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ABSTRACT: A cryptanalytic problem of a linear feedback shift register 
initial state reconstruction using a noisy output sequence is 
considered. The main underlying principles of three recently proposed 
cryptanalytic procedures based on the iterative error-correction are 
pointed out and compared. 

I. INTRODUCTION 
A weakness of a class of running key generators for stream 

ciphers is demonstrated in [l]. and fast algorithms for the 

cryptanalysis are proposed in [2]-[7] having origins in [S]. In this 

paper the main underlying principles for the algorithms [2]-[S] are 

analyzed. The following three principles are considered: 

P.l: Error-correction is based on the number of satisfied 

parity-checks. 
P.2: Error-correction is based on the estimation of the relevant 

posterior probabilities obtained by using the average posterior 

probability estimated in the previous iteration as the prior 

probability in the current iteration. 

P.3: Error-correction is based on the estimation of the relevant 

posterior probabilities obtained by using the posterior 

probabilities estimated in the previous iteration as the prior 

probabilities in the current iteration. 

11. ALGORITHHS 
In this section three algorithms corresponding to the principles 

P.l-P.3 are specified. Algorithm P . l  is the algorithm proposed in [3]. 

Algorithm P.2 coald be regarded as a simplification of the Algorithm 

[4]. Algorithm P.3 could be seen as a simplification/modification of 

the Algorithm B [ 2 ] .  

Denote by {XnIn=l an output segment of a linear feedback shift 

register (LFSR) of length L with w feedback tapes. In a statisti- 

is assumed to be a cal model, a binary noise sequence ien)n= 1 
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realization of a sequence of i.i.d. binary variables {En}n,l such 

that Pr(En=l) = p , nz1.2. . . . .  N . Let be a noisy version of 

{xn}NnZl defined by 

n n 

N 

z = x 81 en , n=1.2, . . . .  N . (1) 

The problem under consideration is a reconstruction of the LFSR 
initial state based on the principles P. 1-P.3 assuming that the 

, the LFSR characteristic polynomial. and the 

parameter p are known. For the comparison purposes we assume that 
all the algorithms are based on the parity-checks defined as follows. 

N 
segment { q n = 1  

Definition: nn = { ~ ~ ( n ) } ~  is a set of orthogonal parity-checks 

related to the n-th bit that are generated according to the 
characteristic polynomial multiples as in [2]-[3]. n=1.2, . . . .  N. 

Let 
ck(n) = Xmod2 ze . k=1.2 . . . . . I  n I , n=1.2. . . . .  N . (2) n 

EETk(n) 

where Inn] denotes the cardinality of nn. Assume that ck(n) is a 

realization of a binary random variable Ck(n) . k=1.2 ,....lnnl , 

n=1.2. . . . .  N . Let Pr(En. (Ck(n)}k=l ) be the joint probability of 

and Ck(n) , k=1.2.. . . , lDnl , and let the variables 

Pr(Enl {Ck(n)}k,l ) be the corresponding posterior probability, 

n=1.2. . . . .  N . 

Initialization: i=o , I=const , p(O)=p . 

lnnl 

En 
Inn I 

The following steps are identical for all the algorithms: 

Step 
Step 

Step 

Step 

Step 

Step 

1: Set i+i+l . If i ) I go to the last step. 

2: Calculate ck(n) , k=1,2 . . . . . I n  I , n=1,2. . . . .  N . n 

ALGORITHM P.l [3]: 

3: Calculate tn = lnnl - 2 1" ck(n) , n=1.2.. . . .N . 

4 :  If tn ( 0 , set zn + z 81 1 , n=1.2. . . . .  N . Go to Step 1. 

5: Stop the procedure. 

In I 
k= 1 

n 
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N 

n= 1 
Step 5: Calculate p(i) = (I/N) z pLi) . GO to Step I. 

Step 6: Stop the procedure 

ALGORITHM P.3: 

where 
W 

C (n) = 1 - c (n) , p,(n) = [I - n (1 - 2 P, ) I  1 2 I (6) 
j=1 j e e 

denotes the set of indices of the bits involved in the W 
and tmj)j,l 

parity-check n,(n) , for any 

Step 4 :  If P(i) ) 0 . 5 ,  set z + z @ 1. 

e=1,2,. . . . lnnl , n=l.2,. . . .N . 
p i ’ )  + I-P(~), n=1.2.. . . , N  . n n n n 

pn (i) + pLi) , n=1.2.. . .  , N  . GO to Step 1. Step 5: Set 

Step 6: Stop  the procedure. 

111. EXPERIHENTAL RESULTS 
The experiments are realized using an LFSR of length 4 7  with 2 

feedback tapes on the stages 5 and 4 7 .  when the observed sequence is 
of  length N=105 . The following self-explanatory table presents the 
experimental results. According to the experimental investigations. 
all the algorithms could work when the noise is under a limit which is 

a function of the observed sequence length. For higher noise. 
Algorithm P.l is the first to fail, and Algorithm P3 is the last one 
to fail. 
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Table: The number of residual errors as a function of the iteration 
step for Algorithms P.l-P.3 and the noise 

pl=0.400 , p2=0.425 and p3=0.435 . 

iteration # of residual errors 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

Algorithm P.l 
p1 p2 p3 

40357 44440 45774 
40383 45868 47301 
39343 46758 48388 
36610 47147 48566 
31750 47468 48763 
23614 47779 48626 
13714 47610 48699 
6246 47530 48817 
1820 47736 48667 
230 47606 48699 
0 47528 48704 
47574 48820 
47478 48962 
47532 48854 
47551 48878 
47466 48822 
47578 48852 
47613 48623 

48790 
48704 
48800 
48776 
48785 
48763 
48862 
48762 
48835 
488 18 
48893 
48805 
48833 
488 16 
48835 
48789 
48801 

IV. CONCLUSIONS 

Algorithm P.2 
p1 p2 p3 

37728 41693 43077 
35734 41397 43015 
33477 41002 42934 
30400 40659 42814 
26130 40259 42821 
19808 39827 42657 
11850 39214 42522 
6315 38544 42423 
3184 38935 42359 
717 38661 42335 
13 38432 42347 
0 38216 42346 
38028 42326 
37870 42337 
37688 42315 
37505 42344 
37320 42344 
37127 42358 
36940 42348 
36661 42340 
36304 42338 
35838 42340 
35225 42343 
34429 42349 
33569 42351 
32504 42356 
31189 42350 
29703 42353 
28146 42355 
26409 42352 
24191 42352 
21280 42352 
18105 42358 
15042 42360 
12245 42360 
9443 42360 
7080 42360 
5197 42360 
3446 42360 
1910 42360 
745 42360 
122 42360 
0 .  

A cryptanalytic problem of an LFSR initial 

P = p1.p2.p3 where 

Algorithm P.3 
p1 p2 p3 

37728 41693 43077 
34462 40943 42712 
30249 40194 42397 
24943 39270 42211 
15333 38191 41977 
5719 36618 41796 
1484 34849 41376 
117 32711 41133 
2 30097 40768 
0 26603 40515 
22190 40156 
16766 39918 
11810 39579 
8403 39307 
6110 39033 
4006 38755 
2198 38420 
831 38079 
139 37718 
0 37277 
36800 
36235 
35655 
35003 
34262 
32350 
31 183 
29750 
28273 
25309 
23818 
22280 
205 18 
1844 1 
15922 
1280 1 
9685 
7140 
5337 
3837 
2604 
1317 
329 
3 
0 

state reconstruction 
using the noisy output sequence is considered. The main underlying 
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principles of the cryptanalytic algorithms based on the iterative 
error-correction, recently proposed in [2]-[6]. are compared. The 
three corresponding algorithms, named Algorithms P.l-P.3. are 
specified and analyzed. 

Let an iteration cost be an equivalent of the iteration cycle 
complexity and a reconstruction cost be a product of the iteration 
cost and the number of iterations needed for the reconstruction. The 
main complexity difference between the algorithms is in the third 
step. Note that, for a given Inn!, the probability ( 3 )  depends only 

Inn I 
c (n). instead of the individual parity-checks ck(n). Acco- n='k=l k on s 

rdingly. i t  can be shown that the complexity of Algorithm P.3 is con- 

siderably greater than the complexities of both Algorithms P.l or P.2. 
According to the experimental results and the complexity 

analysis, we have the following heuristic conclusions: 

- When the noise is lower than the limit below which all the 
algorithms work, Algorithm P.l yields the minimum reconstruction cost. 
- In the case of higher noise when Algorithm P.l fails and both 
Algorithms P.2 and P.3 work, i t  is better to use Algorithm P.2 because 
of the lower reconstruction cost. 
- Finally, when Algorithm P.3 works and Algorithms P.l and P.2 both 
fail, in order to minimize the reconstruction cost the following 
procedure could be used: make the initial error-rate reduction using 

Algorithm P.3. and after the certain points change the running 
algorithm by Algorithms P.2 and P.l. respectively. 
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