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ABSTRACT
This paper presents a large and systematic body
of data on the relative effectiveness of muta-
tion, crossover, and combinations of mutation and
crossover in genetic programming (GP). The litera-
ture of traditional genetic algorithms contains related
studies, but mutation and crossover in GP differ from
their traditional counterparts in significant ways. In
this paper we present the results from a very large ex-
perimental data set, the equivalent of approximately
12,000 typical runs of a GP system, systematically ex-
ploring a range of parameter settings. The resulting
data may be useful not only for practitioners seeking
to optimize parameters for GP runs, but also for the-
orists exploring issues such as the role of “building
blocks” in GP.

1 Introduction
The relative merits of crossover, mutation, and other genetic
operators have long been debated in the literature of genetic
algorithms. The traditional view is that crossover is primarily
responsible for improvements in fitness, and that mutation
serves a secondary role of reintroducing alleles that have been
lost from the population. This view is consistent with the
notion that evolutionary progress is best made by combining
building blocks (or schemata) from high-fitness individuals
(see for example [Holland 1975]).

But the roles of building blocks and of crossover have
become increasingly controversial in recent years. Several
researchers have presented new theoretical arguments and
empirical results showing that mutation can be more useful
than was previously thought (for example, [Shaffer and Es-
helman 1991; Tate and Smith 1993; Hinterding, Gielewski
and Peachey 1995]). Others have produced new arguments
in favor of crossover (for example [Spears 1993]).

The mutation/crossover debate has produced a variety of
insights about the nature of genetic algorithms, and there is
more yet to be discovered. Mitchell concludes:

0To Appear in: Proceedings of the Second Annual Conference on Genetic
Programming (GP-97), J. Koza et al., editors. Morgan Kaufmann, 1997.

... it is not a choice between crossover or mutation but
rather the balance among crossover, mutation, and se-
lection that is all important. The correct balance also
depends on details of the fitness function and the en-
coding. Furthermore, crossover and mutation vary
in relative usefulness over the course of a run. Pre-
cisely how all this happens still needs to be elucidated.
[Mitchell 1996, p. 174]

For genetic programming (GP), the issue is even less re-
solved, and the lessons to be learned from a systematic
study of the issue may be correspondingly more interesting.
Crossover in GP swaps subtrees that may be of different sizes
and in different positions in their programs, and mutation in
GP generates entire new subtrees—both of these operations
are so different from their traditional counterparts that one
might be surprised if the analysis or results from traditional
genetic algorithms hold for GP at all. The issue has been
briefly addressed in previous GP work—for example, [Koza
1992] presented results from one problem and argued that
mutation has little utility in GP—but we will argue that the
conclusions in previous work were based on insufficient data.

Koza has argued that mutation is in fact useless in GP
because of the position-independence of GP subtrees, and
because of the large number of chromosome positions in
typical GP populations [Koza 1992, pp. 105–107]. He has
also published data for a problem (Boolean 6-multiplexer)
that supports this argument [Koza 1992, pp. 599–600], and
he uses no mutation in the bulk of his work. Others in the field
seem to take a similar position; most published GP research
uses either no mutation or small mutation rates.1

The received wisdom notwithstanding, the data presented
in this paper show that mutation can in fact have utility,
and that crossover does not consistently have a considerable
advantage over mutation. As a result, previous arguments
against mutation may be based on premises that, while plau-
sible, do not actually hold across GP domains.

1Although there are exceptions; for example [Banzhaf, Frankone and
Nordin 1996], although this work uses linear genotypes.



But the data is also complex, pointing not to simple revision
of advice about parameter values, but rather to a range of new
open questions. A better understanding of the factors that
produce this data should therefore enhance our understand-
ing of the fundamental nature of genetic operators in GP.
There has been considerable recent interest both in adapting
GP crossover and mutation to non-GP selection mechanisms
[O’Reilly and Oppacher 1996] and in adopting exotic new
genetic operators for GP [Angeline 1996, Iba and de Garis
1996, Teller 1996]. In light of these recent investigations, a
firmer understanding of the roles of standard crossover and
mutation in GP would certainly seem to be timely.

The bulk of this paper is devoted to the simple presen-
tation of the data from our large, systematic series of runs
(the equivalent of approximately 12,000 typical runs of a GP
system). Following the descriptions of the runs and the pre-
sentation of the results we briefly highlight the more obvious
lessons from the data—mainly that the underlying story is
more complex than one might have guessed—and provide a
few speculations about pieces of the underlying story. We
conclude with a challenge to other researchers to explain in-
triguing nonlinear features of the data.

2 Runs
Our runs are divided into two sets. In our first set of runs,
we compared an all-crossover approach with an all-mutation
approach to the problem, examining where each had advan-
tages, and looking for a “break-even point” beyond which one
approach began to be consistently more successful. In our
second set of runs, we compared various blends of mutation
and crossover over a variety of population sizes, in an attempt
to ascertain how much crossover was really beneficial.

One of the difficulties in comparing features in Genetic Pro-
gramming is the large number of external parameters which
can bias the results. To cope with this, we identified the four
parameters we thought would have the most dramatic bias on
our data. We performed runs with a broad variety of settings
for these parameters:

� Problem domain. We picked four different domains
from the literature: two “easy” problems (6-Multiplexer
and Lawnmower), and two “harder” problems (Symbolic
Regression and Artificial Ant). Of course, problem diffi-
culty is not absolute; we describe these domains as “easy”
or “harder” only in relation to other domains in the study.

� Population size. Depending on domain, we tested popu-
lation sizes ranging from 8 to 2048.

� Number of generations. Depending on domain, we per-
formed runs up to 512 generations. After each generation,
we noted the success up to that point, giving us data for a
variety of numbers of generations.

� Selectivity. We chose to run all four domains using tour-
nament selection, because it allowed us to rigorously vary

selectivity simply by changing the tournament size. In
each domain, we used two different tournament sizes: 2
(because it is the standard in GA literature, and because it
is not very selective) and 7 (because it is used extensively
in GP literature, and also is relatively highly selective).

The number of parameter combinations was large, requir-
ing a correspondingly large number of runs. Further, each
“run” shown in the data and figures is actually the average of
25 random runs with the same set of parameters. All told, the
data in the paper is the result of 572,947,200 evaluations, or
the equivalent of about 12,000 runs of typical size in the GP
community (say, 50 generations, population size 1000). We
performed runs using lil-gp 1.02 [Zongker and Punch 1995],
running on a 40-node DEC Alpha workstation cluster. No
animals were killed or injured during the procedure.

Other than changing the selection scheme (to tournament
selection), we tried to keep our default parameters for all
domains as close to the traditional parameters as possible.
For all of our runs, we chose to include 10% reproduction,
in order to stay closer to the classic GP mix as outlined in
[Koza 1992]. We imposed a maximum tree depth limit of
17. We used a depth ramp of between 2 and 6 for initial
tree generation, and between 1 and 4 for subtree mutation.
Subtree mutation picked internal nodes 90% of the time and
external nodes 10% of the time. For both initial tree genera-
tion and subtree mutation, we used half-GROW, half-FULL
tree-generation. Our runs did not stop prematurely when a
100% correct individual was found, but continued until each
run was completed.

The function sets and evaluation mechanisms for the Ant,
Regression, and 6-Multiplexer domains were those outlined
in [Koza 1992]. The Artificial Ant domain used the “Santa
Fe” trail, and allowed the ant to move up to 400 times.
The target function for the Symbolic Regression domain was
x

4
+ x

3
+ x

2
+ x. Our implementation of the Symbolic Re-

gression domain used no ephemeral random constants. The
function set, evaluation mechanism, and tree layout (with two
Automatically Defined Functions or ADFs) for the Lawn-
mower domain are given in [Koza 1994], using an 8x8 lawn.

We used standard “point” mutation (in which a random
subtree is replaced with a new random tree) as described by
[Koza 1992, p. 106]. Although other mutation techniques
have also been described in the literature, consideration of
these techniques is beyond the scope of this study. Simi-
larly, we used the traditional GP crossover and reproduction
operators described in [Koza 1992].

3 Comparing 90% Crossover with
90% Mutation

We began by comparing a 90% crossover, 10% reproduction
scheme with a 90% mutation, 10% reproduction scheme. We
compared runs under all four domains and both tournament-
size options (2 and 7).



For the two “harder” domains (Symbolic Regression and
Ant), we performed runs up to 512 generations long, for
population sizes 64, 128, 256, 512, 1024, and 2048. Since the
“easy” domains (6-Multiplexer and Lawnmower) achieved
success much more rapidly and with smaller populations, for
these domains we performed runs up to 64 generations long,
for population sizes 16, 32, 64, 128, 256, and 512. The
resultant fitnesses were the mean standardized fitness of the
best-of-run individual, averaged over 25 random runs. The
comparison graphs are black where crossover is better than
mutation, white where mutation is better than crossover, and
gray where the difference between the two is statistically
insignificant (using a two-sample t-test at 95%).

Our results are shown in Figures 1 through 4. Before ana-
lyzing the results, some caveats: first, note that the graphs are
linear in number of generations but logarithmic in population
size. As a result, while at first glance it appears that pop-
ulation size is the predominant factor in determining fitness
(the graphs often appear “flatter” with respect to number of
generations), much of this is due to the the logarithmic scal-
ing of population size. Second, note that the fitness metric
shown in these graphs is the mean standardized fitness, which
is monotonic but not usually linear (depending on domain).
A doubling in standardized fitness does not necessarily trans-
late to some doubling in “real fitness”, if such a thing can be
gauged. Lastly, remember that the scaling, both in popula-
tion size and number of generations, is smaller for the “easy”
problems.

From these results we concluded:

� Crossover was more successful in the majority of tests.

� Crossover tended to cause fitness to rise more rapidly,
often doing better early-on and with larger populations.
Mutation tended to do better with smaller populations
and more generations. This was especially true for the
problems with “smoother” graphs (Regression and 6-
Multiplexer). The large exceptions to this rule were the
in the Artificial Ant domain, where mutation would often
do well early-on, and in the Lawnmower domain (Tour-
nament size 7), where mutation did unusually well in the
upper-right quadrant of the graph.

� Although mutation performed better in several runs, it
appears that crossover tended to perform better where it
counts: situations in which the runs were resulting in
higher fitness values overall.

� Despite the conclusions above, there were very few cases
in which there was a large difference between an all-
crossover or all-mutation strategy. In fact, for some do-
mains (especially Lawnmower, tournament size 7) much
of the difference between the two was statistically in-
significant. And in most situations, changing selectivity
made a larger difference than picking crossover over mu-
tation.

While these graphs give some idea of where crossover and
mutation are better than one another with respect to popula-
tion size and number of generations, they do not provide a
clear picture of the relative merits of crossover and mutation
in terms of computational effort. To examine this further,
we compared strategies with respect to the total number of
evaluations necessary to perform a run.

We first grouped <PopulationSize, NumGenerations> tu-
ples into evaluation classes; runs in the same evaluation class
required approximately the same number of evaluations to
run. We assumed that runs requiring n evaluations should be
in the same class as (or no more than one class below) runs re-
quiring 2n evaluations. Accordingly, we grouped evaluations
into classes delimited by powers of two. A tuple is in eval-
uation class e (an integer) where e = blog2(PopulationSize
� NumGenerations)c. The two “easy” domains cover 12
classes (4 through 15), grouping runs from 16 to 32,768 eval-
uations long. The two “hard” cover 15 classes (6 through 20),
grouping runs from 64 to 1,048,576 evaluations long.

Once we had grouped our graph coordinates into evaluation
classes, we then compared 90% mutation and 90% crossover
results by class for both 2 and 7 tournament sizes. Our results
are shown in Figure 5. For each domain, we show the best
fitness achieved by any run in the entire class, and the average
“best” fitness for runs in that class.

From these results we concluded that crossover tends to
result in the highest fitness by number of evaluations. Ad-
ditionally, in most cases the average fitness achieved with
crossover for an evaluation class was better than the average
fitness achieved by mutation. However, we note that once
again the differences, were not very large. In many cases the
difference between the two was not even statistically signifi-
cant. Again, picking the right tournament size often made a
larger difference than selecting crossover over mutation.

4 Comparing Various Combinations of
Crossover and Mutation

The second question we aimed to address was: in areas where
neither all-crossover nor all-mutation have a decisive advan-
tage, is there some blend of the two which might achieve the
best results? To test this, we ran various combinations of
crossover over mutation for each of the four domains, using a
tournament size of 7. For each domain, we chose a “typical”
number of generations for a run of that domain, namely, 1

8 of
the number of runs we had done for the all-crossover-vs.-all-
mutation experiments. This came to 8 generations for the two
“easy” domains, and 64 generations for the two “hard” do-
mains. Conveniently, these numbers of generations cut across
areas in the all-crossover-vs.-all-mutation graphs where there
was not a clear-cut difference between crossover and muta-
tion. For these runs we used 10% reproduction and varied the
percent of mutation from 0% to 90%, with crossover taking
up the slack.



Our results are shown in Figure 6. The graphs shown in
these figures are the best and average fitnesses of the pop-
ulation after the “typical” number of generations, for var-
ious population sizes and percentages of mutation versus
crossover.

For a “typical” number of generations, we detected no sig-
nificant advantage to any particular combination of crossover
and mutation; all performed about the same. We did note
a very slight trend towards better results as the amount of
crossover increased. This peaked at around 20–30% muta-
tion (that is, 60–70% crossover—the remaining 10% is repro-
duction). Interestingly, in few situations did a total crossover
solution perform better than any others. In fact, in one domain
(Ant), it usually came in dead last.

5 Discussion

The common wisdom of the GP community has favored a
pure-crossover approach. However, our results lead us to
conclude that while crossover does often yield better results
than subtree mutation, the difference between the two is usu-
ally not very significant. This forces us to reevaluate the
common wisdom, and to speculate a little on why crossover
is not performing as well as one might expect.

Crossover in Genetic Programming is most touted for its
ability to spread valuable features from one individual to an-
other, an idea borrowed from the Building Block Hypothesis
or Schema Theorem of traditional Genetic Algorithms [Hol-
land 1975]. The validity of the Building Block Hypothesis
is still a source of fierce debate within the Genetic Algo-
rithms community [Mitchell 1996, p. 125]. But even if
one assumes its validity for traditional GAs, there are key
differences between GAs and Genetic Programming that ar-
gue against its application to GP (for example, [O’Reilly and
Oppacher 1995]).

One important difference is that crossover in GP swaps
trees of varying sizes, shape, and position, whereas the tra-
ditional Genetic Algorithm swaps alleles at exactly the same
locus. A second, less-recognized difference is that Genetic
Programming is used primarily to evolve computer programs,
for which the “linkage problem” discussed in the GA litera-
ture (for example, [Mitchell, p. 159]) is particularly severe.
The functions and terminals at work in GP programs are
not independent of each other but instead are usually closely
linked (as in any algorithm) through functional, control, and
data dependencies.

� A functional dependency exists between a child and its
parent when the data passed from one to the other affects
the operation or result of either. Changing a child could
dramatically alter the parent’s operation (and vice versa).

� A control dependency exists when changing a subtree
changes the flow of control in the program, affecting
whether or not a sibling subtree is executed at all.

� A data or domain dependency exists when functions and
terminals write to a shared memory mechanism [Teller
1994], or take turns manipulating a global environment
in an explicit order. Changing a function or terminal
can have a dramatic effect on the operations of other
functions and terminals not only within its own subtree
but throughout an individual.

Crossover between individuals does not just break a re-
lationship between a subtree and its parent node; it also
can break many global dependencies between operators in
the tree, and it can modify or introduce completely differ-
ent global dependencies in the second individual when this
subtree is added. Depending on the domain, crossover can
change the operation of the individual in dramatic ways not
limited to the local area surrounding the crossover point it-
self. In a similar vein, crossover can “turn on” or “turn off’
the several kinds of dependency-caused introns discussed in
[Andre and Teller, 1996].

We speculate that the noise caused by breaking and creating
the dependencies inherent in Genetic Programming may be
drowning out much of benefit crossover ordinarily would
provide in terms of transferring “value” from one individual
to another. Depending on domain,a crossed-over subtree may
be so dependent on global dependencies for its operation that
its introduction into a new individual dramatically changes its
previous local effect. In the very worst case, where a domain
would tend to create complex webs of global dependencies,
crossover and mutation may be both acting as little more than
randomization operators.

6 Conclusions

The data we have presented in this paper is from a large
number of runs over a wide range of parameters, presenting
a broader set of experiments than given in much of the GP
literature to date. Our analysis of the data indicates that
crossover is more successful than mutation overall, though
mutation is often better for small populations, depending on
the domain. However, the difference between the two is
usually small, and often statistically insignificant. Further,
no particular combination of the two seems to consistently
perform significantly better than either alone.

We hope that the data from this systematic comparison
may be useful for those interested in optimizing GP domains,
in analyzing the relative merits of crossover and mutation in
Genetic Programming, and in debating the role of (or exis-
tence of) “building blocks” in GP. While we have offered our
own initial speculations as to the results of this study, we
challenge the GP community to find a (likely better) explana-
tion of these results in light of current trends and theoretical
results.

Of particular interest may be the interesting nonlinearities
in some graphs of our data. For example, crossover for the
Artificial Ant problem (tournament size 7) does unusually



poorly at large population sizes relative to mutation. This is
quite unlike other areas of the graph; only after about 120
generations (much longer than a typical run) does crossover
become more useful. Another example is wide disparity in
fitness for various combinations of crossover and mutation
at large population sizes in the Artificial Ant domain. Why
do some combinations (90%, 70%, and 10% mutation, for
example) do so much better than their neighbors (30%, 60%
mutation, etc.) at a population size of 2048? Our first thought
on producing some of these graphs (in particular, those for
the Artificial Ant and Lawnmower domains) was that we
were seeing noise. But the number of runs conducted for
each data point and the statistical significance test underlying
the comparison graphs suggest otherwise. We believe that
it may be instructive to further analyze the cause of these
nonlinearities. In lieu of more complete explanations, we
may provisionally conclude that interpreters of smaller-scale
studies may be easily misled by such nonlinearities, and that
the standards for the scale of comparative GP studies must be
correspondingly increased.
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Figure 5. Best-of-Class Graphs. “Best Fitness in Entire Class” is the best fitness achievable by a run in an evaluation class,
given an ideal combination of population size and number of generations. “Average of Best Fitness for Runs in Class” is the
typical best fitness achieved by members of the class.
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Figure 6. Fitness values after the specified number of generations, for various percentages of mutation versus crossover. In
all cases, runs included 10% reproduction.
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Figure 1.  Comparison of crossover and mutation for the 6-Multiplexer problem.  Comparison graphs are black where crossover
wins, white where mutation wins, and gray where the difference is insignificant.
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Figure 2.  Comparison of crossover and mutation for the Lawnmower problem.  Comparison graphs are black where crossover
wins, white where mutation wins, and gray where the difference is insignificant.
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Figure 3.  Comparison of crossover and mutation for the Regression problem.  Comparison graphs are black where crossover
wins, white where mutation wins, and gray where the difference is insignificant.
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Figure 4.  Comparison of crossover and mutation for the Artificial Ant problem.  Comparison graphs are black where crossover
wins, white where mutation wins, and gray where the difference is insignificant.
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