near-perfect split between the models, with 6/12

participants each favouring DSTP and SSP, though only 5/6 favouring SSP showing at

least strong evidence. Although it may appear that SSP generally provides a superior

explanation to DSTP based on the strong evidence in favour of SSP in the data of White

et al. (2011), this superiority might also be explained by methodological discrepancies

between studies. Specifically, one potentially key difference is the response-stimulus interval

(RSI), which was 350ms in the White et al. (2011) data, but much longer in the Servant

et al. (1,000ms) and Ulrich et al. (1,500ms) data sets. Hübner and Töbel (2012) argued

that the shrinking spotlight component of the SSP predicts an improvement of attentional

selectivity that is generally too fast to capture the corresponding improvement of accuracy

in the incompatible condition. Importantly, they found that a reduction of RSI (up to

350ms, as in the White et al. (2011) data set) increases spatial selectivity, resulting in an

overall reduction in the error rate. Therefore, our observed superiority of the SSP over the

DSTP under the conditions of White et al. (2011) may not be particularly surprising, given

that the short RSI can eliminate a key shortcoming of SSP, and that SSP is generally more

parsimonious than DSTP. It should also be noted that for our model recovery assessment

based on the estimated parameters (see the Supplementary Materials), DSTP was difficult

to recover when it was the true generating model, with SSP closely mimicking the data
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generated by DSTP (see Wagenmakers, Ratcliff, Gomez, & Iverson, 2004 for a discussion

of model mimicry). This is in contrast to the findings of (White et al., 2018), and suggests

that under some parameterisations – such as those that best account for the data sets in

our study – SSP can strongly mimic DSTP, which may make the superiority of SSP in the

White et al. (2011) data set questionable.

One interesting question arising from our study is why the results were so mixed

between DSTP and SSP for the Ulrich et al. (2015) and Servant et al. (2015) data sets.

Although the cross-fitting assessment of White et al. (2018) found that these models are

quantitatively distinguishable over a wide spectrum of parameter combinations, the models

still may be quantitatively similar in some circumstances, where the superior model is

decided by minor trends in the response time distributions that may not be consistent across

people. The main theoretical divergence between the models concerns whether attention

selectivity improves in a discrete (DSTP) or continuous (SSP) manner, resulting in a

discrete or continuous change in decision evidence. However, the latency at which selection

occurs within DSTP is variable from trial to trial – based on the target identification

process – which could be considered to globally approximate a continuous selection process.

In addition, the shrinking spotlight mechanism of the SSP can approximate a discrete

selection process if the shrinking rate SDr is large compared to the initial spotlight width

SD0. We found this to be the case, particularly in the Ulrich et al. (2015) and Servant

et al. (2015) data sets where the results were mixed. Estimated parameters (posterior

means averaged across subjects; see the Supplementary Material) showed SD0 = 8.08,

2.98, 4.67 and SDr = 0.17/ms, 0.19/ms, 0.13/ms for the White et al. (2011), the Ulrich et

al. (2015), and the Servant et al. (2015) data sets respectively. Consequently, the latency at

which attention is fully focused on the target (i.e., SD(t) = .001) relative to decision onset

is fast (48ms, 23ms, 24ms), which approximates an abrupt change in decision evidence.
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This also provides a potential explanation for why SSP was able to strongly mimic DSTP

in our model recovery assessment, but that White et al. (2018) found clear separation

between these models. Future research may benefit from detailed assessments of selection

dynamics within SSP and DSTP, and how similar they can become in different regions of

the parameter space.

Our findings also appeared to show a general superiority for the “full” diffusion

variants of the models – which include between-trial variability parameters for drift rate,

starting point, and non-decision time – over the “simple” diffusion variants – which include

no between-trial variability parameters. For every participant in the White et al. (2011)

and Servant et al. (2015) experiments, the full diffusion variant of each model produced

a higher marginal likelihood than its simple diffusion counterpart, and this was also the

case for the vast majority of cases in Ulrich et al. (2015). These findings suggest that

these between-trial variability parameters are important for explaining certain data trends

in conflict tasks, which is perhaps not surprising given their importance in explaining

benchmark response time phenomena in standard decision-making tasks (Ratcliff, 1978;

Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002). Importantly, previous applications

and comparisons of these models have only used the “simple” variants, which appears to

be a major caveat, and future studies should aim to apply these models within the full

diffusion framework.

Methodological impacts of our study

Our study made key advancements in the methodology for determining which model

provides the best explanation of an unknown psychological process, making the comparisons

through Bayes factors, which have only been implemented in a few instances for cognitive

models of choice response time (Evans & Brown, 2018; Annis et al., 2019; Evans & Annis,

2019; Evans, Bennett, & Brown, 2018) due to recent advancements in methods of marginal
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likelihood approximation (Annis et al., 2019; Evans & Annis, 2019). Most notably, the

models that we assessed have computationally intractable likelihood functions, meaning

that the TIDE marginal likelihood approximation method had to be integrated with PDA,

to obtain a pseudo-likelihood for the models through simulation. This combination of PDA

and TIDE – which we term pseudo-likelihood Bayes factors – has potential broad-reaching

implications, as any model that can be simulated can also, in theory, have a marginal

likelihood calculated for it, meaning that the comparison of any models can be done via

Bayes factors. We believe that using these methods together provides a crucial step forward

in how researchers compare computational models with unknown or intractable likelihood

functions, such as the comparison between conflict models of the flanker task that we

performed within our study.

Our study also offered insight into why DSTP and SSP provide a better explanation

of the psychological process underlying the flanker task than DMC. Importantly, our study

makes a clear distinction between determining which model provides the best explanation

of the underlying process – a question best answered by principled model selection methods

– and understanding why some models outperformed others – a question best answered by

visual assessments of qualitative trends in the data (see Evans, 2019c for a more detailed

discussion). Research comparing cognitive models often focuses solely on the question of

which or why, either only performing model selection to determine which model is best,

which leaves understanding why this is the case to future research, or skipping model

selection and moving straight to visual assessments of qualitative trends, which ignores

large portions of the empirical data (Evans, 2019c) and provides no correction for model

flexibility (Roberts & Pashler, 2000). Our study provides a clear example for how both

questions can be answered within a single study. Firstly, researchers should use principled

model selection techniques to determine which model provides the best account of an



COMPARISON OF CONFLICT MODELS THROUGH BAYES FACTORS 58

underlying process, and then use visual assessments of qualitative trends to understand

why this is the case. We believe that our combination of answering the which and why has

provided valued insight into the flanker task, and that future studies could benefit from

similar assessments.

Furthermore, our study used a series of robustness analyses to ensure the consistency

of our inferences across different ways that the models could potentially have been applied

(see the Supplementary Materials). Specifically, we assessed the robustness of our infer-

ences against simple simulation requirements, general specification of the functional form

of DMC, and the prior distributions used to calculate Bayes factors. One robustness anal-

ysis that we believe is of general relevance to future comparisons between cognitive models

is our empirical Bayes robustness analysis, which we used to ensure the robustness of our

inferences across different prior distributions. This analysis took the estimated posterior

distributions for the parameters that are unique to DMC (⌧ , ⇣, and ↵), and re-calculated

the Bayes factors using these posterior distributions as the prior distributions, meaning

that DMC essentially had the perfect prior distributions for its unique parameters, pro-

viding it with a unfair advantage over the other models. However, even with this extra

advantage, DMC was still generally inferior to DSTP and SSP, meaning that our inferences

were robust against the prior distributions specified for the parameters that are unique to

DMC. One important thing to consider is how exactly the empirical Bayes robustness

analysis should be interpreted. In our view, a reversal in inferences in the empirical Bayes

robustness assessment does not mean that the previous inferences were incorrect, as there

are known issues with empirical Bayes approaches, and more generally empirical Bayes will

be biased towards more flexible models. However, seeing no change in inferences provides

a strong assurance that even the perfect choice of priors for these data would not have re-

sulted in a change in inferences, and seeing a reversal in inferences suggests that the prior
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distributions of the models, and their influence on the inferences made, should be more

carefully explored. It should also be noted that our empirical Bayes robustness analysis is

not useful when comparing nested models – where one model in the comparison is a subset

of the other model – as the empirical Bayes approach will be strongly biased towards the

more complex model (i.e., a conceptually similar issue to the one discussed by Gronau &

Wagenmakers, 2019 with Bayesian leave-one-out cross-validation).

Although we believe that our proposed pseudo-likelihood Bayes factors provide a

crucial step forward in how researchers compare computational models with unknown or

intractable likelihood functions, there are also limitations of our methodology that should

be acknowledged. Specifically, our methodology relies on several layers of approximation:

PDA to approximate the likelihood function, MCMC to approximate the posterior distri-

butions, and TI to approximate the marginal likelihood. Importantly, large approximation

error in any of these layers, or the propagation of error across several of these layers, could

result in unreliable inferences that are the result of noise in the approximation process.

Approximation errors in lower levels of the process, such as the pseudo-likelihood created

via simulation, will also filter through into the higher levels of the process, such as the pos-

terior estimation via MCMC, meaning small approximation errors in the pseudo-likelihood

could result in larger approximation errors in the MCMC process. Furthermore, these ap-

proximation errors are likely to become more prevalent in sloppy, high-dimensional models

(i.e., models with 20+ highly correlated parameters), as the likelihood surface (i.e., the

probability of the data given the parameters, over the complete range of different parame-

ter values) becomes increasingly flat, and therefore, the movement through the parameter

space becomes increasingly dominated by the approximation error. We attempted to mit-

igate the impact of any potential approximation errors within our study by re-running

the entire process 5 times, obtaining 5 approximations to the marginal likelihood for each
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comparison, and making inferences using the end-points of these ranges. Therefore, the

strength of evidence we reported was based on the lowest obtained marginal likelihood for

the superior model compared to the highest obtained marginal likelihood for the inferior

model, which we believe provides a method of comparison that is robust to potential ap-

proximation errors. However, more generally, we believe that approximation should be

avoided where possible. For example, in simple statistical models where the marginal like-

lihood can be calculated analytically, marginal likelihood approximation methods such as

TI should not be used in place of these analytic methods. Although this is unlikely to

be possible in all cognitive models, many cognitive models may have likelihood functions

that can be obtained analytically or numerically, which would avoid the need for the PDA

level of approximation. Therefore, in cases where the likelihood function can be obtained

analytically or numerically, and is computationally feasible to calculate, then we believe

that these deterministic likelihood functions should be used over simulation-based pseudo-

likelihoods, removing a level of approximation, and meaning that inferences are more likely

to be reliable.

It should also be noted that there have been several other recently proposed meth-

ods of simulation-based Bayesian inference. Importantly, these methods may provide in-

teresting alternatives to our pseudo-likelihood Bayes factor methodology, especially when

researchers may have questions that may not be answerable through Bayes factors. Specif-

ically, our pseudo-likelihood Bayes factor methodology is only designed for hypothesis test-

ing: that is, comparing two or more models to determine which model provides the best

explanation of a psychological process. However, researchers are often interested in other

goals when applying cognitive models, such as estimating the latent parameters of the

psychological process. In these situations our pseudo-likelihood Bayes factor methodology

will not be of much value to researchers, but several other simulation-based methods exist
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to provide efficient parameter estimation. For example, recent advancements have com-

bined ABC methods with neural networks, which attempt to provide efficient methods of

estimating the posterior distribution by learning the summary statistics of simulated data

from parameter values across the range of the parameter space, and using this to efficiently

sample from the posterior distribution (Lueckmann et al., 2018) or directly estimate the

early moments of the posterior distribution (Radev et al., 2019). These methods provide

principled and efficient techniques for answering different research questions – focused on

parameter estimation – for simulation-based models, and form an important complement

to our pseudo-likelihood Bayes factor methodology, which focuses on hypothesis testing.
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Hübner, R., & Töbel, L. (2019). Conflict resolution in the eriksen flanker task: Similarities and

differences to the simon task. PLoS One, 14 (3), e0214203.

Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econo-

metrica, 47 , 263–291.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of American Statistical Association,

90 (430), 773-795.

Laming, D. R. J. (1968). Information theory of choice–reaction times. London: Academic Press.

Lartillot, N., & Philippe, H. (2006). Computing bayes factors using thermodynamic integration.

Systematic biology , 55 (2), 195–207.

Logan, G. D. (1980). Attention and automaticity in stroop and priming tasks: Theory and data.

Cognitive psychology , 12 (4), 523–553.

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review , 95 ,

492–527.

Logan, G. D. (1996). The code theory of visual attention: an integration of space-based and

object-based attention. Psychological review , 103 (4), 603.

Lueckmann, J.-M., Bassetto, G., Karaletsos, T., & Macke, J. H. (2018). Likelihood-free inference

with emulator networks. arXiv preprint arXiv:1805.09294 .

Mahani, M.-A. N., Bausenhart, K. M., Ahmadabadi, M. N., & Ulrich, R. (2018). Multimodal simon

effect: A multimodal extension of the diffusion model for conflict tasks. Frontiers in human

neuroscience, 12 , 507.

Myung, I. J. (2000). The importance of complexity in model selection. Journal of Mathematical

Psychology , 44 , 190–204.

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian

approach. Psychonomic Bulletin & Review , 4 , 79–95.

Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., & Feldman, M. W. (1999). Population growth

of human y chromosomes: a study of y chromosome microsatellites. Molecular biology and



COMPARISON OF CONFLICT MODELS THROUGH BAYES FACTORS 66

evolution, 16 (12), 1791–1798.

Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010).

Neurally constrained modeling of perceptual decision making. Psychological Review , 117 ,

1113–1143.

Purcell, B. A., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2012). From salience to saccades:

Multiple–alternative gated stochastic accumulator model of visual search. Journal of Neuro-

science, 32 , 3433–3446.
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Comparisons with “simple” versions of models

Here we display the log-marginal likelihoods for both the simple and complex variants

of each model for the White et al. (2011; Figure 1, Tables 1-6), Ulrich et al. (2015; Figure

2, Tables 7-12), and Servant et al. (2015; Figure 3, Tables 13-18). The diamond points

display the models in the “simple” framework, and the crosses display the models in the

complex framework, with each of the 6 models on a different point of the x-axis. Different

points of the same colour and shape, on the same point of the x-axis, display the 5 different

approximated log-marginal likelihoods for the model. Specifically, blue displays DMC, red

displays DSTP, and green displays SSP, with diamonds showing the simple versions and

crosses showing the complex versions. The log-Bayes factors displayed are the same as

those in the main text (i.e., between the full versions), as a point of reference.

For the White et al. (2011) and Servant et al. (2015) data sets, the “full” variants of

the models perform at least as well as, and in most cases much better than, the “simple”

variants, for all classes of models for all participants. For the Ulrich et al. (2015) data set

there are a few exceptions to this rule, such as SSP for participant 10, DSTP for participant

7, and DMC for participant 16. Overall, this emphasises the importance of implementing

the conflict diffusion models within the “full” diffusion framework when comparing their

ability to account for empirical data, as this is greatly reduced when implemented as the

simple variants.
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Figure 1. Bayes factor analysis for the White et al. (2011) data set.
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Table 1: The marginal likelihoods in the White et al. (2011) data set for the simple DMC, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 578.98 580.83 579.65 574.39 580.35

2 394.36 392.97 393.53 391.28 390.84

3 652.93 639.65 655.30 639.06 654.58

4 480.96 479.50 486.42 476.29 483.94

5 640.95 637.92 631.13 633.09 636.59

6 111.85 122.66 121.65 123.43 114.02

7 641.21 636.41 643.51 632.34 639.74

8 340.43 341.07 339.52 348.28 341.87

9 364.58 362.42 362.93 362.37 361.18

10 455.44 456.87 458.95 453.60 452.45

11 594.15 556.43 599.13 593.26 599.43

12 558.58 558.24 540.79 555.12 556.39

13 384.91 382.06 382.55 383.40 387.18

14 545.64 537.56 536.88 535.00 531.19

15 487.61 479.98 481.76 476.35 477.86

16 626.85 625.15 625.16 616.88 626.26

17 162.62 160.37 160.77 162.50 162.23

18 199.80 197.19 195.22 196.24 199.73

19 409.56 417.95 410.18 413.09 416.19

20 733.01 732.38 714.71 730.01 722.44

21 582.61 571.87 578.97 588.06 576.58

22 551.15 570.47 559.63 550.85 564.59

23 531.28 533.69 530.43 533.18 534.60

24 365.99 366.02 365.96 363.19 364.96

25 584.85 582.29 590.72 582.36 590.61
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Table 2: The marginal likelihoods in the White et al. (2011) data set for the complex DMC, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 608.77 607.79 615.37 606.05 610.17

2 424.25 429.19 423.17 421.49 422.90

3 681.15 680.45 684.29 683.46 685.89

4 509.29 510.50 505.08 510.79 510.73

5 682.14 684.71 688.09 685.70 674.06

6 180.10 179.83 173.43 178.29 182.63

7 646.50 651.22 637.57 646.10 648.15

8 371.96 358.59 360.29 369.46 363.70

9 392.12 392.82 392.73 393.41 395.22

10 504.67 505.91 505.06 509.00 505.88

11 640.25 642.57 634.40 644.49 639.30

12 635.27 639.98 633.33 637.87 636.14

13 450.29 448.37 450.13 449.09 451.19

14 573.25 587.93 576.06 576.56 580.76

15 475.06 483.44 488.62 488.17 475.05

16 621.94 614.91 624.71 619.92 614.83

17 234.38 235.14 236.18 234.14 235.99

18 227.89 221.10 222.04 224.62 217.56

19 420.80 421.60 423.84 421.32 425.12

20 806.39 807.69 808.48 808.22 812.19

21 638.09 634.08 636.20 639.21 636.24

22 608.61 622.12 606.78 609.29 619.57

23 551.94 552.74 551.45 555.23 553.39

24 440.23 435.34 440.58 442.53 436.03

25 603.91 603.15 596.07 604.78 600.67
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Table 3: The marginal likelihoods in the White et al. (2011) data set for the simple DSTP, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 612.59 622.18 616.87 613.62 604.50

2 431.65 422.35 424.61 427.22 427.11

3 702.94 706.33 704.58 703.54 706.06

4 541.81 540.63 537.06 548.02 541.75

5 649.96 657.01 662.58 659.13 651.08

6 182.33 172.86 180.45 173.23 182.66

7 665.93 669.41 657.73 664.34 662.11

8 367.57 379.31 377.13 371.85 371.84

9 425.57 407.68 409.86 408.02 415.22

10 500.03 516.02 516.97 508.96 509.66

11 678.87 674.23 682.09 687.57 677.71

12 629.45 631.35 633.80 630.67 631.15

13 474.52 462.33 477.57 465.08 474.95

14 596.20 592.01 591.43 591.80 587.24

15 516.05 528.14 513.64 523.75 510.14

16 633.35 632.71 636.80 640.15 632.18

17 227.13 223.78 229.79 232.16 237.81

18 238.30 252.61 245.07 244.50 244.85

19 441.15 430.14 435.85 424.05 426.32

20 826.87 826.82 827.97 825.50 828.85

21 645.67 649.77 636.03 639.08 639.02

22 654.68 644.58 645.57 648.26 651.60

23 590.34 586.45 584.42 590.77 578.77

24 450.82 452.68 453.80 453.82 444.08

25 642.57 638.80 637.19 644.62 641.94
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Table 4: The marginal likelihoods in the White et al. (2011) data set for the complex DSTP, for

all 5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 652.52 655.09 654.57 655.81 656.41

2 461.13 459.52 461.93 466.66 457.35

3 722.46 721.59 717.98 721.08 722.39

4 559.56 561.28 561.47 559.54 559.13

5 720.19 723.47 721.38 722.43 723.41

6 231.22 229.83 230.77 230.96 230.83

7 687.36 694.84 694.26 689.18 694.03

8 409.22 412.94 405.63 410.57 411.34

9 447.05 447.30 443.56 446.16 446.60

10 597.27 599.13 600.12 596.22 599.19

11 701.64 700.08 700.01 700.22 699.83

12 673.36 673.16 672.76 672.68 674.15

13 495.40 495.98 492.81 495.10 496.82

14 638.12 635.88 637.92 637.21 637.28

15 551.55 550.87 552.45 550.91 551.10

16 671.66 676.47 676.67 676.03 678.41

17 292.48 292.06 291.43 289.68 290.79

18 273.83 276.03 275.86 276.31 276.55

19 471.17 469.51 472.63 468.18 470.11

20 863.52 865.25 863.24 862.95 864.40

21 687.25 687.15 687.64 687.07 681.54

22 688.94 685.58 689.35 687.08 687.93

23 609.85 609.90 609.23 610.73 608.73

24 505.13 506.52 504.73 504.80 505.51

25 674.79 674.24 674.82 669.19 671.43
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Table 5: The marginal likelihoods in the White et al. (2011) data set for the simple SSP, for all 5

estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 644.04 642.90 644.65 643.24 643.17

2 431.39 433.01 432.27 432.79 432.21

3 713.21 712.22 712.97 712.31 712.36

4 558.63 559.89 560.30 559.30 559.29

5 686.94 686.92 686.17 687.92 687.09

6 205.43 205.81 205.55 205.26 204.99

7 677.15 676.87 677.45 678.16 676.87

8 407.24 407.43 405.93 406.34 406.84

9 447.45 447.35 445.85 446.42 446.70

10 548.09 550.24 548.21 549.26 549.13

11 692.47 693.19 691.59 692.59 693.07

12 619.91 619.91 620.85 620.88 620.97

13 468.57 469.20 468.42 468.79 469.62

14 611.49 609.45 610.99 609.85 610.50

15 544.03 543.49 543.37 543.60 542.87

16 670.23 671.91 669.91 669.33 669.40

17 223.33 222.48 223.45 223.31 222.48

18 263.26 263.09 263.07 262.17 263.57

19 464.33 464.82 464.10 464.07 464.89

20 833.79 834.25 833.22 834.03 834.65

21 675.05 674.52 675.39 675.37 675.07

22 678.35 676.91 677.18 677.29 676.45

23 613.70 614.98 613.83 614.41 614.41

24 479.81 478.94 478.90 479.66 479.21

25 656.07 657.17 656.01 657.25 656.41
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Table 6: The marginal likelihoods in the White et al. (2011) data set for the complex SSP, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 669.63 669.83 669.90 670.84 669.59

2 491.33 492.26 493.40 491.32 492.25

3 719.86 718.29 719.63 719.09 718.67

4 569.02 567.13 568.04 570.01 570.95

5 733.72 733.42 733.99 734.24 734.41

6 232.56 233.28 233.32 233.47 233.26

7 701.42 701.24 700.99 700.08 702.64

8 424.44 424.42 424.32 425.22 425.84

9 453.85 454.89 454.28 453.13 454.59

10 609.57 608.79 609.25 608.61 609.07

11 700.60 699.39 699.83 699.50 699.13

12 668.64 667.75 666.51 665.75 667.88

13 493.36 493.81 493.35 491.43 492.26

14 658.61 659.78 659.23 658.03 658.81

15 564.38 563.59 564.14 563.28 563.17

16 695.92 698.90 697.77 697.74 697.94

17 289.81 290.33 290.15 291.68 289.37

18 290.35 289.24 289.54 289.43 289.36

19 484.23 485.25 483.35 481.90 484.29

20 856.08 858.65 858.31 859.39 858.41

21 699.95 700.25 698.93 699.41 700.64

22 728.28 728.89 730.13 730.19 728.97

23 621.28 622.22 623.13 623.17 622.99

24 508.27 510.01 510.41 509.36 510.31

25 679.19 681.82 681.18 680.80 681.78
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Figure 2. Bayes factor analysis for the Ulrich et al. (2015) data set.
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Table 7: The marginal likelihoods in the Ulrich et al. (2015) data set for the simple DMC, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 350.38 350.54 350.00 350.97 351.59

2 364.64 364.38 363.84 364.08 363.56

3 250.32 251.43 250.23 250.96 250.93

4 232.37 232.16 232.30 232.11 232.58

5 303.37 303.28 302.32 303.33 302.19

6 290.41 290.02 290.27 290.40 290.53

7 222.31 222.08 222.13 221.57 222.50

8 332.57 332.77 333.39 333.54 333.17

9 292.23 300.22 299.90 299.78 292.60

10 423.11 423.58 420.27 414.32 416.65

11 217.99 216.95 218.26 218.10 217.88

12 257.15 257.61 239.61 257.06 257.27

13 434.81 433.13 439.89 433.78 441.47

14 432.08 428.38 426.13 432.03 432.07

15 422.82 423.19 409.64 421.40 422.02

16 324.67 325.92 325.10 325.22 325.55
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Table 8: The marginal likelihoods in the Ulrich et al. (2015) data set for the complex DMC, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 373.68 373.50 373.25 372.96 373.24

2 370.45 374.96 375.25 374.10 376.97

3 276.15 275.55 275.66 275.72 276.09

4 238.23 238.17 238.71 237.65 238.45

5 322.51 323.34 323.44 323.96 324.01

6 302.99 302.34 303.21 304.14 301.96

7 279.31 278.79 279.36 279.26 277.45

8 358.53 358.62 356.22 360.62 357.50

9 356.33 357.11 356.48 356.87 356.29

10 426.75 428.07 427.59 428.58 431.30

11 247.79 248.18 248.08 247.77 248.80

12 282.05 281.77 281.75 281.53 281.95

13 450.74 446.41 446.34 439.52 449.04

14 442.46 434.83 441.61 441.49 440.77

15 451.96 450.47 450.56 450.72 451.63

16 323.10 324.72 323.71 325.02 324.58
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Table 9: The marginal likelihoods in the Ulrich et al. (2015) data set for the simple DSTP, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 360.67 361.88 359.59 357.80 359.64

2 372.56 371.16 371.72 369.08 371.52

3 279.41 280.08 277.05 278.32 271.06

4 226.75 228.20 228.34 227.20 228.10

5 315.18 318.71 319.10 318.45 321.24

6 306.76 307.36 305.82 295.97 307.62

7 291.74 294.93 294.95 291.14 293.88

8 339.49 340.51 338.09 339.44 341.95

9 352.63 355.80 354.02 359.17 355.75

10 445.85 443.30 444.28 444.08 441.58

11 232.69 229.37 232.17 233.92 229.86

12 275.61 273.15 274.23 274.92 272.51

13 454.60 455.17 456.20 454.86 454.21

14 435.32 435.55 439.09 437.67 434.62

15 444.59 445.40 447.77 444.05 447.90

16 325.56 327.73 326.13 327.26 327.90
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Table 10: The marginal likelihoods in the Ulrich et al. (2015) data set for the complex DSTP, for

all 5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 386.95 384.83 386.58 385.86 387.45

2 392.36 391.70 393.51 391.54 391.71

3 282.77 282.27 283.31 283.44 282.10

4 241.89 242.59 242.28 241.02 241.42

5 329.81 328.84 329.88 329.69 330.13

6 319.23 318.64 318.34 319.08 317.27

7 295.43 296.00 294.74 294.26 295.06

8 379.53 380.89 380.15 378.80 381.16

9 365.71 364.52 365.01 365.52 365.09

10 445.04 443.46 443.56 443.49 444.83

11 262.93 262.34 261.59 263.85 261.84

12 293.52 293.09 293.25 292.85 292.95

13 464.47 465.03 464.06 464.56 464.96

14 442.67 440.51 441.74 440.68 441.82

15 464.77 465.44 467.95 467.34 468.61

16 330.22 329.58 330.21 330.75 330.18
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Table 11: The marginal likelihoods in the Ulrich et al. (2015) data set for the simple SSP, for all 5

estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 361.97 361.82 362.23 362.33 361.17

2 374.44 374.40 374.39 374.70 374.63

3 269.83 268.80 269.56 268.83 269.59

4 236.38 237.39 236.74 236.60 236.55

5 312.41 312.43 312.20 312.43 312.32

6 305.31 304.57 304.73 305.73 305.17

7 247.68 247.86 246.74 247.35 247.44

8 352.44 352.64 353.14 352.21 352.14

9 334.41 335.20 334.92 334.76 334.49

10 449.85 449.91 450.25 450.18 449.43

11 236.36 236.42 236.34 236.66 236.13

12 275.95 275.20 275.07 274.30 275.01

13 447.54 447.51 447.27 447.43 447.31

14 435.87 436.69 434.55 434.69 431.48

15 449.77 449.17 448.55 448.90 448.40

16 328.21 327.19 327.53 328.50 327.88
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Table 12: The marginal likelihoods in the Ulrich et al. (2015) data set for the complex SSP, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 385.97 386.79 385.79 386.08 386.11

2 392.20 391.73 391.45 392.32 392.61

3 281.20 281.82 280.68 282.00 281.36

4 242.01 242.31 242.67 241.91 242.34

5 326.81 326.19 325.98 326.50 325.39

6 314.57 313.18 314.78 313.69 313.72

7 289.79 289.03 290.49 289.14 289.58

8 386.18 385.00 386.04 385.32 384.76

9 363.70 363.39 362.09 364.14 363.87

10 448.29 447.79 447.95 448.29 448.52

11 260.68 260.76 260.13 261.10 260.36

12 292.03 291.24 292.35 292.52 291.98

13 455.58 455.58 456.77 456.15 455.60

14 446.57 446.45 445.71 446.38 446.90

15 468.51 467.38 467.73 467.35 467.11

16 327.75 327.25 328.33 328.35 328.95
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Figure 3. Bayes factor analysis for the Servant et al. (2015) data set.
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Table 13: The marginal likelihoods in the Servant et al. (2015) data set for the simple DMC, for

all 5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 1764.74 1767.59 1770.60 1766.19 1770.55

2 1010.48 1010.23 1010.99 1009.70 1011.15

3 818.30 818.15 820.11 819.76 818.49

4 584.86 589.02 585.39 586.28 590.19

5 1075.74 1076.00 1076.14 1076.06 1076.42

6 1613.90 1618.61 1617.51 1622.15 1613.61

7 792.78 792.14 791.26 789.96 791.25

8 1226.71 1233.90 1227.19 1240.56 1233.62

9 1007.13 1002.53 1009.74 1008.63 1007.46

10 905.67 903.09 903.36 903.15 902.54

11 997.70 998.84 993.76 1000.77 997.66

12 1013.96 1018.00 1015.29 1013.24 1015.49
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Table 14: The marginal likelihoods in the Servant et al. (2015) data set for the complex DMC, for

all 5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 1919.14 1920.89 1925.66 1923.54 1915.87

2 1071.67 1072.99 1072.82 1071.19 1074.84

3 844.32 845.07 845.60 843.20 843.98

4 637.73 631.74 633.43 626.14 635.06

5 1143.45 1140.25 1142.13 1142.46 1145.66

6 1690.57 1686.40 1691.80 1690.95 1691.17

7 841.43 842.03 841.25 841.42 838.63

8 1314.90 1311.11 1315.25 1313.96 1306.23

9 1094.23 1090.97 1094.00 1093.82 1091.44

10 922.63 926.32 928.98 928.12 927.33

11 1012.86 1008.44 1010.83 1014.59 1010.42

12 1072.60 1069.83 1072.77 1076.02 1074.91
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Table 15: The marginal likelihoods in the Servant et al. (2015) data set for the simple DSTP, for

all 5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 1937.13 1948.05 1948.23 1945.19 1939.18

2 1066.52 1066.15 1059.26 1066.60 1063.53

3 847.24 848.96 836.31 850.59 847.86

4 626.09 621.61 616.93 622.52 622.53

5 1143.54 1141.52 1163.07 1144.11 1156.87

6 1656.11 1654.17 1650.12 1642.45 1645.31

7 784.84 782.79 792.19 782.45 787.86

8 1256.46 1262.20 1253.25 1261.99 1266.55

9 1112.63 1121.61 1122.23 1123.29 1120.59

10 915.08 904.69 915.37 911.00 915.99

11 1013.68 1016.87 1016.27 1011.18 1014.68

12 1048.49 1044.72 1048.28 1049.66 1046.52
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Table 16: The marginal likelihoods in the Servant et al. (2015) data set for the complex DSTP, for

all 5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 1984.94 1983.35 1985.02 1981.48 1980.45

2 1092.97 1090.53 1092.63 1091.08 1092.69

3 852.75 859.49 856.81 858.50 857.48

4 668.15 668.25 669.89 668.94 669.32

5 1179.52 1180.48 1180.78 1183.49 1181.00

6 1700.56 1698.16 1698.34 1700.27 1700.87

7 874.48 873.03 876.94 875.28 876.01

8 1360.74 1363.57 1362.86 1363.84 1361.02

9 1167.75 1164.03 1167.48 1160.02 1166.20

10 962.40 961.54 962.18 961.93 963.05

11 1036.00 1031.71 1035.20 1034.76 1029.86

12 1145.02 1146.12 1146.10 1140.07 1144.63
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Table 17: The marginal likelihoods in the Servant et al. (2015) data set for the simple SSP, for all

5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 1867.24 1862.40 1864.92 1865.73 1867.43

2 1060.48 1061.63 1060.86 1061.08 1061.36

3 863.84 863.74 862.78 863.37 863.86

4 621.54 622.43 622.23 622.31 623.09

5 1119.16 1119.40 1119.91 1119.71 1118.35

6 1654.32 1653.46 1652.39 1652.53 1653.56

7 826.49 826.00 824.89 826.37 825.77

8 1285.21 1285.83 1284.34 1286.96 1284.47

9 1099.54 1097.04 1099.88 1098.49 1098.50

10 950.20 950.17 948.76 948.85 950.20

11 1036.77 1036.74 1037.65 1037.90 1037.20

12 1079.15 1079.91 1079.61 1079.22 1080.10
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Table 18: The marginal likelihoods in the Servant et al. (2015) data set for the complex SSP, for

all 5 estimation runs (columns) of all participants (rows).

Subject 1 2 3 4 5

1 1976.02 1973.92 1976.32 1976.29 1973.11

2 1096.99 1097.49 1097.15 1097.23 1096.69

3 867.07 865.95 865.59 866.78 865.98

4 658.22 661.02 659.16 658.35 659.57

5 1166.95 1165.50 1166.16 1165.20 1165.53

6 1707.98 1709.45 1706.60 1707.44 1707.09

7 884.65 883.83 882.72 884.64 883.01

8 1356.06 1353.48 1354.93 1354.20 1354.13

9 1136.58 1134.22 1134.19 1136.00 1135.24

10 965.82 967.40 966.66 964.95 965.46

11 1046.77 1046.51 1046.41 1046.08 1046.93

12 1135.75 1135.24 1134.66 1135.95 1135.86

DMC robustness analyses

As the main conclusion of our study was that DMC provides a poorer explanation of

the flanker task than DSTP and SSP, we performed a series of robustness analyses to ensure

that this key result held across a range of potential theoretical and methodology factors.

Specifically, we tested an additional 4 variants of DMC that differed in some manner to

the main definition of DMC, which we detail below in separate sub-sections. Bayes factor

plots including all 4 robustness variants of DMC, as well as the main variants of DSTP and

SSP for a point of reference, can be seen in Figure 4 for the White et al. (2011) data set,
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Figure 5 for the Ulrich et al. (2015) data set, and Figure 6 for the Servant et al. (2015)

data set. In general, our main conclusion that DMC is never the best model, and is in

the vast majority of cases the outright worst model, held across these robustness analyses,

even though some robustness analyses provide a strong bias towards DMC in the selection

process (see the Prior values robustness analysis subsection, shown as the plus symbols in

the figures).
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Figure 4. Bayes factor analysis for the White et al. (2011) data set with the 4 additional variants

of DMC. As before, DMC is in blue: the circles (first column of each panel) show the τ prior and

starting point analysis, the triangles show the DMC specification analysis, the plus symbols show

the empirical Bayes analysis, and the crosses show the time-step analysis.
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Figure 5. Bayes factor analysis for the Ulrich et al. (2015) data set with the 4 additional variants

of DMC. As before, DMC is in blue: the circles (first column of each panel) show the τ prior and

starting point analysis, the triangles show the DMC specification analysis, the plus symbols show

the empirical Bayes analysis, and the crosses show the time-step analysis.
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Figure 6. Bayes factor analysis for the Servant et al. (2015) data set with the 4 additional variants

of DMC. As before, DMC is in blue: the circles (first column of each panel) show the τ prior and

starting point analysis, the triangles show the DMC specification analysis, the plus symbols show

the empirical Bayes analysis, and the crosses show the time-step analysis.
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Model specification robustness analysis

The first robustness analysis assessed whether our specification of DMC may have

influenced our results. Specifically, our study used a definition of DMC that varied slightly

from the original definition in Ulrich et al. (2015): while our study used distributions

for the between-trial variability parameters that are common within the response time

modelling literature, Ulrich et al. (2015) instead used distributions that they believed were

more neurologically plausible. Following Ulrich et al. (2015), we defined another version of

DMC that contained 1) no between-trial variability in drift rate, 2) a beta distribution for

between-trial in starting point that was assumed to be unbiased (i.e., z = 0) and symmetric

(i.e., a = b), and 3) a normal distribution for between-trial variability in non-decision time

that also contained a minimum non-decision time (i.e., a truncated normal distribution).

Specifically, this removed 4 parameters (z, sv, sz, and ster), and added 3 parameters (β:

the a and b parameters of the starting point beta distribution; sdter: the standard deviation

of the non-decision time truncated normal distribution; lowerter: the lower bound of the

the non-decision time truncated normal distribution, which we gave the following prior

distributions:

β ∼ TN(5, 5, 1,∞)

sdter ∼ TN(0.2, 0.2, 0,∞)

lowerter ∼ TN(0.2, 0.2, 0,∞)

The pseudo-likelihood Bayes factors for this alternate version of DMC can be seen

as the blue triangles in Figures 4, 5, and 6, and the qualitative predictions can be seen as

the “DMCoriginal” row in Figures 7, 8, 9, 10, and 11. In most cases this alternate version
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of DMC results in a lower marginal likelihood than our main definition of DMC (though

see participants 5 and 6 in the Ulrich et al. data set), and more importantly, this alternate

version of DMC does not change our overall pattern of results.
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Figure 7. Defective cumulative density function (DCDF) plots for three variants of DMC (rows;

our full definition [top], the version with different τ priors and starting points [middle], and the

version based on the original definition of Ulrich et al. [bottom]) in each data set (columns). The

DCDF plots display 19 (0.05 to 0.95, in increments of 0.05) response time quantiles (different

points) of correct responses for each experimental condition, plotted by the response time (x-axis)

and response proportion (y-axis) for that quantile. Dots display observed data, with black dots

displaying the compatible condition and grey dots displaying the incompatible condition. Crosses

display model predictions, with green crosses displaying the compatible condition and red crosses

displaying the incompatible condition.
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Figure 8. Conditional accuracy function (CAF) plots for three variants of DMC (rows; our full

definition [top], the version with different τ priors and starting points [middle], and the version

based on the original definition of Ulrich et al. [bottom]) in each data set (columns). The CAF

plots display 10 response time bins (different points), with the upper limit of each bin corresponding

to response time quantiles (0.1 to 1, in increments of 0.1) for each experimental condition, plotted by

the mean response time (x-axis) and response accuracy (y-axis) for that bin. Dots display observed

data, with black dots displaying the compatible condition and grey dots displaying the incompatible

condition. Crosses display model predictions, with green crosses displaying the compatible condition

and red crosses displaying the incompatible condition.



COMPARISON OF CONFLICT MODELS THROUGH BAYES FACTORS 32

Figure 9. Error location index (ELI) plots for three variants of DMC (rows; our full definition

[top], the version with different τ priors and starting points [middle], and the version based on the

original definition of Ulrich et al. [bottom]) in each data set (columns). The ELI plots display

the relative speed of correct and error responses in incompatible trials across the entire response

time distribution, with a value of 1 indicating that all errors are concentrated among the fastest

incompatible responses, and a value of 0 indicating that all errors are concentrated among the

slowest incompatible responses (y-axis). Black bars display the observed data, and green bars

display the model predictions.
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Figure 10. Delta function (DF) plots for three variants of DMC (rows; our full definition [top], the

version with different τ priors and starting points [middle], and the version based on the original

definition of Ulrich et al. [bottom]) in each data set (columns). The DF plots display 19 (0.05

to 0.95, in increments of 0.05) response time quantiles (different points) of correct responses for

each experimental condition, plotted by the average response time across conditions (x-axis) and

the difference in response time between conditions (y-axis) for that quantile. Black dots represent

observed data, and green crosses represent model predictions.
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Figure 11. Plots of the time-course of the expected mean of the automatic activation E[Xa(t)] for

three variants of DMC (rows; our full definition [top], the version with different τ priors and starting

points [middle], and the version based on the original definition of Ulrich et al. [bottom]) in each

data set (columns).The y-axis displays E[Xa(t)], and the x-axis displays the time since accumu-

lation onset. Green lines display the compatible condition, and red lines display the incompatible

condition. Black lines indicate the unbiased starting point of accumulation, halfway between the

two decision bounds.
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τ prior and starting point robustness analysis

The second robustness analysis assessed whether our choice of prior and starting

point for the τ parameter may have influenced our results. Specifically, the estimated

values of τ were large for each participant in each data set, which resulted in the expected

mean of the automatic activation E[Xa(t)] remaining stable or increasing over the course

of the decision, and may have been the result of our choice in prior and/or starting point

for τ . Therefore, we re-ran our analyses using the following prior (and starting point) for

the τ parameter, which is closer to values that would result in a mean drift rate for the

automatic process that decreases in the latter parts of the decision process:

τ ∼ TN(1, 1, 0,∞)

The pseudo-likelihood Bayes factors for DMC with this alternate prior and starting

point for τ can be seen as the blue circles in Figures 4, 5, and 6, and the qualitative

predictions can be seen as the “DMCpriors” row in Figures 7, 8, 9, 10, and 11. In the vast

majority of cases this alternate prior definition results in a lower marginal likelihood than

our main definition of DMC, and more importantly, does not change our overall pattern of

results.

Prior values robustness analysis

The third robustness analysis assessed whether our choice of priors for each of DMC’s

three unique parameters (τ , ζ, and α) may have influenced the results. Specifically, it is well

established that Bayes factors are sensitive to the choice of prior distributions, and in some

cases the choice of prior distributions can influence the inferences made within a study.

To ensure that the inferiority of DMC in our study was not the result of poorly chosen



COMPARISON OF CONFLICT MODELS THROUGH BAYES FACTORS 36

prior distributions for DMC’s unique parameters, we re-computed the pseudo-likelihood

Bayes factors using an empirical Bayes approach, where the prior mean and variance for

the parameters τ , ζ, and α for each participant in each study were those of the participant’s

estimated posterior distributions in the hierarchical Bayesian approach. Empirical Bayes

approaches have been criticized as general methods of inference, as they use the data

for both creating priors and inference (i.e., using the data twice), which consequently

means that models that have their priors determined through empirical Bayes have an

unfair advantage – when compared in the same data set – over models that have priors

determined through other means. However, as a robustness analysis, empirical Bayes

provides an extremely strong test of whether our choice of priors for DMC could have had

any influence on the results. Importantly, if DMC still shows an inferiority to DSTP and

SSP with the “perfect” priors for its unique parameters for each participant in each data

set, then this suggests that the inferiority of DMC is due to a fundamental issue in its

functional form, and unrelated to our choice of priors.

The empirical Bayes pseudo-likelihood Bayes factors for the full diffusion variant of

DMC can be seen as the blue plus symbols in Figures 4, 5, and 6. As expected, in most

cases DMC performed better using these “perfect” priors for τ , ζ, and α than our selected

priors. However, even with the empirical Bayes approach, DMC remained generally inferior

to both DSTP and SSP, suggesting that our key finding is unrelated to our choice of priors.

Time step robustness analysis

The final robustness analysis assessed whether our choice of time-step (0.01s) for

simulating the models may have influenced our results. For this robustness analysis we

re-computed the pseudo-likelihood Bayes factors for the full diffusion variant of DMC

using a time-step of 0.001s, which can be seen as the blue crosses in Figures 4, 5, and

6. However, this change in time-step did not appear to influence the results, with the
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marginal likelihoods for the 0.01s and 0.001s time-steps being near-identical (i.e., apart

from approximation error).

Model recovery assessment

In addition to our previous robustness analyses, we also performed a model recovery

assessment, which involved generating simulated data sets from each of the three models,

and then re-fitting each model to each of data set, providing a “cross-fit” of all models to

the data generated from each of these models (e.g., White et al., 2018). This allows the

assessment of whether the true generating model can be correctly identified, given some

method of model selection and some number of models to select between. Importantly,

some models are able to better mimic other models than vice versa (e.g., Wagenmakers

et al., 2004), meaning that if the better mimicking model was selected for the empirical

data, the reasoning would be ambiguous: the better mimicking model could have been

selected because it is actually the better model, or because the other model is actually

the better model and the better mimicking model was just able to mimic it. Furthermore,

there is a possibility that the several layers of approximation within our methodology may

have introduced some unexpected bias towards DSTP/SSP or against DMC, which could

have influenced our key finding that DSTP and SSP provide a superior explanation of the

flanker task than DMC.

We performed two recovery assessments, each with 30 simulated participants per

model. The first recovery assessment was based on the data set with the largest number of

trials per person within our study, Servant et al. (2015), where we simulated 800 trials per

simulated participant per experimental condition, with each participant simulated using

the estimated posterior mean of the group-level mean parameters (i.e., each participant was

simulated using the same parameter values). The second recovery assessment was based
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on the data set with the smallest number of trials per person within our study, Ulrich et al.

(2015), where we simulated 200 trials per simulated participant per experimental condition,

with each participant simulated using the estimated posterior mean of the group-level mean

parameters.

The results of the recovery assessment can be seen in Figures 12, 13, 14, 15, 16,

and 17. In cases where DMC was the true generating model (Figures 12 and 13), DMC

was found to be the best model (i.e., highest maximum marginal likelihood) in the vast

majority of cases, and there were no cases where DSTP or SSP showed evidence for being

a better model than DMC (i.e., whenever DMC was not the best model, the difference

was within the approximation error). Importantly, this recovery assessment suggests that

our key finding is robust against model mimicry concerns: if DMC were the true model

that generated the empirical data sets that we assessed, then we would be unlikely to have

found strong evidence for DSTP and/or SSP over DMC in the vast majority of subjects.

The results of the recovery assessment were similar for SSP: when SSP was the true

generating model (Figures 14 and 15), SSP was found to be the best model in the vast

majority of cases, and there were no cases where DMC or DSTP showed evidence for being

a better model than SSP. However, this was not the case for DSTP: when DSTP was the

true generating model (Figures 16 and 17), DSTP was found to be an inferior model in

many cases, several of which showed evidence for another model over DSTP. Specifically,

SSP was found to mimic DSTP in many circumstances, where SSP was found to be a better

model than DSTP, and with evidence beyond approximation error. It should also be noted

that in cases where DSTP or SSP was the true generating model, DMC was consistently

shown to be the worst model, suggesting that DSTP and SSP mimic one another much

better than DMC is able to mimic either of these models.
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Figure 12. Bayes factor analysis for the recovery analysis. These data are simulated from DMC,

based on the data from Servant et al. (2015).
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Figure 13. Bayes factor analysis for the recovery analysis. These data are simulated from DMC,

based on the data from Ulrich et al. (2015).



COMPARISON OF CONFLICT MODELS THROUGH BAYES FACTORS 41

1
3
0
0

1
3
2
0

1
3
4
0

1
3
6
0

1

L
o

g
 M

a
rg

in
a

l 
L

ik
e

lih
o

o
d

1
3
4
0

1
3
6
0

1
3
8
0

1
4
0
0

2

L
o

g
 M

a
rg

in
a

l 
L

ik
e

lih
o

o
d

1
3
6
0

1
3
7
0

1
3
8
0

1
3
9
0

1
4
0
0

3

L
o

g
 M

a
rg

in
a

l 
L

ik
e

lih
o

o
d

1
3
1
0

1
3
3
0

1
3
5
0

4

L
o

g
 M

a
rg

in
a

l 
L

ik
e

lih
o

o
d

1
2
9
0

1
3
1
0

1
3
3
0

5

L
o

g
 M

a
rg

in
a

l 
L

ik
e

lih
o

o
d

1
3
2
0

1
3
4
0

1
3
6
0

6

L
o

g
 M

a
rg

in
a

l 
L

ik
e

lih
o

o
d

1
3
6
0

1
3
8
0

1
4
0
0

1
4
2
0

7

1
3
1
0

1
3
3
0

1
3
5
0

1
3
7
0

8
1
3
8
0

1
3
9
0

1
4
0
0

1
4
1
0

1
4
2
0

9

1
2
8
0

1
3
0
0

1
3
2
0

1
3
4
0

10

1
4
0
0

1
4
2
0

1
4
4
0

1
4
6
0

11

1
3
2
0

1
3
4
0

1
3
6
0

12

1
2
4
0

1
2
6
0

1
2
8
0

1
3
0
0

13

1
3
4
0

1
3
6
0

1
3
8
0

1
4
0
0

14

1
2
5
0

1
2
7
0

1
2
9
0

15
1
2
8
0

1
2
9
0

1
3
0
0

1
3
1
0

1
3
2
0

1
3
3
0

16

1
3
2
0

1
3
4
0

1
3
6
0

17

1
3
4
0

1
3
6
0

1
3
8
0

1
4
0
0

1
4
2
0

18

1
3
2
0

1
3
4
0

1
3
6
0

19

1
3
2
0

1
3
3
0

1
3
4
0

1
3
5
0

1
3
6
0

20

1
3
7
0

1
3
9
0

1
4
1
0

21

1
3
3
0

1
3
5
0

1
3
7
0

1
3
9
0

22
1
3
0
0

1
3
2
0

1
3
4
0

1
3
6
0

23

1
2
9
0

1
3
1
0

1
3
3
0

1
3
5
0

24

1
3
0
0

1
3
2
0

1
3
4
0

1
3
6
0

25

1
3
2
0

1
3
4
0

1
3
6
0

1
3
8
0

26

1
3
1
0

1
3
3
0

1
3
5
0

1
3
7
0

27

1
4
2
0

1
4
4
0

1
4
6
0

1
4
8
0

28

1
3
0
0

1
3
2
0

1
3
4
0

1
3
6
0

29
1
3
4
0

1
3
6
0

1
3
8
0

1
4
0
0

30

Figure 14. Bayes factor analysis for the recovery analysis. These data are simulated from SSP,

based on the data from Servant et al. (2015).
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Figure 15. Bayes factor analysis for the recovery analysis. These data are simulated from SSP,

based on the data from Ulrich et al. (2015).
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Figure 16. Bayes factor analysis for the recovery analysis. These data are simulated from DSTP,

based on the data from Servant et al. (2015).
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Figure 17. Bayes factor analysis for the recovery analysis. These data are simulated from DSTP,

based on the data from Ulrich et al. (2015).
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Parameter estimates for the models

The tables below display the estimated parameters for each participant from each

model in each data set. Specifically, for brevity, we display the posterior means, which

reflect the expected value over the posterior distribution.

Table 19: Mean posterior estimates from the simple DMC model in the White et al. (2011) data
set.

Subject vc a ter z ζ α τ

1 0.31 0.06 0.36 0.50 0.33 1.37 524.27
2 0.24 0.05 0.33 0.49 44.03 11.04 259.38
3 0.35 0.06 0.33 0.49 4.84 1.79 521.08
4 0.29 0.05 0.30 0.50 0.96 1.46 669.51
5 0.33 0.06 0.31 0.46 5.08 1.81 416.81
6 0.18 0.05 0.29 0.49 5.15 1.80 532.71
7 0.35 0.06 0.33 0.49 0.82 1.56 483.49
8 0.25 0.06 0.29 0.45 80.86 10.39 507.08
9 0.29 0.07 0.30 0.51 45.12 8.66 527.55
10 0.25 0.05 0.30 0.49 7.14 1.88 571.20
11 0.31 0.05 0.30 0.53 0.14 1.22 432.82
12 0.31 0.06 0.28 0.47 36.11 2.13 523.03
13 0.25 0.05 0.29 0.52 53.93 8.46 495.64
14 0.31 0.06 0.33 0.45 48.55 2.64 357.21
15 0.22 0.04 0.28 0.48 0.69 1.39 596.84
16 0.31 0.04 0.29 0.52 3.21 1.47 677.35
17 0.20 0.05 0.26 0.49 35.36 2.08 529.14
18 0.19 0.05 0.31 0.47 3.90 1.64 549.05
19 0.28 0.06 0.29 0.51 58.83 2.12 518.86
20 0.39 0.06 0.33 0.52 87.03 2.28 576.90
21 0.32 0.06 0.33 0.51 35.12 1.99 552.40
22 0.32 0.06 0.32 0.51 0.70 1.45 285.92
23 0.30 0.05 0.33 0.53 0.14 1.23 455.29
24 0.27 0.06 0.30 0.53 1.27 1.48 534.58
25 0.30 0.05 0.32 0.53 0.47 1.34 630.71
µ 0.28 0.05 0.31 0.50 12.71 1.88 495.54
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Table 20: Mean posterior estimates from the simple DMC model in the Ulrich et al. (2015) data
set.

Subject vc a ter z ζ α τ

1 0.38 0.05 0.30 0.54 32.40 7.56 181.76
2 0.35 0.04 0.31 0.44 17.49 2.00 188.79
3 0.27 0.04 0.27 0.52 29.23 5.81 182.43
4 0.30 0.05 0.32 0.46 25.14 6.27 180.00
5 0.31 0.04 0.27 0.49 26.47 5.77 179.75
6 0.31 0.04 0.26 0.43 23.26 2.13 184.32
7 0.28 0.04 0.24 0.46 23.51 2.23 187.81
8 0.35 0.04 0.30 0.49 32.13 8.35 179.79
9 0.32 0.04 0.24 0.50 29.56 5.78 180.48
10 0.39 0.04 0.31 0.52 5.53 1.00 142.66
11 0.28 0.05 0.28 0.41 30.61 7.23 190.38
12 0.29 0.04 0.31 0.51 25.62 6.32 182.17
13 0.49 0.05 0.31 0.50 15.80 2.01 194.30
14 0.43 0.05 0.27 0.52 21.69 7.38 193.03
15 0.42 0.04 0.29 0.53 26.41 2.23 175.30
16 0.37 0.05 0.28 0.47 22.18 2.24 182.87
µ 0.35 0.04 0.29 0.49 22.36 2.90 181.10

Table 21: Mean posterior estimates from the simple DMC model in the Servant et al. (2015) data
set.

Subject vc a ter z ζ α τ

1 0.42 0.04 0.27 0.50 15.98 2.00 306.01
2 0.30 0.06 0.27 0.49 48.40 10.53 273.36
3 0.28 0.06 0.27 0.47 47.32 17.24 271.01
4 0.24 0.05 0.27 0.47 24.56 2.26 242.45
5 0.30 0.05 0.21 0.49 45.38 5.22 276.09
6 0.40 0.05 0.23 0.54 10.50 2.02 290.09
7 0.29 0.07 0.28 0.47 32.92 18.70 279.69
8 0.36 0.05 0.25 0.46 60.78 2.26 287.88
9 0.31 0.06 0.25 0.42 54.39 13.89 283.45
10 0.30 0.06 0.26 0.49 38.82 13.02 268.91
11 0.28 0.05 0.26 0.54 0.84 1.63 265.40
12 0.32 0.06 0.26 0.56 60.22 27.41 256.89
µ 0.32 0.05 0.26 0.49 34.20 4.43 272.72
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Table 22: Mean posterior estimates from the complex DMC model in the White et al. (2011) data
set.

Subject vc a ter z ζ α τ ster sv sz
1 1.23 0.11 0.42 0.50 0.68 1.32 313.04 0.15 0.39 0.20
2 0.44 0.06 0.37 0.49 0.73 1.49 331.26 0.14 0.14 0.06
3 0.59 0.06 0.37 0.48 1.27 1.51 344.09 0.15 0.09 0.10
4 0.50 0.06 0.35 0.50 2.15 1.70 174.42 0.18 0.09 0.11
5 0.72 0.07 0.36 0.45 0.62 1.38 425.53 0.12 0.21 0.10
6 0.64 0.07 0.41 0.51 1.27 1.44 286.37 0.28 0.24 0.17
7 0.95 0.09 0.38 0.47 2.03 1.55 385.76 0.12 0.28 0.15
8 0.88 0.11 0.36 0.47 1.18 1.44 328.23 0.17 0.29 0.22
9 0.37 0.06 0.38 0.55 0.22 1.15 362.11 0.25 0.10 0.04
10 0.76 0.08 0.35 0.50 0.38 1.12 219.17 0.13 0.25 0.17
11 1.28 0.12 0.36 0.52 1.68 1.02 258.60 0.18 0.36 0.26
12 0.79 0.07 0.35 0.46 1.19 1.53 303.42 0.19 0.19 0.15
13 0.53 0.06 0.37 0.54 0.35 1.37 384.66 0.23 0.12 0.12
14 1.22 0.11 0.42 0.47 27.97 1.00 295.73 0.14 0.43 0.24
15 0.55 0.05 0.32 0.47 0.76 1.38 303.55 0.16 0.27 0.10
16 0.93 0.07 0.33 0.52 1.21 1.43 384.07 0.13 0.39 0.13
17 0.66 0.07 0.36 0.51 1.80 1.01 270.89 0.30 0.24 0.17
18 0.46 0.07 0.38 0.48 0.25 1.12 331.94 0.17 0.17 0.15
19 0.64 0.09 0.35 0.51 0.58 1.39 244.68 0.15 0.18 0.14
20 0.91 0.07 0.41 0.54 5.59 1.72 403.40 0.18 0.17 0.12
21 1.55 0.12 0.41 0.50 0.68 1.15 175.60 0.19 0.49 0.25
22 1.81 0.17 0.38 0.50 14.67 1.00 164.39 0.15 0.50 0.35
23 0.65 0.07 0.38 0.52 0.41 1.34 357.08 0.15 0.16 0.12
24 1.38 0.16 0.38 0.52 0.31 1.13 280.09 0.21 0.36 0.36
25 2.32 0.18 0.38 0.48 1.90 1.30 330.78 0.17 0.74 0.44
µ 0.84 0.09 0.37 0.50 0.65 1.15 303.21 0.17 0.18 0.13
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Table 23: Mean posterior estimates from the complex DMC model in the Ulrich et al. (2015) data
set.

Subject vc a ter z ζ α τ ster sv sz
1 0.90 0.06 0.35 0.54 15.07 3.65 195.70 0.17 0.26 0.10
2 0.99 0.05 0.35 0.45 3.55 1.69 195.93 0.12 0.34 0.10
3 0.63 0.05 0.33 0.52 14.22 3.75 195.88 0.16 0.15 0.13
4 0.58 0.06 0.37 0.46 16.47 5.17 196.79 0.16 0.17 0.10
5 0.57 0.04 0.32 0.47 13.88 3.49 193.23 0.16 0.13 0.08
6 0.45 0.04 0.28 0.45 13.01 2.03 197.67 0.19 0.08 0.06
7 0.72 0.05 0.30 0.45 8.94 1.88 196.58 0.26 0.12 0.13
8 1.17 0.06 0.35 0.49 14.29 1.84 196.11 0.14 0.46 0.13
9 1.27 0.06 0.32 0.53 11.47 2.16 194.38 0.25 0.27 0.15
10 0.98 0.07 0.33 0.53 0.22 1.17 204.27 0.07 0.18 0.13
11 0.60 0.06 0.34 0.41 14.60 2.38 196.39 0.20 0.17 0.10
12 0.77 0.05 0.38 0.53 13.56 4.00 196.38 0.20 0.26 0.10
13 1.02 0.07 0.35 0.50 4.96 1.74 190.02 0.10 0.22 0.10
14 1.23 0.06 0.33 0.53 20.11 2.36 190.51 0.17 0.30 0.11
15 0.99 0.06 0.34 0.52 16.57 2.02 199.05 0.13 0.20 0.11
16 0.64 0.06 0.31 0.47 13.27 2.03 196.57 0.13 0.16 0.08
µ 0.80 0.06 0.33 0.49 10.19 1.88 195.85 0.16 0.16 0.11

Table 24: Mean posterior estimates from the complex DMC model in the Servant et al. (2015) data
set.

Subject vc a ter z ζ α τ ster sv sz
1 0.55 0.03 0.32 0.50 12.65 1.94 270.69 0.16 0.05 0.04
2 0.46 0.05 0.33 0.49 0.42 1.59 265.76 0.21 0.09 0.08
3 0.35 0.06 0.31 0.47 36.68 4.91 259.54 0.18 0.03 0.08
4 0.33 0.05 0.32 0.47 4.99 1.91 268.51 0.22 0.10 0.05
5 0.40 0.04 0.25 0.49 23.89 7.44 268.54 0.23 0.07 0.06
6 0.53 0.05 0.26 0.55 3.17 1.81 263.72 0.16 0.10 0.03
7 0.57 0.07 0.34 0.46 0.24 1.43 273.17 0.20 0.16 0.11
8 0.97 0.08 0.30 0.48 39.24 2.03 284.70 0.17 0.25 0.18
9 0.49 0.07 0.31 0.43 23.83 2.08 239.94 0.21 0.07 0.10
10 0.39 0.06 0.31 0.50 42.92 6.93 271.08 0.19 0.07 0.07
11 0.40 0.05 0.29 0.54 2.41 1.76 253.26 0.16 0.09 0.07
12 0.67 0.08 0.33 0.56 1.10 1.52 266.23 0.20 0.18 0.12
µ 0.50 0.06 0.31 0.49 11.51 2.05 264.63 0.19 0.07 0.06
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Table 25: Mean posterior estimates from the simple DSTP model in the White et al. (2011) data
set.

Subject vta a ter z ass vfl vss vp2
1 0.10 0.06 0.34 0.50 0.41 0.44 12.56 0.38
2 0.28 0.05 0.34 0.48 0.90 0.27 15.57 0.25
3 0.17 0.06 0.31 0.49 0.15 0.19 1.58 0.46
4 0.09 0.06 0.28 0.50 0.40 0.27 6.00 0.37
5 0.33 0.06 0.31 0.46 0.52 0.34 11.50 0.34
6 0.04 0.07 0.24 0.49 0.10 0.08 0.32 1.22
7 0.17 0.06 0.32 0.47 0.80 0.36 14.37 0.40
8 0.06 0.06 0.28 0.45 0.74 0.31 17.44 0.32
9 -0.02 0.08 0.29 0.52 0.57 0.35 12.49 0.35
10 0.09 0.05 0.29 0.49 0.22 0.31 4.78 0.33
11 0.13 0.07 0.26 0.53 0.15 0.16 1.05 0.88
12 0.11 0.08 0.24 0.46 0.08 0.11 0.40 1.30
13 0.06 0.07 0.23 0.52 0.09 0.10 0.42 0.95
14 0.11 0.07 0.33 0.44 0.38 0.72 14.52 0.36
15 0.13 0.04 0.27 0.48 0.74 0.23 7.44 0.32
16 0.12 0.05 0.28 0.52 0.59 0.47 15.02 0.36
17 0.03 0.07 0.20 0.50 0.09 0.08 0.30 1.38
18 0.08 0.05 0.30 0.47 1.04 0.19 7.66 0.28
19 0.07 0.06 0.29 0.51 0.43 0.42 12.76 0.32
20 0.15 0.08 0.28 0.52 0.12 0.15 0.60 1.56
21 0.03 0.06 0.32 0.50 0.37 0.41 10.34 0.42
22 0.10 0.06 0.31 0.51 0.71 0.44 16.45 0.39
23 0.04 0.06 0.31 0.52 0.38 0.37 9.92 0.38
24 0.10 0.07 0.27 0.52 0.54 0.16 4.68 0.39
25 0.15 0.05 0.30 0.53 1.01 0.26 11.17 0.41
µ 0.11 0.06 0.29 0.50 0.15 0.28 1.03 0.57
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Table 26: Mean posterior estimates from the simple DSTP model in the Ulrich et al. (2015) data
set.

Subject vta a ter z ass vfl vss vp2
1 0.14 0.07 0.25 0.55 0.09 0.10 0.55 2.85
2 0.32 0.04 0.30 0.48 0.08 0.13 0.29 3.51
3 -0.04 0.07 0.22 0.52 0.07 0.09 0.47 1.69
4 0.18 0.06 0.29 0.47 0.08 0.04 0.29 3.08
5 0.03 0.07 0.22 0.49 0.09 0.07 0.52 2.93
6 0.06 0.06 0.20 0.46 0.09 0.11 0.50 2.58
7 -0.02 0.07 0.16 0.46 0.11 0.08 0.61 1.61
8 0.12 0.07 0.27 0.49 0.07 0.13 0.38 3.81
9 0.06 0.07 0.19 0.50 0.11 0.11 0.66 2.01
10 0.21 0.06 0.28 0.53 0.06 0.20 0.73 0.72
11 0.06 0.08 0.22 0.41 0.09 0.08 0.38 2.69
12 -0.03 0.08 0.24 0.51 0.08 0.12 0.46 1.94
13 0.29 0.07 0.29 0.51 0.07 0.22 0.45 2.68
14 0.08 0.07 0.23 0.52 0.07 0.12 0.66 1.49
15 0.16 0.06 0.26 0.54 0.08 0.14 0.57 2.40
16 0.36 0.05 0.28 0.46 0.07 0.10 0.55 0.42
µ 0.12 0.07 0.24 0.49 0.08 0.12 0.50 2.09

Table 27: Mean posterior estimates from the simple DSTP model in the Servant et al. (2015) data
set.

Subject vta a ter z ass vfl vss vp2
1 0.16 0.05 0.24 0.51 0.09 0.14 0.65 2.12
2 0.13 0.07 0.23 0.49 0.08 0.06 0.36 1.38
3 0.10 0.08 0.21 0.47 0.09 0.04 0.33 1.86
4 0.10 0.07 0.23 0.47 0.08 0.07 0.27 2.00
5 0.04 0.08 0.14 0.48 0.08 0.06 0.42 1.65
6 0.22 0.06 0.21 0.56 0.07 0.12 0.38 2.29
7 0.11 0.10 0.22 0.46 0.08 0.05 0.27 1.64
8 0.13 0.05 0.23 0.48 0.09 0.18 1.45 0.40
9 0.12 0.08 0.20 0.42 0.09 0.08 0.42 1.03
10 0.13 0.08 0.21 0.49 0.09 0.05 0.30 2.59
11 0.19 0.05 0.25 0.54 0.08 0.13 1.05 0.34
12 0.10 0.09 0.21 0.57 0.08 0.07 0.35 1.28
µ 0.13 0.07 0.21 0.49 0.08 0.09 0.50 1.49



COMPARISON OF CONFLICT MODELS THROUGH BAYES FACTORS 51

Table 28: Mean posterior estimates from the complex DSTP model in the White et al. (2011) data
set.

Subject vta a ter z ass vfl vss vp2 ster sv sz
1 0.76 1.56 0.25 0.50 1.02 3.00 7.83 11.09 0.09 2.86 0.15
2 0.51 1.69 0.26 0.48 0.85 4.21 7.77 12.53 0.06 3.94 0.28
3 0.36 1.39 0.23 0.49 1.33 2.54 9.63 11.65 0.11 2.95 0.29
4 0.17 1.26 0.23 0.50 1.13 3.56 8.92 10.77 0.14 3.28 0.21
5 0.02 1.28 0.26 0.44 0.52 5.85 7.81 9.70 0.11 3.24 0.24
6 0.26 1.02 0.21 0.47 1.43 1.69 5.68 10.54 0.17 2.24 0.20
7 0.57 0.19 0.33 0.45 0.35 0.96 4.49 1.73 0.11 0.68 0.07
8 0.19 1.56 0.20 0.46 1.02 3.27 7.34 10.35 0.09 3.13 0.27
9 -0.41 1.40 0.18 0.51 0.90 2.06 6.56 7.09 0.13 2.11 0.17
10 -0.05 1.23 0.23 0.48 1.05 3.36 7.51 13.30 0.13 3.13 0.19
11 0.58 1.26 0.21 0.53 1.44 2.80 9.65 10.89 0.09 2.76 0.36
12 -0.50 1.02 0.22 0.45 0.88 1.88 7.78 9.10 0.19 2.52 0.20
13 -0.01 1.21 0.19 0.52 1.31 1.73 7.69 10.55 0.14 2.67 0.22
14 0.30 1.65 0.27 0.45 1.35 5.58 14.38 10.79 0.08 3.73 0.26
15 1.41 0.56 0.26 0.47 0.99 3.06 6.94 9.30 0.12 3.10 0.22
16 0.82 0.83 0.24 0.52 0.70 4.28 7.39 9.20 0.04 3.16 0.19
17 0.11 1.22 0.21 0.49 1.51 2.14 8.46 13.00 0.29 3.60 0.35
18 0.55 1.29 0.27 0.46 1.46 4.23 8.78 11.79 0.18 4.13 0.25
19 -0.06 1.43 0.22 0.51 1.01 3.31 9.63 9.08 0.06 3.25 0.27
20 0.25 0.96 0.25 0.51 1.08 1.86 7.44 8.89 0.07 1.87 0.17
21 -0.07 1.49 0.23 0.50 1.30 3.01 9.09 12.19 0.12 2.89 0.32
22 -0.09 2.27 0.22 0.51 1.50 6.52 11.50 18.10 0.08 4.27 0.32
23 0.66 1.29 0.25 0.53 1.17 2.96 9.65 10.28 0.08 3.26 0.25
24 0.12 1.49 0.22 0.52 1.67 3.03 11.40 10.13 0.12 3.17 0.31
25 1.11 0.75 0.27 0.52 0.95 2.57 6.72 8.87 0.10 2.36 0.20
µ 0.29 0.50 0.24 0.49 0.61 0.54 1.04 6.33 0.08 0.32 0.15
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Table 29: Mean posterior estimates from the complex DSTP model in the Ulrich et al. (2015) data
set.

Subject vta a ter z ass vfl vss vp2 ster sv sz
1 0.16 0.38 0.24 0.55 0.29 0.79 2.68 5.22 0.15 0.92 0.15
2 0.25 0.33 0.26 0.45 0.23 1.34 2.53 4.87 0.06 1.04 0.20
3 -0.28 0.31 0.22 0.53 0.31 0.48 2.65 4.76 0.14 1.03 0.22
4 0.08 0.41 0.25 0.45 0.32 0.38 2.47 4.04 0.13 0.98 0.18
5 0.05 0.30 0.22 0.48 0.33 0.25 2.69 4.82 0.13 0.96 0.17
6 0.09 0.27 0.20 0.45 0.34 0.58 2.76 5.27 0.14 1.04 0.20
7 -0.29 0.28 0.20 0.45 0.33 0.46 2.91 4.35 0.23 0.92 0.24
8 0.37 0.31 0.26 0.48 0.31 0.93 2.66 5.54 0.09 1.01 0.14
9 -0.15 0.27 0.21 0.48 0.32 0.50 3.15 4.42 0.21 0.89 0.22
10 -0.03 0.40 0.22 0.52 0.27 1.03 2.78 4.23 0.06 0.80 0.18
11 -0.31 0.42 0.22 0.42 0.31 0.58 2.73 4.38 0.15 1.05 0.18
12 -0.14 0.35 0.25 0.51 0.32 0.60 2.61 4.78 0.18 0.93 0.20
13 0.77 0.39 0.26 0.49 0.28 1.29 2.61 4.91 0.07 0.82 0.19
14 -0.08 0.36 0.22 0.52 0.25 0.60 3.03 4.67 0.10 0.93 0.22
15 0.18 0.29 0.25 0.53 0.31 0.72 3.08 5.06 0.11 0.87 0.17
16 0.59 0.39 0.22 0.47 0.28 0.63 2.73 4.04 0.11 1.06 0.19
µ 0.11 0.34 0.23 0.49 0.30 0.59 2.35 4.54 0.10 0.83 0.16

Table 30: Mean posterior estimates from the complex DSTP model in the Servant et al. (2015)
data set.

Subject vta a ter z ass vfl vss vp2 ster sv sz
1 1.47 0.26 0.27 0.50 0.47 1.16 5.21 6.57 0.14 1.65 0.21
2 0.64 0.80 0.19 0.49 0.79 0.69 4.81 7.28 0.18 1.72 0.21
3 0.08 0.79 0.15 0.47 0.67 0.50 3.87 5.73 0.07 1.41 0.34
4 0.41 0.47 0.17 0.46 0.66 0.39 2.51 8.99 0.21 0.92 0.31
5 0.01 0.58 0.03 0.48 0.80 0.26 2.92 10.84 0.21 0.80 0.09
6 0.77 0.57 0.18 0.54 0.44 1.22 4.87 6.36 0.14 1.77 0.22
7 -1.24 1.29 0.19 0.47 0.54 1.72 6.25 7.33 0.27 2.33 0.37
8 -0.14 0.54 0.18 0.47 0.33 1.36 3.57 5.06 0.17 1.40 0.24
9 -0.27 1.06 0.12 0.42 0.89 1.03 5.52 7.03 0.17 1.61 0.39
10 0.73 0.81 0.16 0.49 0.69 0.76 3.77 6.13 0.11 1.43 0.20
11 0.59 0.05 0.31 0.54 0.11 0.21 1.47 0.30 0.14 0.03 0.09
12 0.75 0.89 0.16 0.57 0.80 0.91 4.29 7.18 0.12 1.50 0.12
µ 0.31 0.31 0.16 0.49 0.35 0.54 0.99 4.22 0.12 0.31 0.12
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Table 31: Mean posterior estimates from the simple SSP model in the White et al. (2011) data set.

Subject a ter z p SD0 SDr

1 0.06 0.34 0.50 0.38 11.31 295.35
2 0.05 0.32 0.49 0.29 12.37 311.67
3 0.06 0.32 0.49 0.42 11.03 290.09
4 0.06 0.28 0.50 0.37 13.25 269.77
5 0.06 0.30 0.45 0.39 12.30 328.63
6 0.06 0.29 0.48 0.26 16.35 218.44
7 0.06 0.32 0.47 0.40 12.35 290.61
8 0.06 0.28 0.46 0.32 17.20 330.58
9 0.07 0.29 0.52 0.35 13.68 292.53
10 0.05 0.29 0.49 0.33 14.73 321.11
11 0.06 0.28 0.53 0.43 14.03 281.39
12 0.06 0.27 0.46 0.38 11.82 317.56
13 0.06 0.28 0.52 0.33 13.32 289.65
14 0.07 0.32 0.44 0.39 15.03 315.70
15 0.04 0.27 0.48 0.32 7.78 114.20
16 0.05 0.27 0.52 0.40 13.87 291.53
17 0.05 0.26 0.49 0.25 14.91 263.98
18 0.05 0.30 0.47 0.27 14.50 162.50
19 0.06 0.28 0.51 0.33 12.24 278.43
20 0.07 0.33 0.52 0.48 11.99 305.02
21 0.06 0.32 0.50 0.41 13.72 313.14
22 0.06 0.30 0.51 0.41 16.85 339.12
23 0.06 0.31 0.52 0.37 11.90 296.94
24 0.07 0.29 0.52 0.36 14.90 260.27
25 0.05 0.31 0.52 0.39 14.86 277.17
µ 0.06 0.30 0.49 0.36 12.44 248.91
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Table 32: Mean posterior estimates from the simple SSP model in the Ulrich et al. (2015) data set.

Subject a ter z p SD0 SDr

1 0.05 0.29 0.54 0.43 4.81 192.96
2 0.04 0.30 0.45 0.40 5.34 191.93
3 0.04 0.27 0.52 0.32 5.13 190.51
4 0.05 0.31 0.46 0.33 4.47 193.96
5 0.04 0.27 0.48 0.36 4.00 194.60
6 0.04 0.25 0.43 0.37 5.13 191.17
7 0.04 0.23 0.46 0.34 6.00 186.45
8 0.05 0.30 0.49 0.40 5.67 196.71
9 0.05 0.23 0.49 0.41 5.55 190.32
10 0.05 0.29 0.53 0.52 5.09 190.26
11 0.05 0.27 0.42 0.33 5.94 196.02
12 0.05 0.30 0.51 0.36 5.47 191.27
13 0.05 0.30 0.50 0.52 5.40 195.28
14 0.05 0.27 0.52 0.46 2.91 203.39
15 0.05 0.29 0.53 0.52 4.65 194.00
16 0.05 0.28 0.47 0.39 3.63 196.91
µ 0.05 0.28 0.49 0.40 4.92 189.67

Table 33: Mean posterior estimates from the simple SSP model in the Servant et al. (2015) data
set.

Subject a ter z p SD0 SDr

1 0.04 0.27 0.50 0.47 5.34 232.17
2 0.06 0.27 0.49 0.34 6.57 246.57
3 0.06 0.26 0.47 0.31 6.52 241.10
4 0.05 0.27 0.47 0.27 7.02 246.01
5 0.05 0.20 0.49 0.33 5.37 257.53
6 0.05 0.22 0.53 0.46 6.76 299.17
7 0.07 0.27 0.47 0.32 6.97 254.03
8 0.05 0.23 0.48 0.36 6.99 247.41
9 0.07 0.24 0.42 0.37 8.18 242.09
10 0.06 0.25 0.49 0.33 6.95 248.36
11 0.05 0.25 0.54 0.32 6.05 254.26
12 0.07 0.26 0.56 0.36 7.82 254.00
µ 0.06 0.25 0.49 0.35 6.59 236.89
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Table 34: Mean posterior estimates from the complex SSP model in the White et al. (2011) data
set.

Subject a ter z p SD0 SDr ster sv sz
1 0.07 0.36 0.50 0.63 7.55 176.57 0.13 0.21 0.03
2 0.07 0.34 0.48 0.56 7.95 171.47 0.10 0.24 0.02
3 0.06 0.34 0.48 0.56 6.78 173.93 0.14 0.13 0.05
4 0.07 0.32 0.50 0.58 8.50 175.45 0.17 0.20 0.05
5 0.07 0.32 0.45 0.70 7.70 179.11 0.13 0.25 0.02
6 0.06 0.34 0.48 0.40 9.23 159.70 0.22 0.18 0.06
7 0.08 0.33 0.46 0.66 8.25 173.71 0.09 0.22 0.03
8 0.07 0.31 0.46 0.48 8.84 171.95 0.14 0.18 0.04
9 0.08 0.32 0.52 0.49 8.30 174.55 0.15 0.14 0.05
10 0.06 0.32 0.49 0.63 8.00 169.82 0.15 0.25 0.05
11 0.07 0.31 0.53 0.57 7.79 175.82 0.15 0.12 0.06
12 0.06 0.32 0.45 0.59 5.61 181.13 0.20 0.17 0.07
13 0.06 0.32 0.53 0.46 6.76 172.70 0.19 0.13 0.07
14 0.09 0.33 0.43 0.70 8.80 161.82 0.08 0.23 0.03
15 0.05 0.29 0.46 0.49 8.70 151.97 0.15 0.23 0.03
16 0.06 0.28 0.52 0.63 8.54 171.62 0.07 0.25 0.03
17 0.06 0.32 0.50 0.51 7.63 159.03 0.24 0.21 0.11
18 0.06 0.34 0.47 0.46 10.27 143.60 0.18 0.20 0.07
19 0.08 0.30 0.51 0.57 8.49 178.33 0.10 0.21 0.05
20 0.07 0.37 0.52 0.72 6.78 187.68 0.16 0.19 0.03
21 0.07 0.35 0.51 0.70 7.56 179.07 0.16 0.23 0.03
22 0.08 0.32 0.50 0.69 9.30 170.19 0.12 0.23 0.03
23 0.07 0.33 0.53 0.55 7.56 178.61 0.12 0.18 0.04
24 0.08 0.33 0.52 0.57 8.74 168.05 0.17 0.18 0.08
25 0.06 0.33 0.53 0.61 8.46 163.96 0.13 0.20 0.04
µ 0.07 0.33 0.49 0.58 8.04 168.35 0.14 0.20 0.03
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Table 35: Mean posterior estimates from the complex SSP model in the Ulrich et al. (2015) data
set.

Subject a ter z p SD0 SDr ster sv sz
1 0.05 0.33 0.54 0.76 2.73 135.05 0.16 0.26 0.05
2 0.05 0.33 0.44 0.72 3.66 131.16 0.12 0.28 0.03
3 0.04 0.31 0.52 0.46 2.60 134.84 0.16 0.10 0.07
4 0.05 0.35 0.46 0.49 2.85 134.08 0.16 0.18 0.05
5 0.04 0.30 0.48 0.54 2.18 134.24 0.16 0.17 0.05
6 0.04 0.27 0.45 0.49 3.35 133.98 0.16 0.14 0.05
7 0.04 0.29 0.44 0.57 3.37 132.74 0.26 0.10 0.07
8 0.05 0.33 0.48 0.81 3.39 131.05 0.14 0.35 0.03
9 0.04 0.30 0.51 0.72 2.48 134.86 0.23 0.16 0.07
10 0.05 0.31 0.54 0.66 3.48 130.75 0.11 0.11 0.03
11 0.05 0.32 0.39 0.58 3.19 133.80 0.21 0.23 0.05
12 0.05 0.35 0.53 0.57 3.10 133.45 0.18 0.20 0.05
13 0.06 0.33 0.49 0.92 3.81 131.58 0.12 0.30 0.02
14 0.05 0.31 0.53 0.88 2.05 136.69 0.18 0.26 0.04
15 0.05 0.32 0.53 0.76 2.74 133.08 0.14 0.19 0.04
16 0.06 0.30 0.47 0.56 2.67 133.72 0.13 0.18 0.03
µ 0.05 0.31 0.49 0.65 2.97 132.78 0.16 0.16 0.04

Table 36: Mean posterior estimates from the complex SSP model in the Servant et al. (2015) data
set.

Subject a ter z p SD0 SDr ster sv sz
1 0.03 0.30 0.50 0.62 3.57 195.73 0.16 0.13 0.01
2 0.05 0.31 0.49 0.43 3.76 195.55 0.21 0.12 0.04
3 0.06 0.28 0.47 0.34 4.43 194.37 0.16 0.04 0.03
4 0.05 0.30 0.47 0.36 5.54 190.99 0.22 0.15 0.02
5 0.05 0.24 0.48 0.42 3.22 197.70 0.24 0.10 0.05
6 0.05 0.25 0.55 0.62 3.70 194.90 0.17 0.19 0.02
7 0.07 0.31 0.46 0.50 5.27 195.70 0.21 0.18 0.05
8 0.06 0.27 0.47 0.58 5.50 196.05 0.19 0.19 0.04
9 0.06 0.28 0.42 0.42 5.62 199.28 0.21 0.04 0.05
10 0.06 0.28 0.50 0.40 5.25 192.98 0.19 0.10 0.02
11 0.05 0.27 0.54 0.37 4.59 193.06 0.15 0.10 0.02
12 0.07 0.30 0.57 0.50 5.63 191.82 0.20 0.15 0.03
µ 0.05 0.28 0.49 0.46 4.66 191.86 0.19 0.10 0.02


