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ABSTRACT

The future of high-performance computing is likely to rely
on the ability to efficiently exploit huge amounts of paral-
lelism. One way of taking advantage of this parallelism is
to formulate problems as “embarrassingly parallel” Monte-
Carlo simulations, which allow applications to achieve a lin-
ear speedup over multiple computational nodes, without re-
quiring a super-linear increase in inter-node communication.
However, such applications are reliant on a cheap supply
of high quality random numbers, particularly for the three
main maximum entropy distributions: uniform, used as a
general source of randomness; Gaussian, for discrete-time
simulations; and exponential, for discrete-event simulations.
In this paper we look at four different types of platform:
conventional multi-core CPUs (Intel Core2); GPUs (NVidia
GTX 200); FPGAs (Xilinx Virtex-5); and Massively Paral-
lel Processor Arrays (Ambric AM2000). For each platform
we determine the most appropriate algorithm for generat-
ing each type of number, then calculate the peak generation
rate and estimated power efficiency for each device.

Categories and Subject Descriptors

B.8.2 [Hardware]: Performance and Reliability—Perfor-

mance Analysis and Design Aids

General Terms

Algorithms, Design, Performance

Keywords

Monte-Carlo, Random Numbers, FPGA, GPU, MPPA

1. INTRODUCTION
The power of conventional super-scalar CPUs has steadily

increased for many decades, but we have now reached the
point where processor performance does not scale geomet-
rically with passing generations. However, the performance
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offered by parallel processing systems is still increasing with
each generation, through the introduction of multi-core ver-
sions of conventional CPUs, and through “unconventional”
computing platforms, such as FPGAs (Field Programmable
Gate Arrays), GPUs (Graphics Processor Units), and MP-
PAs (Massively Parallel Processor Arrays).

One application domain where it is often possible to both
easily describe applications, and to take advantage of par-
allel computational power, is Monte-Carlo simulation. This
is one of a class of “embarrassingly parallel” application do-
mains, where as the number of computational elements in-
creases, the communication required between elements does
not increase super-linearly. We know that Monte-Carlo ap-
plications are able to scale (approximately) linearly across
parallel architectures, but this doesn’t necessarily mean that
the new generation of parallel architectures will be ideal for
Monte-Carlo; we also need to know that they can efficiently
support the types of computation found in such applica-
tions. This includes standard building-blocks such as addi-
tion, multiplication, and division, but also requires Random
Number Generators (RNGs).

The importance of efficient RNGs is demonstrated by the
enormous effort applied by researchers to traditional soft-
ware techniques, both to improve the efficiency of genera-
tion techniques, and to modify simulations to reduce the
number of random numbers consumed per run. Such is
the cost of random numbers in software, that in the Gib-
son method for simulating discrete-time biochemistry it is
preferable to perform four floating-point operations (includ-
ing a divide) just so that a previous random number can
be re-used, rather than the simpler approach of generating
a new random number. However, in an FPGA accelerated
simulation the economics change: it is actually cheaper to
generate a new random number, with the added benefit that
the simulation code is easier to write and understand.

To understand how new parallel architectures can and
should be used to accelerate Monte-Carlo, we need to prop-
erly understand the costs of RNG primitives. In this pa-
per we consider how best to implement RNGs across four
platforms, and then calculate the peak generation rate and
power efficiency of each device. Our contributions are:

• An examination of random number generation on four
different architectures: CPU, GPU, MPPA, and FPGA.

• Selection of RNGs for the uniform, Gaussian, and ex-
ponential distribution for each platform.

• A comparison of the four platform’s potential for Monte-
Carlo applications, both in terms of raw generation



speed, and estimated power efficiency.

2. REQUIREMENTS FOR RNGS
Highly parallel architectures present challenges for RNG

designers due to the enormous quantities of random num-
bers generated and consumed during each application run.
To ensure that we compare solutions that meet a common
standard, we use the following requirements, which all the
generators benchmarked in this paper adhere to.

Deterministic and Pseudo-Random: In this paper we
only consider deterministic generators. This class of gener-
ator uses a deterministic state transition function, operat-
ing on a finite-size state, and hence will produce a pseudo-
random sequence that repeats with a fixed period. The rep-
etition property is critical in many applications, as it al-
lows applications to be repeatedly executed using the same
sequence of numbers, allowing “surprising” simulation runs
to be re-examined, or to use the same random stimulus to
drive different models. We also require that generators are
pseudo-random, i.e. they should be designed to produce
a sequence that looks as random as possible (see later re-
quirements on statistical quality). These requirements rules
out both True Random Number Generators (TRNG) which
use some source of physical randomness; and Quasi-Random
Number Generators (QRNG) which produce a sequence that
covers some multi-dimensional space “evenly”, rather than
pseudo-randomly.

Period: The period of each random sequence must be at
least 2160, which allows the overall sequence to be split up
into 264 sub-streams of length 264, with an extra “safety-
factor” of 232. Larger periods are of course desirable, and
are achievable in software due to the high-ratio of memory
to processing elements, but in highly-parallel devices it is
likely to be difficult to allocate the large amounts of mem-
ory needed to hold the state of each generator per element.
However, parallel devices should be able to substitute in-
creased processing per output sample for a large state, and
so maintain statistical quality.

Stream-splitting: When executing Monte-Carlo applica-
tions in parallel it is critical that each node has an indepen-
dent stream of random numbers, completely independent of
the numbers on all other nodes. To ensure this indepen-
dence we require that it must be possible to partition the
stream into (at least) 264 non-overlapping sub-sequences of
length (at least) 264. Alternatively, the generator must have
a period so large that if 264 random sub-sequences of length
264 are chosen, then the probability of any pair overlapping
is less than 2−64.

Empirical statistical quality: It is difficult to prove any-
thing about the theoretical randomness of generators, par-
ticularly when comparing different types of generator. In-
stead we rely on batteries of empirical tests, which looks for
signs of non-randomness in sub-sequences of each generator.
The Big-Crush test battery from TestU01 [12] is the most
stringent available, applying 106 tests to 238 samples from
each generator, and each generator must pass all the tests.
For uniform generators we require that the generator must
supply 32-bits, while for non-uniform generators we require
that, after applying the CDF to transform to the uniform
distribution, the most significant 16 bits pass the test.

Empirical distribution: In addition to the tests for statis-

tical randomness provided by TestU01, we also require that
the empirical distribution is extremely accurate. To test the
marginal distribution, we require that the generator is able
to pass a χ2 test with 216 equal probability buckets, for at
least 236 samples.

No specific requirements are made on data-types: if a gen-
erator can pass the empirical quality tests, then whatever
data-type (i.e. fixed-point or floating-point) it produces is
assumed to be acceptable.

3. OVERVIEW OF RNG METHODS
There are a huge variety of methods for generating random

numbers, both uniform and non-uniform, thanks to a stream
of theoretical advances and practical improvements over the
last 60 years. Devroye’s book [6] on the subject provides
detailed coverage of methods up to the mid 1980s; more re-
cent developments in uniform generation are surveyed by
L’Ecuyer [11], and Gaussian generators by Thomas [25].
There appear to be no recent surveys of exponential RNGs,
but many of the best techniques for Gaussian generation can
also be applied to exponential numbers.

3.1 Uniform Generation
The purpose of uniform RNGs is to produce a sequence

that appears as random as possible. Each generator has
a finite set of states S, a deterministic stateless transition
function t from state to state, and a mapping m from each
state to an output value in the continuous range [0, 1].

t : S 7→ S m : S 7→ [0, 1] (1)

On execution the generator is started in some state s0 ∈ S.
Repeated application of t produces an infinite sequence of
successor states s1, s2, ..., and also a sequence of pseudo-
random samples x1, x2, ...:

si = t(si−1) xi = m(si) (2)

As t is deterministic and S is finite, the output sequence
must eventually repeat itself. The period p of the generator
is defined as the shortest cycle within the sequence:

min
p

: ∀i : si+p = si 1 ≤p ≤ |S| (3)

One of the measures of efficiency of an RNG is how close
p is to S. In practise S is a vector of w storage bits, so a
period close to 2w is desirable.

The difficulty when creating RNGs is to balance the com-
peting concerns. On the one hand we want extremely long
periods, and sequences that are statistically random looking
(even over long sub-sequences); but on the other, we want
the computational cost per generated number to be very low,
and the size of the RNG state should not be excessive. The
history of random number generation has been the gradual
improvement of these metrics: for example, longer periods
with the same computational cost, or higher statistical qual-
ity with the same period and cost.

Each uniform generator is based on some underlying the-
ory, which allows us to guarantee that each generator has
a specific period, and often allows some kind of theoreti-
cal measure of statistical quality to be made over the en-
tire output sequence. The classic generator is the Linear
Congruential Generator (LCG), which uses integers in the
range [0..m) as its state space, and has a transition function



t(s) = sc + a mod m, where c, a, and m are specially cho-
sen integers. The maximum period of such generators is m,
which means that even in a 64-bit machine p ≤ m ≤ 264, so
these generators have fallen from favour.

Multiple Recursive Generators (MRG) are an extension
that treats the state as a fixed-length FIFO of k integers,
with a new value formed from a linear combination of the
previous values (modulo m), then pushed into the FIFO to
form the next state. Lagged Fibonacci generators are a pop-
ular subset of the MRG, which forms the next value through
summation only (all multipliers are one). Such generators
are still in use, but they are becoming less popular, due to
their relatively high computational complexity, low period,
or poor quality, when compared to modern generators. We
considered the whole spectrum of generators when selecting
for each platform, but these older methods were not com-
petitive on (one or more of) period, quality or speed, so we
do not mention them further here.

Currently the most popular type of generator (and the one
selected for use in all the platforms we considered) is the bi-
nary linear generator. These operate in GF w

2 , i.e. they
perform binary linear operations (logical conjunction or ex-
clusive disjunction) on vectors of individual bits. Such op-
erations are implemented in CPUs using bit-wise operations
on words, such as bit-wise masks (“and” with a constant),
bit-wise xor, and shifting. The central idea is to choose a
fixed-size state, for example using k 32-bit words to form
a 32 × k bit state, then to apply binary linear transforma-
tions to this state, such as shifts and exclusive-ors. Each
transformation instruction corresponds to a matrix; for ex-
ample, if we have a 4-bit state x, the 1-bit shift left and right
operators are:

shl(x) =

2

6

4

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

3

7

5

x shr(x) =

2

6

4

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

3

7

5

x (4)

The combination of the state shifted left and right is then:

shl(x) ⊕ shr(x) =

2

6

4

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

3

7

5

x (5)

After a number of instructions have been applied then a
combined matrix A is built up. This matrix maps the
current random number generator state to the next one:
xi+1 = Axi. If the matrix A has a primitive characteris-
tic polynomial [16], then the period of the sequence will be
2w − 1, where w is the number of bits in the state.

This basic framework has been used to create a large num-
ber of different RNGs, which vary in how they transform
the state words, and so have different types of recurrence
matrix. Some, such as the Combined Tausworthe [10], use
combinations of shifts and masking to define low-period gen-
erators with relatively prime periods, then combine them to
produce one overall generator. The XorShift [16], operates
using only exclusive-or and shifting, using a small number
of words (k = 3..8) that are all transformed in each pass.

Much larger period generators can be formed by treating
the state as a tapped FIFO (similar to the MRG), forming
a new word by reading a few words from the FIFO and per-
forming binary linear operations on them, then pushing the
new word into the FIFO. This approach led to the Mersenne
Twister, a popular generator with the period of 219937 − 1

Listing 1: Ziggurat method pseudo-code
float Ziggurat ()
{

const float W[N]={...};
const int K[N]={...};

do{
// sample in range [ -2^32..+2^32)

int u=uniform ();
// scale to floating -point
float x=u*W[u%N];

if(u<K[u%N]) // fast path ...
return x; // ... taken ~99% of time

if(SlowCheck(u)) // slow path
return x;

}while (1);
}

which has seen wide-spread use. More recent generators
improve on these ideas, such as WELL [18], which increases
the quality of the generated sequence, and SFMT [20], which
uses 128-bit SIMD operations to achieve a significant speed
advantage over generators based on 32-bit words.

3.2 Non-uniform Generation
As with uniform generation, there are a number of options

for generating non-uniform random samples, but there is
much more of a difference between the algorithms. We break
these methods down into four approaches [25]: inversion,
transformation, rejection, and recursion.

Inversion: Each non-uniform distribution is defined by the
Cumulative Distribution Function (CDF), which takes a value
from the RNG’s output range, and determines the probabil-
ity of seeing a lower value.

FG(x) =

Z x

−∞

1√
2π

e−x2/2 FE(x) = 1 − e−x (6)

Because the CDF maps from the non-uniform distribution
to the uniform, if we apply the Inverse CDF (ICDF) to a uni-
form sample u, then we produce a non-uniform distribution
sample x. This is simple for the exponential distribution:

x = F−1
E (u) = − ln(1 − u) (7)

but requires a potentially expensive logarithm for every sin-
gle sample. In the case of the Gaussian, there is no closed-
form solution for the ICDF. Approximations can be made
using rational polynomials, but due to the behaviour of the
ICDF near 0 and 1 it is necessary to use a number of poly-
nomial segments of high degree.

Transformation: A fixed number of uniform samples are
transformed into a fixed number of non-uniform samples,
with no looping or branching. The canonical example is the
Box-Muller transform [3], which takes a pair of independent
uniform samples u1, u2, and transforms them to a pair of
independent Gaussian samples g1, g2 using the transform:

g1 =
√
−2 ln u1 sin(2πu2), g2 =

√
−2 ln u1 cos(2πu2) (8)

Although simple, this method relies on transcendental func-
tions which have historically been very expensive.

Rejection: Both inversion and transformation consume a
known number of uniform inputs and require a fixed amount
of computation per output sample. The idea of rejection



methods is to use a cheap method to generate candidate
samples, but with the drawback of occasionally having to
discard the candidates and start again. This requires the
generator to contain a loop, which will keep generating and
testing candidates until one can be accepted, with the num-
ber of iterations following a geometric distribution. Exam-
ples of this class of generator include the Polar method,
GRAND, the Monty-Python method, and SA.

The Ziggurat method is the most recent and efficient re-
jection method, which is currently the fastest software gen-
erator for the Gaussian and exponential distributions (see
Listing 1). It uses an extremely fast candidate generator
and acceptance check, and in 99% of iterations requires just
one uniform input, a table lookup, a multiply, and a com-
parison. In the remaining 1% of cases the code is much
more complicated, requiring transcendental functions to de-
termine acceptance or rejection, but this code is taken so
infrequently that the generator remains extremely fast.

Recursive: The final non-uniform method is different to
the other three, in that it doesn’t consume uniform input
samples, but produces samples directly. The only generator
in this class is the Wallace method [26], which can produce
samples from the Gaussian or exponential distribution, and
can be extremely efficient as it requires no transcendental
functions and can be vectorised. However, this method has
problems with correlations between samples, which are dif-
ficult to fix while retaining the simplicity (and performance)
of the method.

4. OVERVIEW OF PLATFORMS
We consider four different parallel platforms in this paper,

so we now give a brief overview of each architecture. The
main features of each are also shown in Figure 1.

CPU: Most current Multi-core CPUs operate in the same
way as single-processor CPUs, using the shared memory
paradigm for communication, with synchronisation achieved
via a shared cache (or core-to-core cache coherency proto-
col). Each core hosts one thread at a time, with a set of reg-
isters containing thread state, an ALU dedicated to the cur-
rent thread (containing a number of functional units), and
a large unit devoted to management and scheduling tasks,
such as branch prediction, instruction ordering, speculative
execution, and so-on.

GPU: The idea behind GPUs is to dedicate as much silicon
area as possible to ALUs, by removing all the scheduling
logic and caches required to exploit instruction-level paral-
lelism and reduce memory latency in CPUs. Instead, thread-
level parallelism is used to hide latency, with each CPU ex-
ecuting up to 1024 threads at once. The threads execute
in batches of 32 threads called warps, providing SIMD style
parallelism, but with the ability to independently enable and
disable each thread within a warp, allowing each thread to
execute different parts of the program. However, this batch-
ing comes at a cost: the fewer threads within a warp that
are active, the less parallel operations are executed per cy-
cle. It is critical to minimise thread divergence, by making
sure that all threads take the same branch of conditional
statements, and execute loops the same number of times.

MPPA: Massively Parallel Processor Arrays introduce par-
allelism by using hundreds of very simple in-order-RISC
CPUs. The CPUs are instantiated in a regular grid, with
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(c) FPGA architecture
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Figure 1: Comparison of the internal architectures
of the four platforms used in this paper.



SR SRD
Instr. width 16 32
Registers 8 20
Local RAM (bytes) 256 1024
Shifter 1-bit multi-bit
ALUs 1 3
Multiply-accumulate no yes

Table 1: Properties of Ambric SR and SRD CPUs.

2D communication channels between them, and small local
memories. Such small CPUs provide excellent efficiency in
terms of peak performance per mm2 or power efficiency, but
present significant problems when partitioning applications.
As this is the newest type of architecture, the next section
explores the Ambric architecture in greater detail.

FPGA: Unlike the three previous architectures, FPGAs do
not have any fixed instruction-set architecture. Instead they
provide a fine-grain grid of bit-wise functional units, which
can be composed to create any desired circuit or processor.
Much of the FPGA area is actually dedicated to the routing
infrastructure, which allows functional units to be connected
together at run-time. Modern FPGAs also contain a number
of dedicated functional units, such as DSP blocks containing
multipliers, and RAM blocks.

We will now examine each architecture in turn, and at-
tempt to match the different architectural features to the
available RNG algorithms, attempting to maximise the RNG
performance for each device.

5. MPPA: AMBRIC AM2045
One way of taking advantage of the large area now avail-

able to chip designers is to design relatively simple proces-
sors, then to instantiate a large number of them in a 2D
mesh. In this paper we examine the Ambric AM2045 [2], as
this is a very unconventional architecture: as well as hav-
ing to partition applications over 336 processors, it is also
necessary to map to two different types of processors. The
processors are also very different to conventional CPUs, with
only a few kilo-bytes of RAM per processor for instructions
and data, and only basic integer addition and multiplication.

The two types of processor used in the AM2045 are the
SR and SRD, summarised in Table 1. Both processors are
very simple in-order 32-bit RISC processors, with the SR
designed for extremely simple operations such as generating
address streams and routing data around the device, while
the SRD is more complex, with a large register set and an
integer multiply-accumulate unit. Both processors execute
most instructions with a throughput and latency of 1 cycle,
with no stalls due to standard register usage. Stalls can
occur due to conditional jumps, or when using the integer
multiply-accumulator, but if non-conflicting instructions can
be appropriately scheduled then the execution speed is one
instruction per cycle.

Ambric CPUs communicate with each other over chan-
nels, which are self-synchronising uni-directional FIFOs, al-
lowing producers and consumers to operate at different clock-
rates in a GALS (globally asynchronous, locally synchronous)
fashion. Each CPU has a number of input and output chan-
nels, and in many cases can use channels instead of registers
as instruction input and outputs. If a channel is used as

Listing 2: SA (exponential) pseudo-code
// Need 11 entries for 32-bit

const float Q[]={...};

float SA(){

// Choose random segment of distribution
float a=0;

float u=2*UnifReal ();
while(u>1){

u=(u -1)*2;
a=a+log(2);

}

// Use rejection method within segment
int i=2;

float umin=UnifReal (),ustar;
while (1){

umin=min(umin ,UnifReal ());

if(u<=Q[i++])
return a+umin*log(2);

}
}

the input (output) of an instruction, but the channel is cur-
rently empty (full), then the processor automatically stalls
until the channel is ready.

The Ambric architecture makes use of clusters of SRs and
SRDs, pairing two SRs and two SRDs with a set of four 2KB
RAMs, shown in Figure 1(d). A dynamically arbitrating
interconnect allows channel based communication between
the processors and RAMs in the clusters, allowing CPUs to
stream data between themselves, to read and write to the
RU RAMs, and to connect to a chip-wide 2D channel net-
work. This allows CPUs to transfer data to and from CPUs
and RAMs elsewhere in the device, and to access external
devices such as DDR RAMs, PCI Express connections, and
general purpose IO.

From the point of view of random number generation, the
Ambric duality of SR and SRD processor suggests a nat-
ural way of splitting things up. Uniform random number
generation can be implemented using binary linear opera-
tions such as shifts and bit-wise ands which are supported
on the SR. However, non-uniform generation typically re-
quires some sort of multiplication, which can only be per-
formed on the SRD. Because the Ambric architecture lets
us efficiently connect processors together over local chan-
nels, this lets us map a uniform random number generator
onto an SR processor, then stream these uniform numbers
over a local channel to an SRD processor, where they can
be transformed into a non-uniform distribution.

5.1 Uniform generation
Implementing a uniform RNG on an SR processor presents

a number of challenges, mainly because of the extremely lim-
ited instruction set. Because there are no multipliers, any
sort of Linear Congruential Generator or Multiply Recursive
Generator is impossible, and the 256 byte memory (which
must also contain the instructions) makes a classic Lagged
Fibonacci generator impossible. However, the SR does con-
tain a basic set of binary linear operations, such as shifts,
exclusive-or, and bit-wise and.

There are many existing binary linear generators designed
for CPUs, but these assume very different costs per oper-
ation. In particular, the assumption underlying the most
popular small-state generators, such as the Combined Taus-
worthe [10], XorShift [16], or WELL [18] generators, is that



multi-bit shifts are cheap. However, the SR instruction set
only includes a 1-bit left or right shift, so multi-bit shifts
must be executed over multiple cycles. Even if performance
were not an issue, this approach is not feasible in the SR, as
the code for the XorShift and Combine Tausworthe genera-
tor does not fit in the 128-word instruction memory.

However, the SR does include a number of instructions
not usually found in processors, which are able to perform
byte permutations. Our approach is to take one word from
the state, then to shift it right a small number of times, per-
forming an exclusive-or with a byte-permuted word from the
state after each shift. If s1..sk are the words of the current
state, then the next state is given by s′1..s

′

k, calculated over
k stages:

s′i = (u >> i) ⊕ permi(si) ⊕ transformi(s(i−1) mod k) (9)

The choices within this framework are for the permuta-
tions and transformations applied at each stage (permi and
transformi), and for which of the state variables (s1..sk)
is used to initialise the value u before each pass. The SR
instruction set provides six byte permutations (including
the identity permutation), and provides ten transformations
(the six permutations plus four shift instructions). This pro-
vides a total of 60 possibilities per stage, plus the choice of
which state element to use for u0, leading to a total of k60k

parameters sets for the whole generator.
We performed a brute-force search of this space for k = 4,

and found the set of maximum period generators. Among
the maximum period generators, we then selected from those
with the best equidistribution, which is a measure of theoret-
ical quality [10], The best generator found is actually maxi-
mally equidistributed, which means it has the best possible
quality for this type of generator, and provides equivalent
quality to generators such as the XorShift. However, all lin-
ear generators have a known statistical flaw, due to their
fixed linear complexity [11]. The standard approach is to
add some sort of post-processing stage, which can mask this
linearity, while retaining the other desirable properties of
the generator, such as its period. A popular approach is
to combine the output with a Weyl generator [16], but this
does not fix the least significant bit, so Crush is still failed.

We propose a simpler approach: output the running sum
of the linear generators output. So given the sequence x1, x2, ...
from the linear generator, the generator output will be c1, c2, ...
where ci = ci−1 + xi mod 232. The initial value c0 of the
running sum can be initialised to any value, and the overall
period will be 232(232k −1). This simple combiner allows all
tests in Crush to be passed, while requiring only one more
instruction per generated number, taking the total instruc-
tions (and cycles) per generated number to 14.

5.2 Non-Uniform Generation
In principle the Ziggurat method could be implemented

on the SRD processor, as it works well in scalar oriented
architectures, but in practise it is not a good match for the
SRD’s capabilities. The first problem is that the Ziggurat
method relies on two tables, K and W , each of which con-
tains N 32-bit values (in Ambric the floating-point table W
would be converted to fixed-point). Typical values of N are
128 or 256, so a total of 2048 bytes are needed. These can be
mapped into one of the RU RAMs, but this means that only
three RAMs are left for the application logic that the ran-
dom number generator is driving. RAM is a critical resource

in the Ambric architecture, as it is needed for buffering be-
tween processors, for lookup tables, and to hold instruction
streams that will not fit into the small per-processor local
RAM, so this is a serious disadvantage.

The second problem is that the SlowCheck function is ac-
tually rather complicated. Internally it makes use of both
the exponential and logarithm instructions, generates more
uniform random numbers, and does more table-lookups. The
transcendental functions present a particular problem, as an
accurate fixed-point implementations requires either a large
amount of instructions (both executed, and in the instruc-
tion stream), or a large lookup-table. Either option means
that another RAM must be dedicated to random number
generation, so each random number generator requires two
of the four RAMs contained in each RU. This is unaccept-
able for real-world usage: it doesn’t matter how fast we can
generate random samples if there is not enough RAM left
for the simulation we wish to drive.

What we require is a method with the following charac-
teristics:

• No large tables of constants.

• No rational polynomials or transcendental functions.

• No reliance on floating-point.

Fortunately such a method exists, and is actually one of
the earliest techniques, suggested by John von Neumann [8].
The central idea is to generate sequences of uniform random
numbers, then either to accept or reject the candidate sam-
ple based on whether the first non-decreasing element in the
sequence has an odd or an even index. This method has
fallen from favour for general CPUs because it consumes a
relatively large number of uniform input samples per non-
uniform output sample, but because we are using the SR to
generate uniform samples, we are not as sensitive to their
cost. From our point of view the huge advantage is that the
only operations are multiplies, additions, and table-lookups
(no transcendentals), and the tables are small enough to fit
in the SRD’s local RAM.

Von Neumann’s technique can sample from a large set of
distributions, including the Gaussian and exponential dis-
tributions, but must be customised for each one. The most
efficient version for the Gaussian distribution is the GRAND
algorithm [4], and for the exponential distribution it is the
SA algorithm [1]. Pseudo-code for the SA method is given in
Listing 2 (with some optimisations omitted for brevity). The
structure of the general method is: first, choose a random
segment of the output range within the distribution; second,
generate candidates within the chosen segment, accepting or
rejecting based on the ordering of a sequence of random uni-
form variables. Although the method may look complicated,
it is actually very simple to translate both GRAND and SA
into fixed-point for the SRD, and the instructions and tables
are able to fit in the SRD’s local memory, so no storage from
the RU is needed.

Table 2 summarises the characteristics of the three gener-
ators when implemented in the Ambric architecture. Initial
versions of each were prototyped using the Java compiler
provided by the Ambric tool-chain, but for performance rea-
sons we hand-assembled the final versions. Due to the simple
instruction timing and regular instruction set of the SR and
SRD this was not a difficult task, and the effort is justified
for such low-level building blocks. The first three columns



Storage Computation/Sample SR+SRD AM2045
Distn. Instr. Data Bytes Cycles Uniform Multiply MSamples/s GSamples/s
Uniform 19 0 38 14.00 0.00 0.00 50.00 8.40
Gaussian 68 64 1300 66.16 2.60 2.32 5.12 0.86
Exponential 48 13 0 41.27 2.53 0.44 7.66 1.29

Table 2: Summary of random number generator performance for the Ambric architecture.

Platform Name Process Die Size Transistors Max Power Clock Parallelism
(nm) (mm2) (Millions) (Watts) (GHz) (Threads)

CPU Intel Core2 QX9650 45 214 820 170 3.00 4
GPU NVidia GTX 280 65 574 1400 178 1.30 960

MPPA Ambric AM2045 130 - - 14 0.35 336
FPGA Xilinx xc5vlx330 65 600 - 30 0.22 n/a

Table 3: Summary of target device characteristics

show the storage requirements per processor, both for in-
structions, constant data, and the total number of bytes.

The next three columns show the amount of computation
required per generated sampled, measured as the number
of cycles (including CPU stalls, but not channel stalls), the
number of uniform numbers consumed, and the number of
32x32 multiplies performed. Because the GRAND and SA
methods are probabilistic, the number of cycles is the aver-
age number: often the cycle count will be lower, but occa-
sionally it will take 200 or more cycles to generate a sample.

The final two columns show the practical performance of
the generators, both for one pair of SR and SRD proces-
sors, and for an entire Am2045 containing 336 processors,
all executing at 350MHz. In the uniform case, both the SR
and SRD can execute the same code, so each pair of pro-
cessors generates two independent random streams. For the
Gaussian and exponential distributions, the SR is generat-
ing uniform samples, then is passing them to the SRD over
a channel for transformation to non-uniform. Because this
channel has finite capacity, occasionally the SRD will stall,
because it tries to read uniform numbers faster than the SR
can fill the channel. However, the SRD code is designed to
space uniform reads out as much as possible, so the loss of
performance is minimal.

6. FPGA: XILINX VIRTEX-5
The Virtex-5 is typical of a contemporary high perfor-

mance FPGA, containing a mixture of fine-grained Lookup-
Tables (LUTs) and Flip-Flops (FFs), and larger specialised
RAM and DSP (multiplier) units. However, it is still possi-
ble to use many of the same RNG algorithms that have been
developed in software. An additional key requirement for
FPGA based RNGs is that generators should produce one
output sample per cycle, every cycle: if a generator only pro-
duces samples in 99% of cases then the consuming process
must be able to handle pipeline bubbles. This introduces
additional hardware, and significantly complicates the job
of application developers, so we simply discard techniques
that cannot produce one sample per cycle.

6.1 Uniform Generation
FPGAs have a natural advantage over CPUs when it comes

to binary linear uniform RNGs, due to the availability of
very fine-grain binary linear operations. In word-based in-
struction processors (i.e. CPUs, GPUs, MPPAs), the binary

linear state transform must be constructed using the avail-
able word-level primitives: in particular, the only means of
re-ordering bits is using word-level shifts, or, at best, byte
level permutations. This means that consecutive bits in one
state tend to affect another group of consecutive bits in the
next state. For this reason it is usually not safe to extract
more than one word from each multi-word generator state,
as there may well be correlations between the two streams.

By comparison an FPGA allows a huge number of very
fine-grain transformations to be constructed, as each LUT
is capable of implementing a 3 to 6 bit exclusive-or, and the
routing network allows extremely complex bit-level mixing
to occur. This means that the state transform constructs
each bit from a different set of bits from the previous state,
so there are no correlations between consecutive bits; in fact,
the very notion of consecutive bits does not make sense in an
FPGA, as the output can be formed from any permutation
of the generator’s state.

These ideas led to the development of the LUT-Optimised
generator [21], which forms a binary linear recurrence de-
signed specifically for FPGA architectures. As with a word-
based recurrence, the generator has a fixed-length binary
state, but this is treated as a vector of w bits, rather than
as a set of words. At each step of the transform each bit
is updated with the exclusive-or of a set of bits from the
previous state, so each generator bit maps into one LUT-
FF pair. As w is increased, the matrix becomes increasingly
sparse, and the quality of the generators increases, while the
speed of the generator remains extremely high (limited by
the FF-LUT-FF critical path). The practical limit is around
w = 1200, where it becomes difficult to verify that a given
matrix has the maximum period property.

As with all binary linear generators, this method suffers
from low linear complexity, as any w bit linear recurrence
has a linear complexity of w [11]. This is particularly impor-
tant in LUT Optimised generators as w is small (compared
to software methods such as SFMT [20]), so to meet our re-
quirements we must post-process the bits. The method we
use here is based on the idea of stateful non-linear combin-
ers [19], or binary full-adders. We start with a w bit binary
generator with state s0..sw−1, and then add an additional
w/2 bit state vector c0..cw/2−1 . The w/2 bit output of the



Period Inst. Stms. RAM Slices (%) LUT-FFs (%) LUTs FFs MHz GSamp./s

Uniform 1024 1 16 0 603 (1.2) 2049 1.0 2049 2048 550 8.80
Gaussian 512 1 1 4 774 (1.5) 2311 1.1 1625 2255 397 0.40
Exponential 288 1 2 4 238 (0.5) 661 0.3 426 593 363 0.73

Uniform 1024 64 1024 0 49102 (94.7) 154268 74.4 152725 151182 253 259.07
Gaussian 512 64 64 256 43537 (84.0) 149532 72.1 105512 146204 189 12.10
Exponential 288 64 128 256 16192 (31.2) 50496 24.4 35456 46144 210 26.88

Table 4: Characteristics of FPGA based random number generators, for a single instance, and for a whole
xc5vlx330 device.

adapted generator (r0..rw/2−1) is formed as:

c′i = (ci ∧ si) ⊕ (ci ∧ si+w/2) ⊕ (si ∧ si+w/2) (10)

ri = ci ⊕ si ⊕ si+w/2 (11)

The resulting generator retains the FF-LUT-FF critical path,
but requires 2w fully utilised LUT-FF pairs to generate w/2
random bits, so it has one quarter the area efficiency of the
basic generator. However, this non-linear stage allows all
the parallel generated streams to pass tests for linear com-
plexity, meeting our requirements on empirical quality.

6.2 Gaussian Generation
As in software, there are a number of possible choices for

Gaussian random number generation, including the Ziggu-
rat method [27], CDF inversion [5], Wallace [15], and the
Box-Muller method [13]. However, none of these methods
are able to deliver the correct set of characteristics to meet
our requirements. The Wallace and Ziggurat methods are
rejected immediately due to poor statistical quality, and in-
ability to produce one sample per cycle, respectively.

Inversion based methods can be small and efficient [5], but
are unable to provide sufficient output resolution to pass
the statistical tests without using a large number of DSP
blocks: for the empirical tests for randomness we require
16 bits after conversion to the uniform distribution, which
means the Gaussian distribution must have a resolution of
at least 15 fractional bits, as log2(Φ(0.5 + 2−16)−Φ(0.5)) =
−14.7. Tail coverage out to ±8σ is also required for a good
quality generator [25], so the absolute minimum fixed-point
output format is 19 bits with 15 fractional bits. Providing
an accurate inversion method with this level of accuracy will
require either high-degree polynomials, or very large tables.

The Box-Muller method is able to provide high-resolution
output samples, but also requires a large number of DSPs.
We also found that the most efficient implementation [13]
fails tests for goodness of fit. Previous implementations have
combined two output samples to make one higher quality
output sample [14], which fixes this problem, but also halves
the performance of the generator (although still provides one
sample per cycle).

To meet all our requirements, including quality, DSP us-
age, and one sample per cycle, we created a new generator.
The core of the generator is a moderately accurate Gaus-
sian approximation, created using a piecewise linear gener-
ator [22]. A generator of this type has high resolution, but
is not of a high enough quality to pass our statistical tests,
so we run eight parallel instances, then add the independent
samples together. Due to the Central Limit Theorem the
quality of the combined sample is much higher than that
of the individual samples, and passes all our tests easily.
Because each of the basic generators produces the same dis-

tribution, we can share block RAMs between pairs, so only
four block RAMs are required for the overall generator.

6.3 Exponential Distribution
The FPGA community has not shown as much interest

in the exponential distribution as the Gaussian distribu-
tion, mainly because most FPGA-based Monte-Carlo simu-
lations have been discrete-time based. However, as FPGAs
become larger and more capable, complete discrete-event
simulations in fields such as biochemistry [7] and credit-risk
analysis [23] are being accelerated by moving the whole ap-
plication into the FPGA. Such simulations need a fast high
quality source of exponential random numbers, so new meth-
ods are beginning to be investigated.

Three Gaussian generation techniques, the Ziggurat, in-
version, and Wallace methods, can also be used to generate
exponential random numbers, although so far only the in-
version method has been used in FPGAs [5]. However, the
same arguments against using them also apply for the expo-
nential distribution: lack of resolution, variable throughput,
or excessive DSP usage.

To generate the exponential distribution we use the con-
cept of concatenating independent Bernoulli bits [24]. This
relies on the fact that each bit of a fixed-point exponential
variate is actually an independent Bernoulli bit, i.e. a ran-
dom bit that has a fixed probability of equalling one or zero.
In a hardware generator this property can be used to gen-
erate the bits in parallel, allowing high-precision samples to
be calculated in a small amount of RAM and logic.

7. GPU: NVIDIA GTX 280
Previous work on GPU based RNGs has found that the

Combined Tausworthe with a 4 word state work well, com-
bined with a 32-bit Linear Congruential Generator (LCG)
to improve linear complexity [9]. However, after investigat-
ing a number of alternatives, we found that the XorShift [16]
method was faster than the Combined Tausworthe, and that
using an additive post-processing stage (as used in the Am-
bric uniform RNG) provided the same increase in quality
as the LCG, but was faster, The period of the combined
generator is 232(2128 − 1).

One key area where GPUs differ from CPUs is in the cost
of branching, and this directly affects the efficiency of iter-
ative rejection methods such as the Ziggurat method. In a
GPU, if one thread takes a branch, then all threads in a
warp that didn’t take the branch must wait until the single
thread is finished. This cripples methods such as the Ziggu-
rat, where the fast path is taken in 99% of cases, and the
slow path in the remaining 1%: if there are 32 threads in
a warp, then the probability of all threads taking the fast
path is 0.9932 = 0.72. So in 30% of cases, the warp will end



CPU GPU MPPA FPGA
Uniform SFMT [20] : 128-bit

SIMD ops., and 2500
bytes of state.

XorShift [16] : 32-bit
xor and multi-bit shifts,
5 state words, additive
post-processing.

Custom : 1-bit shifts,
byte permutations, 5
state words, additive
post-processing.

LUT-Opt. [21, 19] :
1024-bit state, bit-wise
linear ops, per-bit
post-processing.

Gaussian Ziggurat [17] : Scalar
rejection method; fast
path in 99% of cases,
uses transcendental
functions in slow 1%
path.

Box-Muller [3] :
Direct transform, calls
(builtin) log, sqrt, and
sin every time.

GRAND [4] : Scalar
rejection, no
transcendentals, small
tables.

Piecewise Linear [22] :
Table lookup,
comparisons, additions;
one sample per cycle.

Exponential Inversion : Apply fast
builtin log to uniform
sample.

SA [1] : Scalar rejection,
no transcendentals,
small tables.

Bernoulli Bits [24] :
Comparisons, uniform
bits, tables.

Table 5: Comparison of generation methods used in different architectures.

Performance (GSample/s) Efficiency (MSample/joule)
CPU GPU MPPA FPGA CPU GPU MPPA FPGA

Uniform 4.26 16.88 8.40 259.07 15.20 140.69 600.00 8635.73
Gaussian 0.89 12.90 0.86 12.10 3.17 107.52 61.48 403.20
Exponential 0.75 11.92 1.29 26.88 2.69 99.36 91.87 896.00
Geo Mean 1.42 13.75 2.10 43.84 5.07 114.55 150.21 1461.20

Relative Mean Performance Relative Mean Efficiency
CPU GPU MPPA FPGA CPU GPU MPPA FPGA

CPU 1.00 9.69 1.48 30.91 1.00 9.26 18.00 175.14
GPU 0.10 1.00 0.15 3.19 0.11 1.00 1.95 18.92
MPPA 0.67 6.54 1.00 20.85 0.06 0.51 1.00 9.73
FPGA 0.03 0.31 0.05 1.00 0.006 0.05 0.10 1.00

Table 6: Comparison of absolute performance and efficiency of RNGs across platforms.

up waiting for one or more threads to execute the slow path,
severely slowing down the overall processing rate.

Instead, it is more appropriate to use the built-in fast tran-
scendental functions, which allow the Box-Muller method
to be used for the Gaussian distribution, and the inversion
method to be used for the exponential distribution. Impor-
tantly, neither method uses rejection, iteration, or branch-
ing, so there is no thread divergence within the warp.

8. CPU: INTEL CORE2 QX9650
Traditional CPUs present the least challenge when se-

lecting generators, due to the intense research into soft-
ware RNGs over the last 50 years. Until recently the clear
leader in uniform RNGs was the Mersenne Twister, but this
has been recently superseded by SFMT [20], which uses the
same principles, but uses 128-bit wide SIMD instructions to
achieve a higher generation rate.

There is also a clear leader in non-uniform generation,
where the Ziggurat [17] method is used for both exponential
and Gaussian distributions. Although the Ziggurat method
is intrinsically scalar, and so cannot take advantage of SIMD
instructions, it is designed specifically to match the opera-
tion costs of CPUs, and provides excellent performance.

9. RESULTS
Table 3 provides an overview of the key characteristics of

each platform (in some cases there are no figures publicly
available), while Table 5 summarises the different methods
we found to be optimal for each architectures. One of the
striking aspects is that no algorithm is used on more than
one architecture, even when platforms are conceptually quite

similar, such as CPUs and Ambric. One common feature
across platforms is that binary linear recurrences were used
for all uniform RNGs, but we actually used four different
types of generator within this class. For non-uniform gen-
eration the differences are more marked. In the FPGA and
GPU it is more efficient to use direct transforms, while in
Ambric and CPU the cost of branching is lower, so it makes
sense to use rejection. However, within these two classes
another difference is found, as the CPU and GPU prefer
methods that use transcendental functions, while in Ambric
and FPGA it is necessary to avoid such functions.

The top of Table 6 summarises the absolute performance
of each platform, both for each individual generator, and
for the geometric mean across all three generators. We also
include an estimated power efficiency, measured in millions
of samples per joule. Due to the difficulty in measuring
power for a given workload, we calculate efficiency using the
peak power consumption of each device, ignoring supporting
infrastructure such as RAM, hard disks, networks etc.

The bottom part of Table 6 presents the relative perfor-
mance and power efficiency of the platforms for the geomet-
ric mean across all three generators. The FPGA provides
the highest performance level, although it is only three times
that of the GPU, and the cost of an xc5lv330 FPGA is many
times that of a GTX 280 GPU. Perhaps the more surprising
performance result is that the 350MHz MPPA Am2045 de-
vice provides better performance than a 3GHz Quad-Core
CPU. The results are more conclusive when efficiency is com-
pared, as the FPGA provides an order of magnitude more
performance per joule than any other platform, and over 250
times that of the CPU. However, it should be remembered
that these benchmarks only test one small aspect of a real



Monte-Carlo application; in practise the random numbers
have to drive something, and it is entirely likely that CPUs
and GPUs will make up ground in the non-RNG portion of
the application.

10. CONCLUSION
This paper has looked at four different platforms for par-

allel computing: multi-core CPUs, GPUs, MPPAs, and FP-
GAs. For each platform we have attempted to identify the
most appropriate RNG for generating the uniform, Gaussian
and exponential distribution, taking into account the char-
acteristics and architecture of each device. The surprising
result is that each platform requires a different approach to
random number generation, even amongst those platforms
based on instruction processors: methods which are highly
efficient in scalar oriented CPUs do not work well in wide
issue GPUs, nor in memory limited MPPAs.
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