
J. Cryptol. (2013) 26: 559–637

DOI: 10.1007/s00145-012-9128-3

A Comparison of Cryptanalytic Tradeoff Algorithms

Jin Hong∗

Department of Mathematical Sciences and ISaC, Seoul National University, Seoul 151-747, Korea

jinhong@snu.ac.kr

Sunghwan Moon

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA

shmoon@math.tamu.edu

Communicated by Antoine Joux

Received 19 July 2010

Online publication 24 July 2012

Abstract. Three time-memory tradeoff algorithms are compared in this paper.

Specifically, the classical tradeoff algorithm by Hellman, the distinguished point trade-

off method, and the rainbow table method, in their non-perfect table versions, are

treated.

We show that, under parameters and assumptions that are typically considered in

theoretic discussions of the tradeoff algorithms, the Hellman and distinguished point

tradeoffs perform very close to each other and the rainbow table method performs

somewhat better than the other two algorithms. Our method of comparison can easily

be applied to other situations, where the conclusions could be different.

The analysis of tradeoff efficiency presented in this paper does not ignore the effects

of false alarms and also covers techniques for reducing storage, such as ending point

truncations and index tables. Our comparison of algorithms fully takes into account

success probabilities and precomputation efforts.

Key words. Time-memory tradeoff, Hellman, Distinguished point, Rainbow table.

1. Introduction

There are numerous security systems in use today that rely on passwords. Access to

much of the content on a network requires one to log in with a password, and many

file formats today have security features that restrict access to the file until the correct

password is supplied. These systems are usually based on a password hash technique,

which operates by storing a one-way function image of the password in the file or on the

system. Indeed, storing the password in its raw form within the file to which one wishes

to set access control would be meaningless. Authentication of a user is performed by

∗ J. Hong was supported by the Basic Science Research Program through the National Research Founda-

tion of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012003379).

© International Association for Cryptologic Research 2012

mailto:jinhong@snu.ac.kr
mailto:shmoon@math.tamu.edu

560 J. Hong and S. Moon

recomputing the one-way function image from a freshly supplied password and com-

paring the result with the stored password hash.

A time-memory tradeoff algorithm attempts to recover the password from the knowl-

edge of the one-way function image, with the help of a table created through precom-

putation. The massive precomputation that is required before the actual attack can be

mounted is the largest barrier in applying the time-memory tradeoff technique to any

specific security system. However, the precomputation cost is roughly proportional to

the size of the password space and, since many users do not use strong passwords, the

tradeoff attacker is free to choose a manageable set consisting of short or more likely

passwords and decide to be satisfied with recovering only those passwords belonging to

this set. Then the precomputation requirement does not stand as an impenetrable barrier

to the tradeoff attack.

It has long been known that properly salting a password can remove any realistic

threats of the time-memory tradeoff attacks. The security system concatenates a ran-

domly generated string (salt) of sufficient length to the user-supplied password before

computing the one-way function image. The salt value that was used is stored alongside

the computed password hash so that it is available to the system for the one-way func-

tion recomputation whenever a user needs to be authenticated. The effective number

of passwords is increased by the use of salts and this can increase the precomputation

requirement of a tradeoff attack to an unrealistic degree.

Nevertheless, the salting countermeasure is still not being used in many proprietary

systems, and some systems are known to be using both the newer salted and the older

non-salted versions of the security system simultaneously to remain compatible with

older systems. Hence, the time-memory tradeoff technique still remains a powerful tool

against these vulnerable password hash systems. Since human-generated passwords will

continue to be used for the foreseeable future, one would like to fully understand the

powers and limitations of the tradeoff techniques.

There are a large number of tradeoff algorithm variants, and we will restrict ourselves

to the three major tradeoff algorithms in this work. The first algorithm we study is the

original tradeoff algorithm [14] devised by Hellman. The second algorithm is the distin-

guished point method, which is attributed to Rivest in [10]. The number of table lookups

that are required by a Hellman tradeoff is significantly reduced in this slightly modified

method. The final algorithm we consider is the rainbow table method [23], announced

by Oechslin. The precomputation table for this method is structurally different from the

previous two versions.

Let us briefly mention some of the more notable tradeoff variants or techniques that

we are not treating in this work. The first is the perfect table version of the distinguished

point method [8]. This is a variant of the distinguished point method where some of

the redundancies contained in the precomputed tables are removed and replaced with

nonoverlapping data generated through additional precomputation. The more efficient

usage of storage leads to better performance during the actual attack, at the expense

of higher precomputation cost. The removal of redundancies is facilitated by the dis-

tinguished point technique and cannot be done as easily with the classical Hellman

algorithm, but the rainbow table method also admits a perfect table version [23] natu-

rally. The perfect table versions of tradeoff algorithms are of interest due to their better

efficiency during the attack phase. However, analyzing them at the accuracy level aimed

for by the current paper is quite delicate, and is left as a subject of future study.

A Comparison of Cryptanalytic Tradeoff Algorithms 561

Another class of tradeoff variants that we do not consider is the multi-target versions

of the tradeoff algorithms [2,5,6,13], which are usually referred to as the time-memory-

data tradeoffs. The objective of these algorithms is to recover at least one of the many

original inputs that were used to create the multiple one-way function images that are

supplied as inversion targets. This class of algorithms attracted attention as realistic

attacks on stream ciphers, but present-day stream ciphers are designed to withstand

these attacks. The most practical application of the tradeoff technique today is with the

password hash systems, and we will present the current work with this application in

mind.

Even though a considerable portion of this paper is devoted to the performance anal-

yses of the three major tradeoff algorithms, the main motivation for this work was to

determine which time-memory tradeoff algorithm is the best. Providing a fair and ac-

ceptable answer to this seemingly simple question is the ultimate goal of this paper.

It has been shown [3,4] that, if we restrict ourselves to a certain class of algorithms,

the explicit tradeoff algorithms that are known today already achieve the best tradeoff

efficiency one can hope for, at least asymptotically. However, the measure of efficiency

considered by this theory is only accurate up to a small multiplicative factor. In prac-

tice, experience seems to be a critical factor in deciding which algorithm to use, and

researchers have varied opinions on which algorithm performs better.

Comparison of tradeoff algorithms has been a controversial subject. There are claims

of superiority of one algorithm over another, but, in many cases, these arguments are ei-

ther heuristic or based on complexity analyses that are not accurate up to small constant

factors. There are at least two obstacles to providing a fair comparison of tradeoff algo-

rithms. The first is that the online time of each algorithm is hard to predict accurately,

due to certain events called false alarms. Some answers to this problem may be found

in [1,15] for the Hellman and rainbow cases. The current paper relies heavily on these

results. The second obstacle concerns the minimal number of bits required to store each

precomputation table entry. In particular, a technique for storage optimization called

ending point truncation has not yet been fully analyzed.

There is a naturally occurring measure of how efficiently a tradeoff algorithm bal-

ances time against storage in achieving its goal, and the accurate value of this efficiency

measure becomes accessible once the first obstacle mentioned above is resolved. As

was first noted in [3,4], the measure of tradeoff efficiency has been expressed in differ-

ent units for different algorithms. In this work, by extending the approach of [3,4], we

carefully convert the tradeoff efficiency measures for the three algorithms to a common

unit so that they may be directly compared. The unification of units is intimately con-

nected to the second obstacle mentioned above. We also carefully treat the time taken

for table lookups during our initial transition of units.

The above two obstacles that are due to our lack of accuracy in presenting the trade-

off efficiency figures can be overcome through rigorous algorithm analyses, but there

is yet another problem which is related to the precomputation cost. Currently there is

no widely accepted way of comparing two algorithms that can achieve different trade-

off performances only after the investment of different precomputation efforts. Due to

this difficulty, many comparisons of tradeoff algorithms have focused on the above-

mentioned measure of balancing capability and have ignored the cost of precomputa-

tion.

562 J. Hong and S. Moon

In this work, we clear all the obstacles mentioned so far and provide a fair comparison

between tradeoff algorithms. More precisely, we present a method to visualize what can

be achieved by each algorithm in terms of precomputation cost and tradeoff efficiency.

This will be done in a unified way so that the range of choices made possible by each

algorithm can directly be compared against each other. A tradeoff implementer can use

this information to decide on which algorithm to use and which set of parameters to use

with the algorithm. The judgement of which algorithm is more suitable depends on how

the user values the precomputation cost and tradeoff efficiency relative to each other,

and, in most cases, the judgement cannot be done in an objective manner.

While presenting the above comparison method, we will mainly focus on a certain

set of parameters and environmental assumptions that are typically considered during

theoretic analyses of tradeoff algorithms. Under the circumstances under focus, the per-

formances of the classical Hellman and the distinguished point methods are shown to

be very close to each other. When placed under the additional requirement that the suc-

cess rates of the tradeoff algorithms must be high, the rainbow table method is shown to

outperform the other two algorithms. These comparison conclusions will stand true for

any relative valuing of the precomputation cost and tradeoff efficiency, as long as we are

working with a typical situation. Comparisons for other situations can easily be done by

following through our methods, and the resulting conclusions could be different.

The remainder of this paper is organized as follows. In the next section, we fix the no-

tation and terminologies while reviewing previous results related to this work. Section 3

clarifies the connection between the theory of tradeoff algorithms and the use of the al-

gorithms in attacking password hash systems. In Sects. 4, 5, and 6, we study the distin-

guished point, Hellman, and rainbow table tradeoff algorithms, in turn. For each algo-

rithm, we present an accurate tradeoff efficiency figure that does not ignore small mul-

tiplicative factors and also analyze the applicable storage reduction techniques. These

sections overcome the first and second obstacles that were mentioned previously. Com-

parisons of tradeoff efficiencies under different parameter sets for the same algorithm

are made in Sect. 7. Finally, our goal of algorithm comparison is reached in Sect. 8, and

the work is summarized in Sect. 9. The experimental data supporting the arguments of

this paper are given in Appendix E. We acknowledge that a small part of this work was

previously made public through [21].

2. Time-Memory Tradeoff Algorithms

In this section we review the basic theory of time-memory tradeoffs and fix the nota-

tion that is used throughout the paper. We introduce previous results that are related to

the results here, but make no attempt at providing a complete history or survey of the

time-memory tradeoff technique. In particular, the perfect table tradeoffs algorithms are

explained, but advancements concerning their analyses or comparisons are not intro-

duced.

Below, after stating some simple technical facts, we describe the three major tradeoff

algorithms, and then explain some auxiliary techniques that can enhance their tradeoff

efficiency. The descriptions are condensed, and readers that are new to the time-memory

tradeoff technique should consult the original papers for more detail.

Throughout this paper, the function F : N → N will always act on a set N of

size N and the k-times iterated composition F ◦ · · · ◦ F of F is written as F k .

A Comparison of Cryptanalytic Tradeoff Algorithms 563

2.1. Technical Preliminaries

Many of the results given in this paper are expected values for random functions. In very

rough terms, a random function F is a function that assigns independent and random

values F(x) ∈ N to each of its arguments x ∈ N . As briefly discussed in [12,16,24],

working with a random function is equivalent to choosing a function uniformly at ran-

dom from the set of all functions of a certain domain and codomain. In other words,

any expected value expressed for a random function is an average computed over all

functions.

For large positive integers a and b such that a = O(b), we can use the approximation

(

1 − 1

b

)a

≈ e−a/b,

which is very accurate. For example, when a = b, the error in the approximation is

bounded by e
b

. This approximation is frequently used in the tradeoff literature without

any explanation and is also used very frequently in this paper. Its use can be justified

through easy computation, which is explicitly carried out in Appendix A.

The final technical fact we present concerns the image size of a random function. Let

F : N → N be a random function. If M ⊂ N is of size m0, then the size of F(M)

is expected to be

m1 = N

{

1 −
(

1 − 1

N

)m0
}

≈ N
(

1 − e−m0/N
)

. (1)

An elementary proof of this statement can be given by treating it as a classical occu-

pancy problem.

More generally, the expected kth iterated image size mk = E(|F k(M)|) can be iter-

atively computed through

mj = N
(

1 − e−mj−1/N
)

(j = 1, . . . , k), (2)

starting from m0 = |M |. This is stated in [11,20] to hold asymptotically. The explicit

statements given there are only for the case when the input set M is the complete

domain N , but the case where M is strictly smaller than the complete domain is used

in [23] to state the success probability of a non-perfect rainbow table. The relation

between (1) and (2) is discussed in detail in Appendix B.

2.2. Overview of the Tradeoff Technique

Let F be fixed to a publicly known one-way function. The goal of any tradeoff algorithm

is to recover the input x, when it is given the function image y = F(x). The correct

answer x and the inversion target y may occasionally be referred to as the password

and password hash, respectively.

Any tradeoff algorithm consists of a precomputation phase and an online phase.

The precomputation phase algorithm gathers information about the one-way function F

through extensive computation and stores a condensed digest of the gathered informa-

tion in a precomputation table. When an inversion target y = F(x) is given, the online

phase algorithm is executed to recover x from y, using the precomputation table as ref-

erence.

564 J. Hong and S. Moon

To be meaningful as an attack, the size M of the precomputation table must be smaller

than N and the online phase algorithm should return the answer in a time T that is shorter

than N. Note that N is the size of the complete dictionary {(x,F (x))}x∈N and is also

the time required for an exhaustive search. A tradeoff algorithm should allow tradeoffs

between storage and online time in the sense that online attack time T can be reduced

by using a larger storage M and, conversely, smaller M can be used if a longer T is

acceptable. Tradeoff algorithms are usually implemented with the intention of running

a large number of online phases after a single precomputation phase. This gives one

justification for a precomputation effort that is larger than exhaustive search.

Even though every implementation of the tradeoff technique works with a specific

one-way function F , analyses of the tradeoff techniques are always done with the as-

sumption that F is a random function.

2.3. Hellman Tradeoff

The first algorithm we explain is the classical tradeoff algorithm of Hellman [14].

2.3.1. Parameter Setup

Certain parameters need to be fixed before the precomputation phase can be started.

Positive integers m and t that satisfy the relation mt2 ≈ N are fixed. This equation

is referred to as the matrix stopping rule. Another positive integer ℓ ≈ t , which will

become the number of tables, is also fixed.

In this paper, we let the parameters m and t satisfy mt2 = HmscN, with a matrix stop-

ping constant Hmsc that is neither very large nor too close to zero. Much of the tradeoff

literature sets Hmsc = 1. The conditions we have given to Hmsc and ℓ may (inaccurately)

be expressed as Hmsc = Θ(1) and ℓ = Θ(t), respectively. The parameters are always as-

sumed to be reasonable in the sense that 1 ≪ m, t ≪ N. The tradeoff algorithms behave

somewhat differently when instantiated with extreme parameters.

The reduction functions Rk : N → N , one for each k = 1, . . . , ℓ, are fixed. These

may be any family of simple bijections that are very easy to compute. When N is a power

of 2 and N consists of non-negative integers less than N, bit permutations or XOR-

ing by constants are practical choices for reduction functions. The colored iterating

functions Fk : N → N are defined through Fk = Rk ◦ F .

2.3.2. Precomputation Phase

In the precomputation phase, the process explained below is repeated ℓ times, once for

each 1 ≤ k ≤ ℓ, to build ℓ tables.

We start by choosing m random starting points spk
1, spk

1, . . . , spk
m ∈ N . Hellman re-

quired each of these starting points to be chosen independently at random, but most

researchers today see the starting points as being distinct. For each 1 ≤ i ≤ m, we ini-

tially set xk
i,0 = spk

i and recursively compute xk
i,j = Fk(x

k
i,j−1) for 0 < j ≤ t . The final

point reached by each chain of iterative computations is said to be an ending point

epk
i = xk

i,t = F t
k (spk

i). The ordered pairs {(spk
i , epk

i)}mi=1 are stored as the kth Hellman

table, after being sorted with respect to the ending points.

A Comparison of Cryptanalytic Tradeoff Algorithms 565

The collection of all points {xk
i,j }i,j , associated with an iterating function Fk of one

color k, is said to be a Hellman matrix of size m × t . One usually visualizes a Hellman

matrix as follows:

spk
1 = xk

1,0

Fk−−→ xk
1,1

Fk−−→ xk
1,2

Fk−−→ · · · Fk−−→ xk
1,t−1

Fk−−→ xk
1,t = epk

0,

spk
2 = xk

2,0

Fk−−→ xk
2,1

Fk−−→ xk
2,2

Fk−−→ · · · Fk−−→ xk
2,t−1

Fk−−→ xk
2,t = epk

1,

...
...

spk
m = xk

m,0

Fk−−→ xk
m,1

Fk−−→ xk
m,2

Fk−−→ · · · Fk−−→ xk
m,t−1

Fk−−→ xk
m,t = epk

m.

It consists of m rows and t + 1 columns. We number the columns so that the starting

point column is the 0th column and the ending point column is the t th column. Each

row of a Hellman matrix is a precomputation chain. Any chain of points from N that

has been formed by iteratively applying an Fk of the same color k is a Hellman chain.

2.3.3. Online Phase

Once the inversion target y = F(x) is given, the process explained below is repeated

for each 1 ≤ k ≤ ℓ, until the correct answer x is found. Occasionally, the algorithm will

report failure in returning the answer after processing all ℓ indices k.

We first compute yk
1 = Rk(y) = Fk(x) and check if this appears as one of the ending

points in the kth Hellman table. The table lookup is repeatedly done for each recursively

computed yk
j = Fk(y

k
j−1), until yk

t = F t
k (x) has been searched for in the table. The

Hellman chain

(x
Fk−−→) yk

1

Fk−−→ yk
2

Fk−−→ yk
3

Fk−−→ · · · Fk−−→ yk
j

that is computed through this process is referred to as the online chain for the kth Hell-

man table.

Whenever a match yk
j = epk

i is found, the corresponding starting point spk
i is retrieved

from the kth Hellman table, and the associated precomputation chain is (partially) re-

generated to obtain xtmp = xk
i,t−j = F

t−j

k (spk
i). Since

F
j

k (xtmp) = F
j

k

(

F
t−j

k

(

spk
i

))

= epk
i = yk

j = F
j−1
k (y1) = F

j

k (x),

there is a chance that xtmp = x. This is why the j th iteration of the online phase for a

specific table is sometimes referred to as searching for the answer x in the (t − j)th

column of the Hellman matrix. If multiple ending points match the current end of the

online chain, one must not forget to regenerate all the corresponding precomputation

chains.

Even though the existence of x in the (t − j)th column of a Hellman matrix will

surely imply the collision of yk
j with an ending point, the converse is not true unless Fk is

injective. An ending point collision could be caused by a merge between the online chain

and a precomputation chain. Hence, the online phase algorithm must check whether the

candidate answer xtmp is the correct answer x. The candidate is clearly incorrect if

F(xtmp)
= y, but a full verification requires more information than is contained in y;

this is explained in more detail in Sect. 3. If the candidate xtmp is found to be incorrect,

566 J. Hong and S. Moon

the event is referred to as a false alarm, in which case the online phase resumes the

iterative computations of the online chain.

2.3.4. Success Probability

The algorithm description for the Hellman tradeoff is complete, and we now give some

rough analyses.

The success of inversion is intimately related to how many distinct points are covered

by the Hellman matrices. Assume that there are not too many duplicates in an m × t

Hellman matrix and consider the addition of one more precomputation chain to this

matrix. The existing Hellman matrix and the new chain contain approximately mt and

t points, respectively. Since the matrix stopping rule gives mt · t ≈ N, we know from the

birthday paradox that there is a high chance that the new chain and the existing Hellman

matrix will contain a common element. Hence, the new chain is likely to merge into an

existing precomputation chain, and much of the computation that was done to create

this additional chain goes to waste. Hence, it makes little sense to continue enlarging a

Hellman matrix beyond the m × t bound set through the matrix stopping rule. This is

the reason for using multiple small tables, rather than a very large table. The discussion

given so far also indicates that there will not be too many duplicates within the matrix

until one comes close to the m × t bound.

Let us use |HM| to denote the expected number of distinct nodes contained in a Hell-

man matrix. The probability of successful inversion after the processing of a single

Hellman table is
|HM|

N
. Hellman [14] provided the lower bound

|HM|
N

≥ 1

N

m
∑

i=1

t
∑

j=1

(

1 − it

N

)j

(3)

and used it to explain the appropriateness of the matrix stopping rule. The arguments

given above involving the birthday paradox are from [5,6], and are not found in [14].

When all ℓ ≈ t tables are processed, assuming that the reduction functions provide

independence between tables, the probability of success becomes

1 −
(

1 − |HM|
N

)ℓ

≈ 1 − exp

(

−ℓ|HM|
N

)

. (4)

Since the number of duplicates within each Hellman matrix is kept low by the matrix

stopping rule, we have |HM| ≈ mt . Recalling that ℓ ≈ t and applying the matrix stopping

rule, we can state that the probability of the Hellman tradeoff in successfully recovering

the correct answer x is approximately 1 − 1
e

≈ 63.2 %. This is sufficiently large for the

Hellman algorithm to be meaningful as an attack.

Interestingly, the original paper [14] does not explicitly express the success probabil-

ity (4) of the complete algorithm. It is only stated that the inverse of the right-hand side

of (3) should be taken as the approximate number of precomputation tables to be cre-

ated. However, statements similar to (4) may be found in works as far back as [17,18].

A Comparison of Cryptanalytic Tradeoff Algorithms 567

In [18], the right-hand side of (3) was carefully approximated, so that the bound could

be rewritten as

|HM|
N

≥ mt

N

1

Hmsc

∫

Hmsc

0

1 − e−x

x
dx. (5)

The experimental data provided in the work supported the correctness of this bound but

also showed that this bound was far from being tight. For example, at Hmsc = 1, the test

data provided was
|HM|

N
= 0.85mt

N
, while the right-hand side of (5) was 0.80mt

N
.

This discrepancy was resolved in [9,19], which computed the expected value |HM|
itself, rather than its lower bound. This result is copied as Proposition 21 in the main

body of the current paper.

The success probability of the Hellman tradeoff was also studied in [27]. However,

the inversion problem considered there is different from that considered here. Their

analysis is applicable if one wishes to recover any pre-image corresponding to a ran-

dom image. The inversion problem considered in [27] is neither of the two inversion

problems that are discussed here in Sect. 3.4, in that the inversion target is directly

chosen without the involvement of an input.

2.3.5. Cost of Resolving Alarms

An upper bound for the number of false alarms per table was given as Hmsc

2
in [14]. This

was combined with the fact that resolving each alarm requires at most t iterations to

argue that the side effects of false alarms on the online time complexity were limited.

A much better bound on the effects of false alarms is given in [18] as

(cost of resolving alarms for all tables) ≤ Hmsc

6
ℓt. (6)

Almost the same content reappears in [15], expressed in the form

(expected cost of resolving alarms per table) = Hmsc

6
t. (7)

The proofs given by the two papers for the above two statements are essentially identi-

cal.

2.3.6. Tradeoff Curve

We have ℓ ≈ t tables, each containing m entries, so that the total storage size is M =
mℓ ≈ mt . Disregarding the time taken to treat false alarms, it takes t iterations of the

one-way function to process each of the ℓ ≈ t tables, so the online time complexity is at

most T ≈ tℓ ≈ t2. Applying the matrix stopping rule to T and M , one can arrive at the

tradeoff curve

T M2 ≈ N
2 (8)

for the Hellman tradeoff.

Conversely, suppose that certain values T and M satisfy the tradeoff curve (8). Then

the parameters t =
√

T and m = M/
√

T satisfy the matrix stopping rule. When the

568 J. Hong and S. Moon

Hellman tradeoff is implemented with these t , m, and ℓ ≈ t , it will require storage M

and run in online time T .

The tradeoff curve (8) did not appear in the original publication [14]. The above

presentation has been adopted from [5,6].

2.4. DP Tradeoff

The distinguished point method, which we shall refer to simply as the DP tradeoff, is

a simple modification of the Hellman tradeoff. The introduction of the DP technique is

attributed to Rivest in the book [10], but no corresponding publication can be found.

The perfect table version of the DP tradeoff was first studied in [7,8], followed by

some further analyses in [1,26,28], but literature analyzing the non-perfect DP tradeoffs,

which we deal with in this work, is hard to find.

2.4.1. Parameter Setup

As in the Hellman tradeoff, one fixes positive integers m and t satisfying the matrix

stopping rule mt2 ≈ N. Reduction functions Rk : N → N are chosen and colored it-

erating functions Fk = Rk ◦ F are defined as before. Our work will use the notation

mt2 = DmscN with a matrix stopping constant Dmsc = Θ(1). As in the Hellman trade-

off, ℓ = Θ(t) will be the number of tables. The parameters are always assumed to be

reasonable in the sense that 1 ≪ m, t ≪ N.

One fixes a property which is satisfied by a random element of N with probability 1
t
.

This distinguishing property should be very easy to check. For example, suppose that t

and N are powers of 2 and that the set N consists of non-negative integers less than N.

Then, one usually defines an element of N to be a distinguished point, or a DP, if the

first log t bits of its binary representation are zero.

2.4.2. Precomputation Phase

Rather than fixing the length of each precomputation chain to t , the precomputation

iterations xk
i,j = Fk(x

k
i,j−1) are continued until the current chain end xk

i,j is found to

be a DP. The resulting m precomputation chains will be of varying lengths, but their

average length will be t . As in the Hellman tradeoff, the m starting point and ending

point pairs are stored as a DP table and ℓ tables are constructed, each corresponding to

a different color 1 ≤ k ≤ ℓ.

Any chain computed through iterative applications of a single Fk that ends at a DP is

a DP chain. The collection of all precomputed DP chains associated with one DP table

is referred to as a DP matrix, even though the collection can no longer be visualized as

a rectangular shaped matrix.

2.4.3. Online Phase

Given the inversion target y = F(x), the online phase of the DP tradeoff proceeds quite

similarly to the Hellman tradeoff online phase. However, since only DPs can be found

among the ending points, table lookups are done only when the iteratively computed yk
j

is found to be a DP. Since no precomputation chain contains a DP in the middle part of

the chain, the online chain iterations for any single DP table is terminated at its first DP

occurrence.

A Comparison of Cryptanalytic Tradeoff Algorithms 569

Resolving alarms is slightly tricky with the DP tradeoffs. Because the length of each

precomputation chain is not known, one regenerates the precomputation chain until ei-

ther yk
1 is reached or a DP, which sits at the end of the precomputation chain, is reached.

One can store the length of each precomputation chain in the DP table [7,8] to remove

this problem, but this has the side effect of increasing the precomputation table size,

and is not considered here. If multiple ending points match the current end of the online

chain, all corresponding precomputation chains need to be regenerated.

2.4.4. Preliminary Analysis

The success probability (4) is also valid for the DP tradeoff, when |HM| is replaced with

the number of distinct entries in a DP matrix. Since the average length of the precom-

puted DP chains is t , each DP matrix covers approximately mt points and the previous

rough approximation 1 − 1
e

for the success rate remains valid for the DP tradeoffs. The

online chain is likely to reach a DP in approximately t iterations, so that the number of

online iterations is T ≈ ℓt ≈ t2, when the efforts made to resolve alarms are ignored.

Combining this with the precomputation table size, which is M = ℓm ≈ mt , we find

that the tradeoff curve (8) is also valid for the DP tradeoff.

2.4.5. Chain Length Bound

In practice, a chain may fall into a loop that does not contain a DP and thus may never

reach a DP. Hence, any implementation of the DP tradeoff sets a chain length bound [7,

8], which we denote by t̂ , and any chain that fails to reach a DP within this bound, during

either the precomputation phase or the online phase, is discarded. The precomputation

phase of a DP tradeoff must generate additional chains to fill in the discarded chains.

Even though some of our results are stated in a way that displays its dependence on t̂ ,

we are mainly interested in the case where t̂ is sufficiently larger than t . The number

of discarded chains is minimized by such a choice, and most of the precomputation is

put to good use. Since the precomputation cost is the main barrier to any large-scale

implementation of the tradeoff technique, such a choice is natural in practice.

If a chain is generated with the random function, the probability for it to become a

DP chain within the chain length bound t̂ is

1 −
(

1 − 1

t

)t̂

≈ 1 − e−t̂/t . (9)

This easy statement may be found in [7].

2.5. Rainbow Tradeoff

The rainbow table method was introduced by Oechslin [23]. From this point on, we will

refer to the rainbow table method simply as the rainbow tradeoff.

2.5.1. Parameter Setup

One starts with positive integers m and t satisfying the matrix stopping rule mt ≈ N.

Notice that this equation is different from the matrix stopping rules for the previous

570 J. Hong and S. Moon

two algorithms. In this work, we use the notation mt = RmscN with the matrix stopping

constant Rmsc = Θ(1). Unlike the previous two algorithms, a small number of tables

ℓ = Θ(1) is used with the rainbow tradeoff. The parameters are always assumed to

be reasonable in the sense that 1 ≪ m, t ≪ N. Reduction functions Rk
j : N → N are

fixed as before, but these have double indices that are made to run over j = 1, . . . , t and

k = 1, . . . , ℓ. The doubly colored iterating functions are defined through Fj,k = Rk
j ◦F .

2.5.2. Precomputation Phase

Instead of using a single reduction function for each table, t different reduction functions

are sequentially applied to create a precomputation chain of length t . Each precomputa-

tion table stores the information from m chains. More explicitly, the ith precomputation

chain for the kth rainbow table takes the form

spk
i = xk

i,0

F1,k−−−→ xk
i,1

F2,k−−−→ xk
i,2

F3,k−−−→ · · · Ft−1,k−−−−→ xk
1,t−1

Ft,k−−−→ xk
i,t = epk

i ,

where 1 ≤ i ≤ m and 1 ≤ k ≤ ℓ. Each of these is a rainbow chain.

The complete set of m chains for any fixed k is an m × t rainbow matrix, and the set

of pairs {(spk
i , epk

i)}i is stored as the kth rainbow table after being sorted on the ending

points. Columns of a rainbow matrix are numbered from the 0th, containing the starting

points, to the t th, containing the ending points.

2.5.3. Online Phase

Let the inversion target y = F(x) be given for the online phase. For each j = 1, . . . , t

and k = 1, . . . , ℓ, we compute the j th online chain for the kth table

(x
Ft−j+1,k−−−−−−→) y

k,j

t−j+1

Ft−j+2,k−−−−−−→ y
k,j

t−j+2

Ft−j+3,k−−−−−−→ · · · Ft−1,k−−−−→ y
k,j

t−1

Ft,k−−−→ y
k,j
t ,

through iterative computation, starting from the point

y
k,j

t−j+1 = Rk
t−j+1(y) = Ft−j+1,k(x).

After each chain computation, the chain end y
k,j
t is searched for among the ending

points of the kth rainbow table. The absence of a collision indicates that the correct

answer x does not belong to the (t − j)th column of the rainbow matrix. The appropri-

ate precomputation chain is regenerated whenever a collision is found. Many of these

regenerations will lead to the announcement of a false alarm.

The order of incrementing the double indices during the online phase requires clar-

ification. One should take the chain length j -index to be the outer loop and the table

number k-index to be the inner loop. In other words, for any index j , one computes the

j th online chains for all ℓ tables, before computing any of the (j + 1)th online chains.

This is referred to as the parallel processing of rainbow tables. The opposite nesting of

the loops is called the sequential processing of tables. As was already noted in [23], the

parallel approach is more efficient in terms of the expected number of one-way function

invocations. Parallel processing of tables is more commonly considered, and this is the

approach we assume throughout this work.

A Comparison of Cryptanalytic Tradeoff Algorithms 571

2.5.4. Success Probability

In [23], one can find the success probability of a rainbow tradeoff that uses a single table

written as

1 −
t−1
∏

j=0

(

1 − mj

N

)

, (10)

where m0 = m and mj are recursively computed through (2). However, this was not

simplified into a closed form formula there.

While studying the perfect table version of the rainbow tradeoff, the work [1] restricts

to the m = N case and gives the approximation

t−1
∏

j=t−i

(

1 − mj

N

)

≈ t − i

t

t − i + 1

t + 1
. (11)

Notice that the range of indices in the left-hand side product is shorter than that ap-

pearing in (10). The left-hand side product of i terms expresses the probability for the

first i online chain computations for a single table (non-perfect) rainbow tradeoff to fail

in returning the correct answer x. This expression is valid for any m, even though the

right-hand side approximation is appropriate only for m = N.

After almost repeating the computations done by [1], the work [15] obtains a gener-

alization of (11) that is valid for any m. The result is restated as Lemma 28 in the main

body of this paper. Neither (11) nor Lemma 28 were explicitly stated as separate results

in the referenced papers, but they can be inferred from parts of their proofs.

2.5.5. Preliminary Analysis

A collision of points from two rainbow chains will result in merging chains only if the

collision occurred at a matching color index. When a new rainbow chain is added to

an existing m × t rainbow matrix that contains no collisions within each column, the

probability of not experiencing a merge can be expressed as (1 − m
N
)t ≈ e− mt

N . Hence,

the matrix stopping rule mt ≈ N is the correct boundary at which collisions among

precomputation chains start to become problematic.

Let us assume the use of a single table for the rest of this rough analysis. Ignoring

collisions within each rainbow matrix column, the success probability (10) may roughly

be approximated as 1 − (1 − m
N
)t ≈ 1 − e−mt/N ≈ 1 − 1

e
. This is equal to what we saw

during the rough analyses for both the Hellman and DP tradeoffs.

Notice that the computations for the j th online chain cannot reuse any of the informa-

tion computed for previous online chains. Hence, the number of one-way function itera-

tions required for the computation of all online chains is T = 0 + 1 +· · ·+ (t − 1) ≈ t2

2
.

The storage size for the single rainbow table is M = m. Recalling the matrix stopping

rule mt ≈ N , the tradeoff curve can be written as

T M2 ≈ 1

2
N

2. (12)

The above time complexity analysis appears in [23], from which the tradeoff curve

directly follows.

572 J. Hong and S. Moon

2.5.6. Further Analysis

The preliminary analysis given above corresponds to the worst case where the complete

table is processed. In practice, the online phase is likely to terminate before computing

the t th online chain. On the other hand, the cost of resolving alarms has been ignored.

Hence, the rough analysis does not give the true worst-case complexity.

The work [15] provides an accurate analysis of the time complexity for rainbow trade-

offs. The expected number of one-way function iterations required to process a single

rainbow table was expressed as an explicit rational function of Rmsc times t2. A simi-

lar result for the additional number of one-way function iterations required to process

alarms was also stated. However, the results were restricted to the single table case.

We do not state their results here, but their results are reobtained if we substitute ℓ = 1

into (22), appearing in the main body of this paper.

2.6. Perfect Table Tradeoffs

The main objective of introducing the DP technique was to reduce the number of ta-

ble lookups that occur in the Hellman tradeoff. However, it was soon noticed that DPs

allow easy detection of merging chains. During the precomputation phase of a perfect

table version of the DP tradeoff [7,8], one removes chain collisions by keeping only the

longest of the merging chains. Chains are additionally generated until m non-merging

DP chains have been collected. The resulting perfect DP matrix contains no overlap-

ping points. The online phase of the perfect DP tradeoff is identical to the non-perfect

version. The work [7] gives credit to the unpublished work [25] for independently in-

troducing the same algorithm.

Detection of merging chains is also easily done with the rainbow tradeoff. The perfect

table version of the rainbow tradeoff [23] stores information for just one chain from

each set of merging chains. Unlike the DP case, a perfect rainbow matrix may contain

overlapping points if they belong to different columns.

The perfect table version of the Hellman tradeoff refers to the case where the Hell-

man matrix contains no overlapping points. Some discussions may be found in [1,27].

However, generating a perfect Hellman table is costly, and its use is not considered to

be practical.

Since there are fewer or no overlaps in a perfect table, these provide better coverage of

the search space than their corresponding non-perfect versions for the same amount of

storage. Hence, perfect tradeoffs are likely to be more efficient than non-perfect trade-

offs. However, this gain in tradeoff efficiency is paid for with the precomputation that

was wasted in generating the discarded chains.

The extra precomputation required for the use of perfect tradeoffs may not seem to

be of importance. However, the precomputation cost can be critical when implement-

ing tradeoffs at the limit of one’s resources. Consider a large-scale implementation for

which the precomputation may take several months on a large cluster of computers. In

such a situation, extending the precomputation period by another few months or dou-

bling the number of computers allocated to the precomputation task will not be a viable

option, even if it promised a significant advantage in the online tradeoff efficiency.

Even though there are analyses of perfect tradeoffs [1,7,8,15,23,28], dealing with

them at the accuracy level aimed for by the current paper is considerably more com-

plicated than for the non-perfect tradeoffs. This is especially true with the perfect DP

A Comparison of Cryptanalytic Tradeoff Algorithms 573

tradeoffs. In view of relative practicality and theoretic accessibility, we deal only with

the non-perfect versions of tradeoff algorithms in this work. Inclusion of the perfect

tradeoffs into the comparison results obtained in this paper is left as a subject for future

study.

2.7. Storage Optimization

The storage size M appearing in the tradeoff curves (8) and (12) refers to the total

number of starting point and ending point pairs that need to be stored in the tradeoff

tables. In practice, it is important to know the physical size, or the number of bits,

required for the table. Each starting point and ending point pair can surely be stored in

2 log N bits, but there are techniques that allow more efficient use of storage.

Below, we assume that a suitable method of enumerating the elements of N has

been fixed and treat elements of N as log N-bit integers. This enumeration is trivial

when N is the set of all bit strings of certain length, but may require a small amount of

work when N is given as the set of passwords satisfying certain complicated linguistic

structures.

2.7.1. Consecutive Starting Points

The first storage reduction technique we review is the use of starting points that require

less storage. The work [6] does this while implementing an attack on a specific system,

and [7] mentions this as a well-known trick without giving any reference. A clear un-

derstanding of random functions shows that the starting points may be chosen in any

manner, as long as it has no relation to the graph structure of the specific one-way func-

tion under attack.

A practical method of choosing starting points is to use consecutive integers [1]. The

integers 0 through m − 1 will work for any (non-perfect) table. Inter-table collisions

among the starting points can be removed by concatenating the table index to the con-

secutive integers [4]. Note that the table index need only be recorded once for each

table. However, the effect of joining table numbers is almost nonexistent on even the

second columns of the precomputation matrices, so this detail is not very important. In

any case, the starting points can be stored in logm bits, rather than log N bits.

The experiment provided by Hellman [14], supporting the arguments concerning the

success probability, was executed with starting points set to small numbers, rather than

random points. However, it is not clear if this was intended to reduce the storage size.

2.7.2. Taking Advantage of the DP Definition

In the case of DP tradeoffs, any information that can be recovered from the definition

of a DP may be removed from the ending point before storage. For example, if a prefix

consisting of log t zero bits defines a DP, the log t bits of zeros can be removed from

each ending point without any loss of information. This method was actively used in [6]

and clearly stated in [28], but seems trivial enough to have been widely known before

these works.

574 J. Hong and S. Moon

Fig. 1. Index table technique. (The sorted list on the left-hand side is transformed to the right-hand side list,

which contains two less bits per entry.)

2.7.3. Index Table

The work [6] introduces the index table method. This is a degenerate form of a widely

known technique called hash tables, which is explained in Appendix D.

To facilitate fast table lookups, the precomputation tables are usually sorted on the

ending points before being written to storage. Let us focus on the {(logm) − ε} most

significant bits of each ending point in the sorted table, where ε is any small positive

integer. Assuming that the ending points are randomly distributed, for each integer 0 ≤
i < m

2ε , we can expect to find approximately 2ε consecutive entries in the sorted table

that have the {(logm) − ε} bit prefix of the ending point equal to integer i. Hence, one

can remove {(logm) − ε} bits from each ending point and replace it with an index table

that points to the starting positions for each i value without losing any information. The

number of entries contained in the index table is only m
2ε ; hence the additional storage

required by its introduction can be ignored. An example is illustrated by Fig. 1.

In practice, the index table could store the number of entries corresponding to each

index value rather than the full physical addresses. With such an approach, since only

very small number of bits is required to store each count, even the use of ε = 0 could be

considered.

2.7.4. Ending Point Truncation

The methods described so far reduce the storage size without losing any information

concerning each starting point and ending point pair. However, this is not so with the

final storage reduction method we describe, which is to simply truncate a part of the

ending point before storage.

The truncation of ending points was done in [6] for a specific tradeoff implementa-

tion, where it was simply stated that the number of bits they allocate is sufficient for

identification purposes. In [4],1 under the assumption that m ≈ N
1/3, it is claimed that

the ending points of a DP table can be compressed to slightly more than 1
3

log N bits.

It is also claimed that the ending points for the rainbow tradeoff can be compressed to

slightly more than 2
3

log N bits. The paper does not provide any justification for these

claims.

During the online phase, when a table lookup is required, the object to be searched

for in the table is truncated to the same length and compared with the truncated ending

points of the table. The table lookups may now falsely return a match even when a

1 The paper refers to the Hellman tradeoff, but it seems that the DP tradeoff was implied. Many researchers

view the Hellman tradeoff as always incorporating the DP technique.

A Comparison of Cryptanalytic Tradeoff Algorithms 575

merge between the online chain and a precomputation chain did not occur. Still, since

we were already expecting false alarms, no new measure needs to be devised to deal

with the new type of false alarms. Aggressive ending point truncation will cause more

frequent false alarms; hence the degree of truncation should be carefully controlled.

The word truncation may give the impression that such a method is applicable only

when the space N consists of bit strings. On spaces that look different, any surjective

map that is pre-image uniform, in the sense that the number of pre-images for each

element in the range is identical, can serve as the truncation operation. In practice,

password hashes are usually bit strings and one does not apply the reduction function at

the end of a chain, so truncations can easily be done.

2.8. Parameter Optimization

Choosing the parameters m, t , and ℓ for a concrete tradeoff implementation is not an

easy task.

The work [18] starts with the assumption that the cost, in dollars, of a tradeoff attack

implementation is proportional to the storage size and the number of one-way function

computations the online phase machine can perform per unit time. This allows one to

consider the lowest possible monetary cost of an attack machine that must succeed with

a given probability and finish within a preset real-world time. Expressions giving lower

and upper bounds for the optimal cost are presented, and parameters t , m, and ℓ that can

achieve the optimal cost are also found. The optimal parameters that are stated depend

on the relative cost of storage versus one-way function computations at unit speed.

This analysis is one of the few that takes false alarms into account when computing

the time complexity of the online phase. However, the analysis relied on the bounds (5)

and (6), which are not very tight, and the upper bound for the optimal cost was simply

taken to be an approximation for the optimal cost. Also, while defining the optimal

cost, the amount of precomputation was fixed to what is required for a single exhaustive

search.

The measure of efficiency used in the current work is different from the monetary

cost discussed in [18]. Our interest is in how efficient each tradeoff algorithm is in

balancing storage against online time. This balancing ability changes with the amount of

precomputation that is invested and the required success rate. The optimal monetary cost

for implementation can easily be computed whenever this balancing ability is accurately

fixed.

In [17], an attempt was made to optimize the success probability of Hellman tradeoff,

while keeping both the time and storage complexities constant. The gain in success

probability was paid for with larger precomputation.

There are two parts of their argument that introduce inaccuracy into their results.

Since they did not have access to a good expression for the time complexity, it was not

possible for them to keep the time complexity exactly constant. They had to be satisfied

with keeping ℓt , which is an upper bound for the time complexity in the absence of false

alarms, constant. The second point was that they lacked knowledge of the exact success

probability and had resorted to using its lower bound given by (5).

The general conclusions of [17] may still be correct, but the details, in particular,

the explicit optimal parameters and values, will need to be recomputed with the infor-

mation given in the current paper. A little more light was shed on the attempt by [23],

576 J. Hong and S. Moon

but the discussion there still relied on rough estimates of time complexity and success

probability.

2.9. Comparison of Tradeoff Algorithms

Let us attempt a comparison of the three tradeoff algorithms we have explained, based

on their tradeoff curves that are already available. Both the Hellman and DP tradeoff

curves are given by (8) and the rainbow tradeoff curve is given by (12). Considering the

case where the same storage M is given to the three tradeoff algorithms, the tradeoff

curves imply that the rainbow tradeoff will require only half the number of one-way

function invocations compared to the other two algorithms during the online phase. In

addition to giving an argument that is equivalent to what we have just described, the

work [23] argues heuristically that the rainbow tradeoff is at an advantage over the DP

tradeoff concerning false alarm issues.

The claimed efficiency of the rainbow tradeoff over the DP tradeoff is refuted in [3,4]2

with the observation that the number of physical bits required to store each entry of the

tradeoff table has been ignored in [23].

Assume the use of typical parameters m = t = ℓ = N
1/3 for the DP tradeoff. Recalling

the contents of Sect. 2.7, one finds that the starting points for the DP tradeoff can be

stored in 1
3

log N bits. It is claimed in [4] that the ending points can first be compressed

to slightly more than 1
3

log N bits and then further compressed to a very small number

of bits by applying the index table method. Hence each entry of a DP table requires

slightly more than 1
3

log N bits to record. In the case of rainbow tradeoffs, one assumes

the typical parameters m = N
2/3, t = N

1/3, and ℓ = 1. Then each starting point requires
2
3

log N bits. The ending point is first compressed to 2
3

log N bits, and then most of this

is removed through the index table method.

Accepting the above arguments, we see that each entry of a rainbow table requires

twice the number of bits required by an entry of a DP table. When given the same

physical amount of storage, the DP tradeoff can store twice as many starting point and

ending point pairs. This translates to a gain in online time by a factor of four through the

tradeoff curve. In conclusion, the DP tradeoff will run two times faster than the rainbow

tradeoff for the same physical amount of storage.

The more recent work [1] once again advocates the rainbow tradeoff and tries to

explain that the arguments of [4] that we have explained so far are misleading. They

emphasize that the advantage of the rainbow tradeoff claimed in [23] was by a factor of

at least two, rather than just two. This is a reasonable point to make, but their ensuing

arguments seem to indicate that they were not aware of the ending point truncation

method, which was taken into account in [4]. One could interpret this as showing how

uninformative [4] was in treating the ending point truncation method.

As we will verify in this work, the claims of [3,4] were mostly correct, but there are

hidden issues that can overturn their conclusion. The first is that the tradeoff curves

given by (8) and (12) are not accurate. Both of these correspond to the worst case where

the algorithms are executed to the end without the correct answer being found. In fact,

this was the point made by [1], although it was used to support only the rainbow tradeoff.

2 It seems that the DP tradeoff was implied, even though the paper refers to the Hellman tradeoff.

A Comparison of Cryptanalytic Tradeoff Algorithms 577

One must also note that the effects of false alarms have been ignored by both tradeoff

curves so that neither accurately reflects even the worst-case complexity.

The second issue is that the success probabilities of the two algorithms may not be

precisely equal at the typical parameters. We have already noted that both algorithms

have an approximate success probability of 1− 1
e

at the typical parameters, but this is an

extremely rough estimate, and the running time of a tradeoff algorithm is very sensitive

to the required success rate. The controversy explained here is discussed in more detail

in Sect. 8.4, after we have developed the necessary tools.

The comparison claims of [23] and [3,4] were made using parameters that require

precomputation equal to a single exhaustive search. Recent comparison claims that deal

with the perfect tables, which we do not treat in this paper, have the tendency to com-

pletely ignore the precomputation cost. Neither approach reflects what can be done in

practice. The difficulty of including the precomputation cost into the comparison of

tradeoff algorithms seems to have been one reason why perfect tradeoffs have received

more focus recently. They certainly appear more attractive, when precomputation is

ignored.

2.10. Checkpoint

The checkpoint [1] technique allows for the resolving of alarms without the regeneration

of the precomputation chain. This technique is applicable to both Hellman and rainbow

tradeoffs. Application to the DP tradeoff is also possible but slightly more complicated

due to the variations in chain lengths.

A column of the precomputation matrix is designated as the checkpoint before pre-

computation. After generation of each precomputation chain, the least significant bit of

the chain element that sits at the checkpoint column is appended to the starting point and

ending point pair that is to be recorded in the precomputation table. During the online

phase, we proceed as usual until an alarm is encountered. At each collision, the online

chain is aligned with the colliding precomputation chain at the ending points. If the on-

line chain is long enough, the least significant bits of the two points that belong to the

checkpoint column are compared. If the two checkpoint bits do not match, the ending

point collision must have resulted from a merge of chains, and the collision is declared

a false alarm. If the checkpoint bits do match, the precomputation chain is regenerated

as usual to resolve the alarm.

The use of checkpoints filters out some of the efforts spent on precomputation

chain regeneration. One can generalize what has been explained to multiple checkpoint

columns, consider other methods of extracting a checkpoint bit, or collect more than

one bit of information from each checkpoint column.

An analysis of the effects of checkpoints in reducing online time was given by [1] for

the perfect rainbow tables. Analyses for Hellman tradeoffs and single table (non-perfect)

rainbow tradeoffs were performed in [15]. With a single checkpoint at the optimal posi-

tion, the Hellman tradeoff online time decreases by 3.17 % at Hmsc = 1, and the online

time of a single table non-perfect rainbow tradeoff decreases by 5.91 % at Rmsc = 1.

The effects of checkpoints are more visible at higher Hmsc and Rmsc values.

The advantage of checkpoints must be compared with its side effect on the storage

size. After the techniques of Sect. 2.7 have been applied, even a single bit difference

in table entry size could translate to a meaningful size ratio change. For example, at

578 J. Hong and S. Moon

50 bits per table entry, if the increase of a single bit per table entry caused by the use of

checkpoints was instead allocated to enlarge the number of table entries, the online time

would have reduced by 1 − (50
51

)2 = 3.88 %. This is better than the above-mentioned

3.17 % reduction effect of checkpoints on the Hellman tradeoff, and the 5.91 % reduc-

tion effect on rainbow tradeoff should be interpreted as achieving only approximately

2.0 % extra reduction.

Since the effects of checkpoints are small and selective applications of checkpoints

will affect all algorithms in the positive direction, its effect on the final comparison of al-

gorithms will be minimal. On the other hand, consideration of the checkpoint technique

would add another layer of complication to our analysis. Hence, the analysis given in the

current paper does not consider the use of checkpoints. However, we are not claiming

that the use of checkpoints should not be considered in practice.

3. Applying Time-Memory Tradeoff to Password Hashes

One usually states the objective of a tradeoff algorithm as the inversion of a one-way

function. A closer look reveals that there are two versions of the inversion problem,

and we will explain how one of these corresponds to the applications of the tradeoff

technique to password hash systems. Issues concerning the use of random functions in

the theoretic analysis of tradeoff algorithms are also discussed in this section.

In this section, we refer to the one-way function image as the password hash and the

input as the password.

3.1. Password Hash

Let us briefly explain how the security features of many file formats that rely on pass-

words for access control work in their very basic form.

The designer of the system chooses and fixes a one-way function H . This one-way

function is a part of the file format specification and is usually considered to be public. In

fact, the one-way function definition can be extracted from the related software even if

it was not originally made public. When the owner of a file following this format wants

access control to be applied to the file, the user supplies a password x. An encryption

key is derived from the password, and the main content of the file is replaced by its

encryption under this key. Then the image y = H(x) of the user password, under the

one-way function specified for the file format, is added to the file. Finally, any record of

the encryption key and the raw password supplied by the user is destroyed.

Later, when authentication is required for file access, the supporting software asks

for a password. The one-way function image H(x′) of the newly supplied password x′

is computed by the software and is compared with the corresponding information y

stored within the file. If a perfect match y = H(x′) is found, equality x = x′ is assumed,

the main body of the file is decrypted using the key derived from the password x′, and

access to the decrypted content is granted. Note that the one-way function image y of

the correct password is stored within the file without any protection and is accessible to

anyone that has obtained the file.

The user authentication procedure for computer system logins works in much the

same way. At the time of initial user registration to the system, the one-way function

A Comparison of Cryptanalytic Tradeoff Algorithms 579

image of the password supplied by the user is recorded in a file that is stored within

the system. In this case, access to the one-way function images may be harder for the

attacker to achieve than in the above case, but this information is often sent over the

network in the clear to a group of computers, so that each of these computers may allow

authenticated logins to a user that has registered at a central server.

3.2. Uniqueness of the Pre-image to a Password Hash

Out of theoretic curiosity, we first ask whether a password hash uniquely determines

the password. This should seem obvious in any practical usages of the password hash

systems.

Proposition 1. Let H : P → H be a random function. Given any password x ∈ P ,

the number of inputs that H maps to the password hash H(x) is expected to be

1 + |P|−1
|H | .

Proof. Since H is a random function, we can first assign a randomly chosen value

of H to H(x) and then define all the other function values. The probability for any one

of the later assignments to strike H(x), which is an explicitly fixed value in P , is 1
|H | .

Each later assignment is independent of all other assignments, and we can expect the

number of later assignments to H(x) to be
|P|−1
|H | . �

Readers should not misinterpret the above proposition as giving the pre-image size of

a random y ∈ H under a random H . For the random function H , the distribution on H

produced by H(x) is the uniform distribution for each fixed x ∈ P , and every y ∈ H is

expected to have
|P|
|H | -many pre-images, rather than 1+ |P|−1

|H | . This is not in contradic-

tion with the proposition, as the proposition deals with the distribution on H produced

from random inputs by the specific H that has been constructed, and this is different

from the uniform distribution on H . Those points of H that lie outside H(P), for the

specifically constructed H , do not have any chance of appearing.

One can also ask for the pre-image size of a random password hash y ∈ H(P).

Note that this question can only be asked after the random function H has been fully

constructed. The corresponding answer will depend on the size of H(P), but, when

|P| = |H |, this should be close to

|P|
E(|H(P)|) ≈ 1

1 − 1
e

≈ 1.582.

Once again, this question is not related to the content of the above proposition. It

deals with the uniform distribution on H(P), which is different from the distribution

on H(P) given by the fully specified H . Those points with larger pre-image sets will

have a larger probability of appearing than those with smaller pre-image sets.

Consider an application of the tradeoff technique to a block cipher whose key length

is equal to its block length. In such a case, one is working with |P| = |H |, and Propo-

sition 1 states that there will be approximately two keys, on average, that map to a given

target ciphertext. This is probably larger than what many would have naively expected.

Of course, in practice, one usually assumes the use of a second ciphertext to almost

580 J. Hong and S. Moon

uniquely identify the key. In fact, if one interprets the key to two ciphertexts mapping

as a new one-way function, then Proposition 1 claims that the key is almost uniquely

determined from the two ciphertexts.

Let us next discuss what Proposition 1 implies for systems that rely on passwords

for access control. These systems are usually designed so that the space H of potential

hash values is significantly larger than the space P of admissible passwords. A typical

password hash would be a bit string of at least 128 bits in length, and the number of

alphanumeric passwords consisting of ten characters is only 6210 ≈ 259.5. In such a

case, Proposition 1 shows that a password hash H(x), produced from a password x,

will almost always identify x uniquely.

Furthermore, in practice, the set of all passwords admissible by the security system

is not of much importance. Since human-generated passwords are not uniformly dis-

tributed within the complete admissible password space, the tradeoff attacker first fixes

a manageable subset P ′ ⊂ P from the set of all passwords and decides to be satisfied

with recovering only those passwords that lie in P ′. The size of this subset is deter-

mined by the computational power that the attacker can allocate to the precomputation

phase and should preferably cover the passwords that are most likely to be used. In

fact, it has been shown [22] that human-memorable passwords can be enumerated effi-

ciently. Under such a setting the password hash set H is immensely larger than the set

of passwords P ′ that is being considered, and hence the password hash determines the

password uniquely.

For the remainder of this paper, we assume that the target system for the application

of the tradeoff technique is such that |P| ≪ |H |, implying that the password hash

uniquely determines the password.

3.3. The Reduction Function

The tradeoff technique requires the one-way function to be iterated. Since the

codomain H of the one-way function H : P → H is usually larger than the do-

main P , iteration is achieved by utilizing a reduction function R : H → P . One role

of the reduction function is to let a password hash be interpreted as another password.

As any theoretic treatment of the tradeoff technique assumes R ◦ H to be a random

function, let us check whether this is appropriate.

Proposition 2. Let |P| be a divisor of |H |, so that
|H |
|P| is an integer. Let R : H →

P be any fixed function that is pre-image uniform in the sense that it is exactly
|H |
|P| -

to-1. If H : P → H is a random function, then R ◦H : P → P is a random function.

Proof. In more precise terms, we want to show that the distribution on PP , produced

from the uniform distribution on H P , through the mapping H �→ R ◦ H , is a uniform

distribution.

Let F0 : P → P be any specific function. It suffices to show that, after random con-

struction of a function H : P → H , we will find R ◦ H = F0 with probability 1

|P||P| .

Note that {R−1(z)}z∈P is a partition of H into cells of size
|H |
|P| . The event F0 = R ◦H

will happen if and only if the value assigned as H(x) belongs to the cell R−1(F0(x)),

A Comparison of Cryptanalytic Tradeoff Algorithms 581

for every x ∈ P . Since the size of R−1(F0(x)) is always
|H |
|P| , and since the assignment

to H(x) is independent and random for every x, the probability of arriving at F0 = R◦H

is
(|H |/|P|

|H |

)|P|
= 1

|P||P| ,

as claimed. �

Every application of the time-memory tradeoff technique to a security system in-

volves a specific one-way function H : P → H , and there is no strictly logical reason

to believe that the specific H will display the properties expected of a random function.

Hence we need to discuss if predicting the behavior of an explicit tradeoff implementa-

tion with arguments concerning random functions can be justified in practice.

There are two ways to resolve this problem. The first is to appeal to our intuition.

When one ignores his knowledge of the inner working of the given specific function, it

will seem as if the function is returning independently and randomly generated values to

each given input. Hence, viewed from the outside, it looks as if the specific function is a

random function in the construction sense. The second argument, which seems slightly

more plausible, is that the one-way function used in the security system is in fact a

function that has been selected from the pool of all functions. Unless we had chosen the

one-way function in an unusual way, any property exhibited by a specific function will

be close to the property averaged over all functions. Further discussion related to this

second argument may be found in Appendix B.

We have thus partly justified the use of random functions in place of specific one-

way functions H : P → H when analyzing the behavior of time-memory tradeoffs.

What we have shown through Proposition 2 is that if we may treat the specific one-

way function H as a random function, then the same can be done with the function

R ◦ H : P → P . Hence, throughout this paper, while analyzing the behavior of time-

memory tradeoffs, we shall work with a random function F : N → N whose domain

and codomain coincide.

3.4. Two Versions of the Inversion Problem

Discussions of this subsection should be read with the Hellman tradeoff in mind. How-

ever, the content can easily be translated to language that is appropriate for any other

tradeoff algorithm.

We have already mentioned that we shall work in the situation H : P → H where

the sets satisfy |P| ≪ |H |, so that a password hash almost always determines a unique

password. We also know that any analysis of time-memory tradeoff behavior is usually

done with a random function F : N → N , whose image does not uniquely determine

the input. In actual implementations, reduction functions Rk : H → P are defined and

the online phase algorithm works with the colored iterating functions Hk = Rk ◦ H :
P → P .

The unique password x corresponding to inversion target y = H(x) is obtained

through the tradeoff algorithm as follows. The online phase algorithm is given y, and

Rk(y) = Hk(x) is passed onto its sub-algorithm that processes the kth table. The best

the sub-algorithm can do is return inputs x ∈ P satisfying Hk(x) = Hk(x). Since this

582 J. Hong and S. Moon

relation is weaker than x = x, the parent algorithm must verify whether the password

candidate x is the correct password x by testing the relation H(x) = y.

Let us discuss how often during the online phase such candidate checks need to be

performed. Assume that the precomputation algorithm required ε|P| iterations of H

to complete. We will have ε = Θ(1) in practice. For exactly the same reason given in

the proof of Proposition 1, the expectation for the number of x appearing in the kth

Hellman matrix that maps to Hk(x) under Hk , combined over all k, is upper bounded

by ε + 1, which is a small number. Hence, the cost of such candidate checks may safely

be ignored.

During a tradeoff algorithm analysis, one does not mention anything about H or R,

the source of the inversion problem, and simply assumes that the inversion target y =
F(x) is given, for some function F : N → N . Note that in this setting, the password

hash y does not uniquely determine the password x. However, the goal of the tradeoff

algorithm in this paper will be to find the correct password x that was used to create y,

rather than any password x that corresponds to the given y through F(x) = y. The any

version may be useful when working to find the pre-image of a cryptographic hash

function, but the the version is suitable when looking for the correct password to an

access control mechanism. A clear distinction between these two inversion problems

was first made in [15].

Since it is logically impossible to distinguish between the many pre-images with only

the y ∈ N information, our analysis will focus on whether x is among the possibly mul-

tiple pre-images to y, returned by the tradeoff algorithm. The determination of whether

each returned value is the correct password is assumed to be done outside the tradeoff

algorithm.

The difference between looking for the pre-image versus any pre-image implies that

the tradeoff algorithm will succeed under different circumstances. The the version suc-

ceeds if and only if the correct password x had appeared as an input to the one-way

function F during the precomputation phase, i.e., if x is among the precomputation ma-

trix entries excluding the ending points. On the other hand, the any version succeeds

if and only if the image y = F(x) had appeared as the function output during the pre-

computation phase, i.e., if y is among the precomputation matrix entries excluding the

starting points. The two approaches will show differences in properties such as success

probability and online running time.

Let us add a final word of caution—both inversion problems we have discussed re-

quire the target y = F(x) to be fixed through a random choice of the input x. One should

distinguish this from the case where the inversion target is directly chosen at random

from either the image space or the codomain. These variants do not seem to fit any

naturally occurring real-world situation.

4. DP Tradeoff

A complexity analysis of the DP tradeoff is given in this section. We present a formula

for computing the probability of success for the non-perfect DP algorithm and provide

a tradeoff curve which takes the effects of false alarms into account. We also discuss the

number of bits required to efficiently store the starting point and ending point pairs.

A Comparison of Cryptanalytic Tradeoff Algorithms 583

In this work, to simplify some of our proofs, we assume that the starting points are

always chosen among non-DPs. Hence, in a precomputed DP chain, every point preced-

ing the ending point, including the starting point, is a non-DP. A rigorous treatment that

allows starting points to be DPs can be performed, but differences between results from

such an analysis and those presented in this work will be negligible.

Recall the probability for a random chain to become a DP chain within the chain

length bound t̂ , given by (9). Rather than requiring each table to contain exactly m

entries, we assume that each precomputation DP matrix is always generated from

m0 = m

1 − e−t̂/t
(13)

distinct starting points. Then we can expect to collect approximately m chains that ter-

minate at DPs.

All of our tradeoff algorithm analyses are done under the assumption that the one-way

function is the random function. In particular, many expectations mentioned hereinafter

are to be understood as averages made over the choice of all functions. Most of our

arguments will be made over a single table, so we remove the display of dependence on

the reduction functions from all the notation.

4.1. Probability of Success

Let us discuss the probability of success for a DP tradeoff under a given set of param-

eters. We first present a general formula connecting precomputation and probability of

success and then show how to compute these for specific parameters. Our first lemma

is quite trivial.

Lemma 3. The number of one-way function invocations required in either creating a

DP chain or stopping at the t̂ th iteration without having reached a DP is expected to be

t
(

1 − e−t̂/t
)

.

Proof. It suffices to add the probabilities of having to compute the successive itera-

tions. Since the next iteration is computed if and only if a DP has not yet been reached,

the expected one-way function invocation count is

t̂
∑

i=1

(

1 − 1

t

)i−1

= t

{

1 −
(

1 − 1

t

)t̂}

,

which we can approximate to what is stated. �

In the above proof, we have implicitly assumed the one-way function to be a random

function and computed the probability for the first i assignments to be non-DPs. A more

exact analysis would additionally consider the possibility for the next assignment to

produce a previously assigned value. We have not done so because the above result was

good enough as an approximation.

Clearly, the success rate of a tradeoff algorithm is intimately connected to the amount

of precomputation, so let us present a way to write down the precomputation.

584 J. Hong and S. Moon

Proposition 4. The precomputation phase of the DP tradeoff is expected to require

mtℓ one-way function invocations.

Proof. We know from Lemma 3 that each attempt at a DP chain creation is expected

to require t (1− e−t̂/t) one-way function invocations. Recall that the creation of a single

DP table is to start with m0 = m

1−e−t̂ /t
chains. Together, these imply that the creation of

a single DP table is expected to consume mt one-way function invocations. Hence, the

total precomputation requirement may be written as mtℓ. �

This proposition is trivially true when the chain length bound is not set, but what we

have shown is that the precomputation cost does not depend on the chain length bound.

We define the precomputation coefficient for the DP tradeoff to be Dpc = mtℓ
N

, so that

the precomputation cost of a DP tradeoff is DpcN.

The coverage rate Dcr of a DP table is defined to be the expected number of dis-

tinct nodes that appear among the DP chains as inputs to the one-way function, divided

by mt . Since our starting points are always non-DPs, all of the nodes that are counted

will be non-DPs. The mentioned expectation is an average over the choice of one-way

functions. In other words, the coverage rate is a certain expected value for the random

function. Our next statement reduces the search for success rate to the computation of

the coverage rate.

Proposition 5. The success probability of the DP tradeoff is

Dps = 1 − e−DcrDpc .

Proof. If we are given y = F(x) as the inversion target, the DP tradeoff will succeed

in recovering the correct answer x, if and only if x had appeared as one of the inputs to

the one-way function during the creation of the DP table. As was discussed in Sect. 3.4,

this is not equivalent to asking for the appearance of y among the output values. The

objective of recovering the correct, rather than any inverse, corresponds to finding x

among the one-way function inputs.

By definition of the coverage rate, a single DP matrix is expected to contain Dcrmt

distinct nodes that were used as inputs to the one-way function. Hence the processing

of a single table will fail in returning the correct answer with probability (1 − Dcrmt
N

).

The success probability of the complete DP tradeoff process is given by

Dps = 1 −
(

1 − Dcrmt

N

)ℓ

≈ 1 − exp

(

−Dcr
mtℓ

N

)

= 1 − e−DcrDpc ,

assuming that the multiple tables are independent. �

We confide that our treatment in the proof of separate tables as being independent

does not strictly conform to the assumption of F being a single random function.

This lemma is almost identical to (4), which had already appeared in many works. We

wrote out the proof in detail, only because most previous works did not clarify whether

the inputs or outputs of the random functions were being counted. In fact, many of them

A Comparison of Cryptanalytic Tradeoff Algorithms 585

did not even clarify which version of the inversion problem was being considered, as it

did not matter for their intended rough analysis.

If the creator of the inversion target y = F(x) chooses x to be a DP, the online phase

will definitely fail. The success probability would be very low for such challenges even

if the starting points were allowed to be DPs. For our analysis to be applicable, the

challenge x needs to be chosen without reference to the structure of the DP tradeoff

table. Note that this is not as strong a requirement as asking for the choice of x to be

random. In practice, since distinguishing properties are defined with reference to the

password hashes rather than the passwords, such challenges do not cause any problem.

For the remainder of this subsection, all chains belonging to the DP matrix will be

seen as having been aligned at the starting points, rather than at the ending points, and

the starting point column will be referred to as the 0th column.

The above expression for probability of success can only be put to use if we know

how to compute the coverage rate. Our computation of the coverage rate will be done

in two steps. Of the m0 chains generated, only m will be DP chains, but we disregard

this in the first step and count the number of new nodes added by each column of the

extended matrix. The sum of these values is the total number of all distinct input entries.

In the second step, we will count the number of nodes that belonged to chains not ending

at DPs and subtract these from the total count.

Let us write mj for the number of new non-DP nodes added by the j th column. The

number m0 of distinct starting points, stated by (13), conforms to this notation.

Lemma 6. The number of new non-DP nodes added by each column satisfies the

recurrence relation

mj = N

{

1 − exp

(

−mj−1

N

)}(

1 − 1

t

)(

1 −
∑j−1

i=0 mi

N(1 − 1/t)

)

.

Proof. Suppose a node positioned in the (j − 1)th column is old, in the sense that it

has appeared in one of the 0th through (j − 2)th columns. Application of the random

function to this node will not result in a random element of N , but a node that had

appeared in one of the 1-st through (j −1)th columns. Hence when counting new nodes

of the j th column we need only consider the nodes of the j th column that are assigned

as images to new nodes of the (j − 1)th column. Recalling (1), we write this as the

N{1 − exp(−mj−1

N
)} part appearing in the claimed equation.

Of the distinct entries that have appeared in the j th column, that are not automatically

old, we want to filter out the DPs. The previous count is made to correspond to the non-

DPs by multiplying by a (1 − 1
t
) factor.

Still, not all of these non-DPs are new nodes. Those that have appeared in previous

columns are removed by multiplying (1 −
∑

i mi

N(1−1/t)
). Notice that we have N(1 − 1

t
),

rather than N, in the denominator, as we are dealing only with non-DPs at this point. �

The next two lemmas are technical computation results. We first turn the recursive

formula for mj into a difference equation concerning a certain sum of mj .

586 J. Hong and S. Moon

Lemma 7. Let μi = mi

N(1−1/t)
and σj =

∑j−1
i=0 μi . Then, σj satisfies the recursive for-

mula

σj+1 − σj = m0

N
− 1

t
σj − 1

2
σ 2

j with σ0 = 0,

which is accurate up to modulo O(1
t3).

Proof. It is straightforward to rewrite the recursive formula of Lemma 6 in terms of

the notation μj :

μj =
{

1 − exp

(

−
(

1 − 1

t

)

μj−1

)}

(

1 −
j−1
∑

i=0

μi

)

.

This may be rewritten once again as

exp

(

−
(

1 − 1

t

)

μj−1

)

= 1 − μj

1 − σj

= 1 − σj+1

1 − σj

.

Now, by taking products of both sides over j = 1, . . . , k, we obtain

exp

(

−
(

1 − 1

t

)

σk

)

= 1 − σk+1

1 − σ1
.

We have thus arrived at a relation involving only the σk notation.

By expanding the exponential function in its Taylor series, we obtain

σk+1 = 1 − (1 − σ1)

{

1 −
(

1 − 1

t

)

σk + 1

2

(

1 − 1

t

)2

σ 2
k − · · ·

}

,

and we can modify the above into the difference equation

σk+1 − σk = σ1 −
(

σ1 + 1

t
− σ1

t

)

σk − 1

2
(1 − σ1)

(

1 − 1

t

)2

σ 2
k + · · · .

Noting that the left-hand side σk+1 − σk = μk is of order O(m
N
) = O(1

t2), we remove

every term on the right-hand side of O(1
t3) order. This may easily be done after noting

that σ1 = μ0 is O(1
t2) and that σk is O(mk

N
), which is at most O(1

t
). The simplified

equation is now

σk+1 − σk = μ0 − 1

t
σk − 1

2
σ 2

k + O

(

1

t3

)

.

It is clear that the initial condition σ1 = μ0 may be replaced by σ0 = 0, under this

recursive formula. As a final tweak, we subtract
m0

N(t−1)
, which is of O(1

t3) order, from

the constant term μ0 = m0

N(1−1/t)
= m0

N
(1 + 1

t−1
), to arrive at the claimed formula. �

Now that we have a difference equation, we can obtain σk through an application of

the Euler method.

A Comparison of Cryptanalytic Tradeoff Algorithms 587

Lemma 8. For each non-negative integer k, we have

mk ≈ N
(

σ(k + 1) − σ(k)
)

where

σ(k) = Ξ2 − 1

t

exp(Ξ k
t
) − 1

(Ξ + 1) exp(Ξ k
t
) + (Ξ − 1)

with Ξ =
√

1 + 2Dmsc

1 − e−t̂/t
.

Proof. Let a function σ : R → R be the unique solution to the differential equation

d

dk
σ = m0

N
− 1

t
σ − 1

2
σ 2 and σ(0) = 0. (14)

If one defines the sequence {σk}k≥0 through the corresponding difference equation

σk+1 − σk = m0

N
− 1

t
σk − 1

2
σ 2

k and σ0 = 0, (15)

then the Euler method tells us that σ(k), the evaluation of the function σ at the non-

negative integer k, may be approximated by the sequence value σk . We may turn this

the other way around to present approximate values of σk through the function evalua-

tions σ(k).

The unique solution to differential equation (14) is

σ(k) = 2m0t

N

exp(

√

1 + 2m0t
2

N

k
t
) − 1

(

√

1 + 2m0t
2

N
+ 1) exp(

√

1 + 2m0t
2

N

k
t
) + (

√

1 + 2m0t
2

N
− 1)

.

The form of σ(k) stated by this lemma is obtained when (13) and mt2 = DmscN are

substituted.

Since the definition of σk given by (15) is identical to the approximate recursive

relation of Lemma 7, we have

σ(k) ≈ σk =
k−1
∑

i=0

μi, where μi = mi

N(1 − 1/t)
.

This allows us to write

mk ≈ N

(

1 − 1

t

)

(

σ(k + 1) − σ(k)
)

≈ N
(

σ(k + 1) − σ(k)
)

,

where the 1
t

term removal is justifiable, as it is of strictly smaller order. �

This completes the first step of the coverage rate computation. The coverage rate

corresponds to the number of distinct non-DP nodes contained in just the DP chains,

but the currently computed mk includes all points contained in even the non-DP chains.

We need to account for these nodes belonging to non-DP chain nodes. This is the second

step in finding the coverage rate.

588 J. Hong and S. Moon

Proposition 9. The coverage rate of a single DP table is expected to be

Dcr = 2

et̂/t − 1

∫ t̂/t

0

exp(Ξu) − 1

(Ξ + 1) exp(Ξu) + (Ξ − 1)
exp(u) du,

where Ξ =
√

1 + 2Dmsc

1−e−t̂ /t
.

Proof. To count the number of distinct non-DPs belonging to all DP chains, we need

to subtract the number of all new points belonging to non-DP chains from
∑t̂−1

i=0 mi .

Before doing this, we first need to consider whether any of these points may not also

appear within a DP chain and take the status of being a new point when the non-DP

chain is removed.

It is clear that any new node belonging to a non-DP chain cannot have appeared in a

column previous to its position, as the node is supposed to be new. Furthermore, such

a node cannot appear within the DP chains in the same column or any future columns,

since it would then reach a DP before the chain length bound is exceeded. Hence new

nodes belonging to non-DP chains do not appear within any DP chains, and we may

safely remove all of these new points without worrying about their possible contribution

to coverage by DP chains.

Now, let us count how many points belong to non-DP chains, one column at a time.

We start with the 0th column. Among all m0 chains, even though we do not know ahead

of time which ones they would turn out to be, there will be m0(1 − 1
t
)t̂ chains that do

not reach a DP even after t̂ more iterations. Hence m0(1 − 1
t
)t̂ nodes among the m0

nodes belonging to the 0th column need to be removed from the count of new nodes.

As for the 1st column, we had focused on m1 chains, but m1(1 − 1
t
)t̂−1 nodes among

these will not reach a DP before exceeding the chain length bound, and they need to be

removed. The general term is now clear.

The coverage rate of a single DP table can thus be stated as

1

mt

t̂−1
∑

k=0

mk

{

1 −
(

1 − 1

t

)t̂−k}

.

Using Lemma 8, we can approximate this to

1

mt

t̂−1
∑

k=0

N
(

σ(k + 1) − σ(k)
)

{

1 −
(

1 − 1

t

)t̂−k}

= N

mt

1

t
σ (t̂) + N

mt

t̂−1
∑

k=0

σ(k)

(

1 − 1

t

)t̂−k
1

t

≈ σ(t̂)

Dmsc
+ t

Dmsc
exp

(

− t̂

t

) t̂−1
∑

k=0

σ(k) exp

(

k

t

)

1

t
.

A Comparison of Cryptanalytic Tradeoff Algorithms 589

Since the coverage rate is of O(1) order and the first term σ(t̂)
Dmsc

is of O(1
t
) order, we

simply discard the first term, and the summation term can be approximated by the inte-

gral

t

Dmsc
e−t̂/t

∫ t̂/t

0

σ(tu) exp(u) du,

when 1
t

is small. The claimed formula follows after substitution of σ(tu), as given by

Lemma 8, and some simplifications. �

We state the case where t̂ is sufficiently large separately for later use.

Proposition 10. The expected coverage rate of a single DP table is approximately

Dcr = 2√
1 + 2Dmsc + 1

,

when the chain length bound t̂ is sufficiently large.

Proof. When the chain length bound t̂ is sufficiently large, almost all of the m0 ≈ m

chains that are generated will terminate with a DP, and hence the coverage rate may be

computed as 1
mt

∑t̂−1
i=0 mi .

Based on Lemma 8, we may write

Dcr ≈
∑t̂−1

i=0 mi

mt
= Nσ(t̂)

mt
= 2

1 − e−t̂/t

eΞt̂/t − 1

(Ξ + 1)eΞt̂/t + (Ξ − 1)
,

where Ξ =
√

1 + 2Dmsc

1−e−t̂ /t
. When t̂ is sufficiently larger than t , this is approximate to

what is claimed. �

A careful reading of this proof shows that t̂
t

does not need to be very large for the

final approximation to be accurate. A ratio between t̂ and t of such a not-too-large order

is all we assume when we use the expression t̂ is sufficiently large. We are not referring

to the limit t̂ → ∞. To the contrary, we wish to have t̂ and t of somewhat similar order

so that the approximation (1 − 1
t
)t̂ ≈ e−t̂/t remains valid.

4.2. Time-Memory Tradeoff Curve

Our next goal is to summarize the ability of the DP tradeoff algorithm in balancing

storage against online time into a single tradeoff equation.

This subsection is easier to follow if one visualizes the chains of the DP matrix as

having been aligned at the ending points. The online iterations for the processing of a

single DP table are counted starting from the 1st iteration. That is, checking whether y =
F(x) is among the DPs in the DP table is referred to as the 1st iteration.

Our first task is to find the probability for merges to occur between DP chains.

590 J. Hong and S. Moon

Lemma 11. Fix a random function F : N → N and suppose that we are given a pre-

computed DP chain of length j ≤ t̂ , generated with F from a random non-DP starting

point. If a second chain is generated with F from a random starting point, the probabil-

ity for it to become a DP chain of length i and merge with the given precomputed chain

is

t

N

{

exp

(

min{i, j}
t

)

− 1

}

exp

(

− i

t

)

.

Proof. Within this proof, let us refer to the event of the second chain becoming a DP

chain of length i and merging with the precomputed chain simply as the event.

We first restrict ourselves to the i ≤ j case and fix the notation for the two chains as

follows:

x0 → ·· · → xj−i → xj−i+1 → xj−i+2 → ·· · → xj−1 → xj

z0 → z1 → z2 → ·· · → zi−1 → zi .

The nodes x0, . . . , xj−1 are non-DPs and xj is a DP.

Let us consider all possible scenarios by which the event can occur. If the randomly

chosen starting point z0 happens to be equal to xj−i , then the second chain will follow

the first chain and the event surely will occur. On the other hand, if z0 is either one of

the points x0, . . . , xj−i−1, xj−i+1, . . . , xj−1, or a DP, then the event cannot occur. In

the remaining case, i.e., when z0 is neither a DP nor any one of the points x0, . . . , xj−1,

then the possibility of the event occurring remains. Furthermore, in this last case, we

may freely set F(z0) to a randomly chosen point of N .

The above argument may now be repeated. If the randomly chosen z1 = F(z0) is

equal to xj−i+1, then the event occurs. If z1 is either a DP or one of the points x0, . . . ,

xj−i , xj−i+2, . . . , xj−1, then the event cannot occur. And if z1 is neither a DP nor one

of the points x0, . . . , xj−1, then the event occurrence is yet undecided and we are free

to define z2 = F(z1) to a random point of N .

Hence, when i ≤ j , the probability for the event to occur may be written as

1

N
+

(

1 − 1

t
− j

N

)

1

N
+

(

1 − 1

t
− j

N

)2
1

N
+ · · · +

(

1 − 1

t
− j

N

)i
1

N
,

which is equal to

1

N

1 − (1 − 1
t
− j

N
)i+1

1 − (1 − 1
t
− j

N
)

.

Noting that
j
N

≪ 1
t

and using (1 − 1
t
)i+1 ≈ (1 − 1

t
)i ≈ exp(− i

t
), we can approximate

this as

t

N

{

1 − exp

(

− i

t

)}

.

We can similarly work with the i ≥ j case. The event can occur only if the begin-

ning random choices z0, . . . , zi−j−1 are made among non-DPs that are different from

A Comparison of Cryptanalytic Tradeoff Algorithms 591

x0, . . . ,xj−1. The probability for the event to occur is

(

1 − 1

t
− j

N

)i−j
1

N
+

(

1 − 1

t
− j

N

)i−j+1
1

N
+ · · · +

(

1 − 1

t
− j

N

)i
1

N
,

which is approximately

t

N

{

exp

(

− i − j

t

)

− exp

(

− i

t

)}

.

The results for the cases i ≤ j and i ≥ j can be combined and stated as claimed. �

With the probability of alarms in our hands, we can compute the cost induced by false

alarms.

Lemma 12. The number of extra one-way function invocations induced by alarms is

expected to be

t
Dmsc

1 − e−t̂/t

{

2 − 8e−t̂/(2t) +
(

5 + 3(t̂/t) − 1

2
(t̂/t)2

)

e−t̂/t + e−2t̂/t

}

,

for each DP table.

Proof. When the chains are generated from m0 non-DP starting points as given

by (13), one can expect to collect

m

1 − e−t̂/t

(

1 − 1

t

)j−1
1

t
≈

m
t

1 − e−t̂/t
exp

(

−j

t

)

(16)

DP chains of length j .

The probability of collision between the online chain and any one of these DP chains

of length j , at the ith iteration of the online phase, is given by Lemma 11. Here, the

1st iteration deals with an online chain of length one, rather than zero, that starts at the

unknown correct answer and ends at the inversion target.

The third component is the work required at each collision. If we take advantage

of the fact that there is a chain length bound, in most cases, the number of iterations

required to deal with a collision between a precomputed chain of length j and an online

chain of length i will be min{t̂ − i + 1, j}. The only exception is when a pre-image to

the inversion target is found, which is rare enough to be ignored.

Multiplying the three components and summing over all possible indices i and j , the

expected number of iterations can be expressed as

t̂
∑

i=1

t̂
∑

j=1

m
t

1 − e−t̂/t
exp

(

−j

t

)

· t

N

{

exp

(

min{i, j}
t

)

− 1

}

exp

(

− i

t

)

· min{t̂ − i + 1, j}.

592 J. Hong and S. Moon

Replacing i
t

with u and
j
t

with v, the above can be approximated by the integral

mt2

N
t

1 − e−t̂/t

∫ t̂/t

0

∫ t̂/t

0

exp(−u) exp(−v)
{

exp
(

min{u,v}
)

− 1
}

min

{

t̂

t
− u,v

}

dv du,

when 1
t

is small. The claimed value appears when this definite integral is computed. �

Finally, we write the tradeoff curve for the DP tradeoff in a way that takes into account

the extra cost of alarm resolving.

Theorem 13. The time-memory tradeoff curve for the DP tradeoff is T M2 = DtcN
2,

where the tradeoff coefficient is

Dtc =
{

(2Dmsc + 1) − 8Dmsc

et̂/2t
+

(5 + 3t̂
t

− t̂2

2t2)Dmsc − 2

et̂/t
+ Dmsc + 1

e2t̂/t

}

× Dps{ln(1 − Dps)}2

(1 − e−t̂/t)D3
crDmsc

.

Proof. The ith DP table is processed if and only if all previous tables did not return

the correct answer. The probability of such a failure is (1− Dcrmt
N

)i−1. The time required

in processing a single table is the sum of one-way function invocation counts given by

Lemma 3 and Lemma 12. Hence the expected total running time of the DP tradeoff may

be written as

T =
ℓ

∑

i=1

(

1− Dcrmt

N

)i−1{
(

1−e−t̂/t
)

+ Dmsc

1 − e−t̂/t

(

2− 8

et̂/2t
+

5 + 3t̂
t

− t̂2

2t2

et̂/t
+ 1

e2t̂/t

)}

t.

The summation index i appears only in the first multiplicative factor, and we can easily

check that

ℓ
∑

i=1

(

1 − Dcrmt

N

)i−1

= N

Dcrmt

{

1 −
(

1 − Dcrmt

N

)ℓ}

= Dps

DcrDmsc
t, (17)

where the second equality follows from Proposition 5. The running time can now be

rewritten as

T = Dps

DcrDmsc

{

(

1 − e−t̂/t
)

+ Dmsc

1 − e−t̂/t

(

2 − 8

et̂/2t
+

5 + 3t̂
t

− t̂2

2t2

et̂/t
+ 1

e2t̂/t

)}

t2. (18)

A Comparison of Cryptanalytic Tradeoff Algorithms 593

Since the storage is M = mℓ, we have

T M2 = Dps

DcrDmsc

{

(

1 − e−t̂/t
)

+ Dmsc

1 − e−t̂/t

(

2 − 8

et̂/2t
+

5 + 3t̂
t

− t̂2

2t2

et̂/t
+ 1

e2t̂/t

)}

(mtℓ)2

=
{

(2Dmsc + 1) − 8Dmsc

et̂/2t
+

(5 + 3t̂
t

− t̂2

2t2)Dmsc − 2

et̂/t
+ Dmsc + 1

e2t̂/t

}

×
DpsD

2
pcN

2

(1 − e−t̂/t)DcrDmsc

.

The claim is reached by observing that

D
2
pc = (DcrDpc)

2

D
2
cr

= {ln(1 − Dps)}2

D
2
cr

,

where the second equality is again an application of Proposition 5. �

Let us emphasize that the tradeoff coefficient Dtc is an expected value rather than a

bound. The tradeoff curve was computed without restricting to the worst case, in which

the algorithm fails after processing all tables. The following statement is an immediate

consequence of the preceding theorem.

Corollary 14. The time-memory tradeoff curve for the DP tradeoff is T M2 = DtcN
2

with

Dtc =
(

2 + 1

Dmsc

)

1

D
3
cr

Dps

{

ln(1 − Dps)
}2

,

when the chain length bound t̂ is sufficiently large.

We make the number of table lookups explicit for later use.

Lemma 15. The online processing of the DP tradeoff that uses the parameters m, t ,

ℓ, and t̂ is expected to require t
Dps

DcrDmsc
lookups to the DP tables.

Proof. The ith DP table is processed if and only if all previous tables have failed

in returning the correct answer and the processing of each table requires a single ta-

ble lookup. Hence, the expected total number of table lookups is given by (17), as

claimed. �

The dependence of this result on the chain length bound t̂ is hidden inside the Dcr

term.

594 J. Hong and S. Moon

4.3. Efficient Use of Storage

The storage size M appearing in any tradeoff curve refers to the total number of starting

point and ending point pairs that need to be stored in the tradeoff tables. As explained

in Sect. 2.7, the number of bits required to store a single starting and ending point pair

will be different for each tradeoff algorithm. The focus of this section is on analyzing

the ending point truncation technique explained in Sect. 2.7.4 for the DP tradeoffs.

It seems that the intention of the works [4,6] while using ending point truncation was

to keep slightly more than logm bits of each ending point, so that each ending point

within a DP table could be identified almost uniquely. However, this would also imply

that almost every lookup to the precomputation table will generate a match of truncated

points.

Let us start with a rough preliminary analysis of the situation where logm bits are

stored for each ending point. The online chain creation during processing of a table re-

quires Θ(t) iterations of the one-way function and will generate a single lookup to the

table. The alarm that is almost surely generated by the lookup will require Θ(t) addi-

tional one-way function iterations to resolve. Hence, the total cost per table processing

remains at Θ(t) even with ending points truncated to logm bits, and the truncation to

logm bits seem reasonable. Truncation to smaller than logm bits will result in the return

of multiple collisions at the single table lookup and will quickly become problematic.

Although one is guaranteed not to see a radical change in the online time complexity

after truncating ending points to logm bits, the above analysis does not provide im-

plementers with the information on how close to logm bits one may venture without

experiencing visible side effects to the online time complexity. For now, implementers

can only repeatedly tweak and make test runs to decide on the appropriate degree of

truncation.

Consider an ending point truncation method for which two random points of N ,

truncated in the specified manner, will have probability 1
r

of matching with each other.

We shall express such a situation as having 1
r

probability of truncated match. For

example, if log t bits from the ending points were truncated with Dmsc = 1, so that

(logm+ log t) bits remain, then the truncated matches would occur with probability 1
mt

.

When truncating ending point DPs, one should truncate the random-looking part, rather

than the distinguished part. Removal of the distinguished part can always be undone,

and does not cause any loss of ending point information.

Lemma 16. Assume the use of ending point truncation with the truncated match

probability set to 1
r
. The number of extra one-way function invocations induced by

truncation-related alarms is expected to be

t
1 − 2(t̂/t)e−t̂ /t − e−2t̂/t

1 − e−t̂/t

mt

r
,

for each DP table.

Proof. Consider a random function F : N → N and suppose that the first chain,

generated with F and a random non-DP starting point, became a DP chain of length

j ≤ t̂ . Now, suppose a second chain is generated with F from a random non-DP starting

A Comparison of Cryptanalytic Tradeoff Algorithms 595

point. Let us compute the probability for the second chain to become a DP chain of

length i and not merge with the first chain, but have the same truncated ending point as

the first chain.

The first i nodes of the second chain must be chosen among non-DPs that are different

from the j pre-ending points of the first chain. The ith node chosen, when truncated,

needs to agree with the truncated ending point of the first chain. Note that this agreement

already requires the final point to be a DP. Thus the probability we aimed to write can

be expressed as

(

1 − 1

t
− j

N

)i(
1

r
− 1

N

)

≈ exp

(

− i

t

)

1

r
. (19)

Now, we can combine the number of DP chains of length j , as given by (16), together

with the probability of non-merging truncated collision with such a chain, as given

by (19), to write the cost of truncation-related false alarms as

t̂
∑

i=1

t̂
∑

j=1

m
t

1 − e−t̂/t
exp

(

−j

t

)

· exp

(

− i

t

)

1

r
· min{t̂ − i + 1, j}.

It now suffices to simplify this expression. Replacing i
t

with u and
j
t

with v, the above

can be approximated by the definite integral

mt2

1 − e−t̂/t

1

r

∫ t̂/t

0

∫ t̂/t

0

exp(−u) exp(−v)min

{

t̂

t
− u,v

}

dv du,

when 1
t

is small. We arrive at the claimed value when this is explicitly computed. �

Combining Lemmas 3, 12, and 16, we know that the online processing of a single DP

table requires

t
(

1 − e−t̂/t
)

+ t
Dmsc

1 − e−t̂/t

{

2 − 8e−t̂/(2t) +
(

5 + 3(t̂/t) − 1

2
(t̂/t)2

)

e−t̂/t + e−2t̂/t

}

+ t
1

1 − e−t̂/t

{

1 − 2(t̂/t)e−t̂/t − e−2t̂/t
}mt

r

invocations of the one-way function. When t̂ is sufficiently large, this simplifies to

t + t2Dmsc + t
mt

r
,

with each additive term corresponding to the three terms given before. The ratio of the

original number of iterations to the number of extra iterations incurred by truncations is

(t + t2Dmsc) : t mt

r
= r : mt

1 + 2Dmsc
.

596 J. Hong and S. Moon

The choice of r = mt
1+2Dmsc

will give an implementation whose added cost of truncation-

related alarms increases the nontruncated original cost by 100 %. Noting that a truncated

match probability of 1
r

is achieved by leaving log r bits after truncation, we summarize

what we have discussed in the following statement.

Proposition 17. Fix a set of parameters for a DP tradeoff such that the chain length

bound t̂ is sufficiently large. Suppose that the online phase of the DP tradeoff implemen-

tation that stores each ending point in full requires T iterations of the one-way function

to complete. Then, an implementation that leaves

logm + log t − log(1 + 2Dmsc) ± ε

bits per ending point after truncation, where ε is a small non-negative integer, requires

2∓εT additional iterations of the one-way function to complete.

Let us recall the contents of Sect. 2.7 and summarize how DP table storage can be

optimized. Sequential use of starting points allows each starting point to be recorded in

approximately logm bits. One can truncate and leave slightly more than logm + log t

bits in each ending point and experience minimal side effect on the online running

time. The decision on the exact degree of truncation can be made with the help of

Proposition 17. Of the remaining approximately logm + log t bits of the ending point,

we do not need to store the log t bits that are fixed through the distinguishing property.

Furthermore, the index table technique allows us to remove almost logm more bits

without any loss of information. In all, logm bits are required to store each starting

point, and a very small number of bits are required to store each ending point. We have

thus confirmed the claims of [4,6] theoretically.

Example 18. Consider an extremely large tradeoff implementation with N = 275 and

assume the typical parameters m ≈ t ≈ ℓ ≈ N
1
3 = 225. Each starting point requires

25 bits. The DP definition allows removal of 25 bits from each ending point. We as-

sume removal of 23 further bits through the index table method. Let us approximate

log(1 + 2Dmsc) ≈ 2. Then, each table entry will require 25 + ε bits.

Let T be the number of one-way function iterations required for the online chain

creation and the resolving of alarms in the absence of ending point truncations. When

ε is changed from 4 to 3, the storage decreases by 29−28
29

≈ 3.45 % while the iterations

increase by 5.88 % from (1+ 1
24)T to (1+ 1

23)T . This tradeoff is better than the tradeoff

achievable through the changes in m, t , and ℓ. However, when similar calculations are

made for the change of ε from 3 to 2, one can confirm that the increase in online time

is not worth the decrease in storage.

In summary, for the assumed rough range of parameters, it is advisable to allocate

approximately 28 bits per table entry and accept the 9
8
T online time, even though this

is visibly different from T .

5. Hellman Tradeoff

In this section, we gather facts about the complexity of the Hellman tradeoff. As in the

previous section, the reduction functions are kept hidden during the analysis.

A Comparison of Cryptanalytic Tradeoff Algorithms 597

Our first statement is quite trivial.

Proposition 19. The precomputation phase of the Hellman tradeoff requires mtℓ one-

way function invocations.

We define the precomputation coefficient for the Hellman tradeoff to be Hpc = mtℓ
N

,

so that the precomputation cost of a Hellman tradeoff is HpcN. The next proposition is a

restatement of (4).

Proposition 20. The success probability of the Hellman tradeoff is

Hps = 1 − e−HcrHpc .

We next state the coverage rate, so that the above expression for probability of success

can be put to use. This is a trivial modification of statements from [9,19].

Proposition 21. The coverage rate of a single Hellman table is expected to be

Hcr =
√

2√
Hmsc

e
√

2Hmsc − 1

e
√

2Hmsc + 1
.

The tradeoff efficiency of the Hellman tradeoff is compactly expressed by the fol-

lowing time-memory tradeoff curve. This result takes into account the cost of resolving

alarms, and, unlike (8), which semi-corresponds to an upper bound on the efficiency,

expresses the average behavior.

Theorem 22. The time-memory tradeoff curve for the Hellman tradeoff is T M2 =
HtcN

2, where the tradeoff coefficient is

Htc =
(

1

Hmsc
+ 1

6

)

1

H
3
cr

Hps

{

ln(1 − Hps)
}2

.

Proof. The ith Hellman table is processed if and only if all previous tables have failed

in returning the correct answer. The probability of such a failure is (1 − Hcrmt
N

)i−1.

Recalling the number of one-way function invocations required per Hellman table to

resolve false alarms (7), the number of all iterations required per table can be written

as (1 + Hmsc

6
)t . The expected total running time of the Hellman tradeoff may be written

as

T =
ℓ

∑

i=1

(

1 − Hcrmt

N

)i−1(

1 + Hmsc

6

)

t. (20)

The summation index i appears only in the first multiplicative factor, and we can

easily check that

ℓ
∑

i=1

(

1 − Hcrmt

N

)i−1

= N

Hcrmt

{

1 −
(

1 − Hcrmt

N

)ℓ}

= Hps

HcrHmsc
t,

598 J. Hong and S. Moon

where the final equality follows from Proposition 20. Returning to (20), the execution

time can now be written as

T =
(

1

Hmsc
+ 1

6

)

Hps

Hcr
t2. (21)

Since the storage size is M = mℓ, we have

T M2 =
(

1

Hmsc
+ 1

6

)

Hps

Hcr
(mtℓ)2 =

(

1

Hmsc
+ 1

6

)

Hps

Hcr
H

2
pcN

2

=
(

1

Hmsc
+ 1

6

)

Hps(HcrHpc)
2

H
3
cr

N
2 =

(

1

Hmsc
+ 1

6

)

Hps{ln(1 − Hps)}2

H
3
cr

N
2,

where the final equality again relies on Proposition 20. �

The time T , stated during the above proof as (21), counts the number of one-way

function computations, and includes the efforts for resolving alarms. Since the number

of table lookups will be smaller, we make this count explicit.

Lemma 23. The online processing of the Hellman tradeoff that uses the parameters

m, t , and ℓ is expected to require t2 Hps

HcrHmsc
lookups to the Hellman tables.

The proof to this lemma is almost identical to that of Lemma 15. The only difference is

that the processing of each table requires t lookups, rather than one.

After reading the proof to Theorem 22, one can easily write the expected cost of re-

solving alarms for the Hellman tradeoff as
Hps

6Hcr
t2, and by following through the relations

Hps

6Hcr
t2 = 1 − e−HcrHpc

6Hcr
t2 ≤ 1 − (1 − HcrHpc)

6Hcr
t2 = mtℓ

6N
t2 = Hmsc

6
tℓ,

we can recover the old approximation (6). This shows that the bound (6) is far from

being tight, unless HcrHpc ≪ 1.

We have so far secured access to the precomputation cost, the success probability,

and the tradeoff efficiency of the Hellman tradeoff. It remains to discuss the use of

storage. Three of the approaches to storage reduction that were discussed in Sect. 2.7

are applicable to the Hellman tradeoff, and we provide an analysis of the ending point

truncation method below.

Let us start with a preliminary analysis. Assume that ending points are truncated so

that logm bits are stored for each ending point. Then the table entries are uniquely

identifiable, but each table lookup would return one truncated match on average. The

cost of resolving alarms becomes t + (t −1)+· · ·+1 ≈ t2

2
per table. This dominates the

online chain creation cost of t , so truncation to logm bits is not an acceptable method.

A more exact analysis of ending point truncation is given next. We reuse the concept

of truncated match probability, previously defined for the DP tradeoff, with the Hellman

tradeoff.

A Comparison of Cryptanalytic Tradeoff Algorithms 599

Lemma 24. Assume the use of ending point truncation with the truncated match

probability set to 1
r
. The number of extra one-way function invocations induced by

truncation-related alarms is expected to be

t
mt

2r
,

for each Hellman table.

Proof. Fix a random function F : N → N and suppose that we are given a precom-

puted chain of length t , generated with F from a random starting point. Now consider

a second chain generated with F from a random starting point. The probability for it to

produce an alarm related to truncation, i.e., a truncated ending point match without a

merge with the first chain, on the ith iteration, is

(

1 − 1

N

)i(
1

r
− 1

N

)

≈
(

1 − i

N

)(

1

r
− 1

N

)

≈ 1

r
.

This is because the first i nodes of the second chain must be chosen among nodes that

are different from the t pre-ending points of the first chain.

Taking account of all m precomputed chains, the cost induced by the truncation-

related alarms can now be written as

t
∑

i=1

m

r
(t − i + 1) ≈ mt2

r

t
∑

i=1

(

1 − i

t

)

1

t
.

When 1
t

is small, by replacing i
t

with u, the above can be approximated with the definite

integral

mt2

r

∫ 1

0

(1 − u)du,

which computes to mt2

2r
, as claimed. �

Combining this with what we saw during the proof of Theorem 22, the total online

time required to deal with a single Hellman table can be stated as

t + t
Hmsc

6
+ t

mt

2r
.

Arguing as we did in the previous section concerning ending point truncations for the

DP tradeoffs, we can come to the following conclusion.

Proposition 25. Fix a set of parameters for the Hellman tradeoff and suppose that its

implementation which stores full ending point information requires T iterations of the

one-way function to complete the online phase. Then, an implementation that leaves

logm + log t − log

(

2 + Hmsc

3

)

± ε

600 J. Hong and S. Moon

bits per ending point after truncation, where ε is a small non-negative integer, requires

2∓εT additional iterations of the one-way function to complete.

We can summarize how Hellman table storage can be optimized after recalling the

contents of Sect. 2.7. Each starting point requires logm bits. Ending points may be trun-

cated so that slightly more than logm + log t bits remain without experiencing visible

side effects on the online running time. The decision on the exact degree of truncation

can be made with the help of Proposition 25. Using the index table technique, almost

logm additional bits can be removed without any loss of information. In all, logm bits

are required for each starting point and slightly more than log t bits are required for each

ending point. This is very different from the conclusions for the DP tradeoff.

Example 26. Let us reuse the parameters of Example 18. Assuming that the index table

allows removal of 23 bits and accepting the approximation log(2+ Hmsc

3
) ≈ 1, each table

entry is seen to require 25 + 26 + ε bits.

With T equal to the nontruncated iterations, when ε is changed from 5 to 4, the stor-

age decreases by 56−55
56

≈ 1.79 %, while the iterations increase by {(1 + 1
24)T − (1 +

1
25)T }/{(1 + 1

25)T } ≈ 3.03 %. This is an acceptable tradeoff. However, the change of ε

from 4 to 3 results in a 1.82 % decrease in storage, which cannot justify the correspond-

ing 5.88 % increase in online time.

In summary, for the assumed rough range of parameters, it is advisable to allocate

approximately 55 bits per table entry and accept the 17
16

T online time, which is slightly

higher than T .

6. Rainbow Tradeoff

In this section, we gather facts about the rainbow tradeoff. Recall that multiple rainbow

tables are to be processed in parallel. The 1st iteration of a rainbow tradeoff online

phase will refer to the ℓ-many searchings of y
k,1
t = Ft,k(x) among the ending points of

the kth rainbow table with the index k running from 1 to ℓ. The j th iteration will require

(j − 1) · ℓ invocations of the one-way function and ℓ lookups to different tables.

Our first claim is a direct consequence of the relation mt = RmscN that defines the

notation Rmsc.

Proposition 27. The precomputation phase of the rainbow tradeoff requires RpcN one-

way function invocations, where the precomputation coefficient is Rpc = Rmscℓ.

The contents of the following lemma for the ℓ = 1 case were already used in certain

computations of [15], but let us restate it here in a more readily accessible form. The

first statement of this lemma is a trivial extension of the past result (10).

Lemma 28. The probability for the first k iterations of the online phase to fail is

k
∏

i=1

(

1 − mt−i

N

)ℓ

,

A Comparison of Cryptanalytic Tradeoff Algorithms 601

where m0 = m and
mi+1

N
= 1 − exp(−mi

N
). This product may be approximated by

(

1 − Rmsc

2 + Rmsc

k + 1

t

)2ℓ

.

Proof. The second statement is based on the approximation

mi

N
≈ 1

N/m + i/2
,

which appears in [15]. This is a very small generalization of a result from [1], which

treated the m = N case. After rewriting this as

1 − mt−i

N
≈ 2N + m(t − i − 2)

2N + m(t − i)
,

the sequential cancellations within the product become visible, and we arrive at

k
∏

i=1

(

1 − mt−i

N

)ℓ

≈
{

2N + m(t − k − 1)

2N + m(t − 1)

2N + m(t − k − 2)

2N + m(t − 2)

}ℓ

≈
{

1 −
Rmsc

k+1
t

2 + Rmsc

}2ℓ

,

which is the claimed approximation. �

We can arrive at the next claim by substituting k = t into the above lemma and ignor-

ing an insignificant term.

Proposition 29. The success probability of the rainbow tradeoff is

Rps = 1 −
(

2

2 + Rmsc

)2ℓ

.

The tradeoff efficiency of the rainbow tradeoff is compactly expressed by the follow-

ing theorem. The average efficiency, rather than the worst-case situation, is expressed

by this result, and the effects of false alarms have been taken into account.

Theorem 30. The time-memory tradeoff curve for the rainbow tradeoff is T M2 =
RtcN

2, where the tradeoff coefficient is

Rtc = ℓ3

(2ℓ + 1)(2ℓ + 2)(2ℓ + 3)

(

{

(2ℓ − 1) + (2ℓ + 1)Rmsc

}

(2 + Rmsc)
2

− 4
{

(2ℓ − 1) + ℓ(2ℓ + 3)Rmsc

}

(

2

2 + Rmsc

)2ℓ)

.

Proof. Substituting k = i − 1 into Lemma 28, we know that the ith iteration is pro-

cessed with probability (1 − Rmsc

2+Rmsc

i
t
)2ℓ. The probability of alarm occurrence associ-

ated with a single chain in a single rainbow matrix at the ith iteration may be inferred

602 J. Hong and S. Moon

from [15] to be i+1
N

. The reasoning behind this second statement is identical to the proof

that led to the older results (6) and (7).

Hence, the expected total running time of the rainbow tradeoff, taking into account

the cost of resolving alarms associated with all m rows, may be written as

T =
t

∑

i=1

ℓ

{

(i − 1) + (t − i + 1)
m(i + 1)

N

}(

1 − Rmsc

2 + Rmsc

i

t

)2ℓ

≈ t2ℓ

t
∑

i=1

{

i

t
+

(

1 − i

t

)

Rmsc
i

t

}(

1 − Rmsc

2 + Rmsc

i

t

)2ℓ
1

t
.

This may be approximated by the definite integral

T = t2ℓ

∫ 1

0

u
{

1 + Rmsc(1 − u)
}

(

1 − Rmsc

2 + Rmsc
u

)2ℓ

du,

which computes to

T = t2ℓ
{(2ℓ − 1) + (2ℓ + 1)Rmsc}(2 + Rmsc)

2

(2ℓ + 1)(2ℓ + 2)(2ℓ + 3)R2
msc

−
4{(2ℓ − 1) + ℓ(2ℓ + 3)Rmsc}(2

2+Rmsc
)2ℓ)

(2ℓ + 1)(2ℓ + 2)(2ℓ + 3)R2
msc

. (22)

It now suffices to combine this with the storage size M = mℓ and simplify to arrive at

the claim. �

The time T appearing in the above tradeoff curve gives the count of one-way function

invocations and ignores table lookups.

Lemma 31. The online processing of the rainbow tradeoff is expected to require

tℓ
2 + Rmsc − 2(2

2+Rmsc
)2ℓ

(2ℓ + 1)Rmsc

lookups to the rainbow tables.

Proof. At the start of the proof of Theorem 30, we saw that the ith iteration is pro-

cessed with probability (1 − Rmsc

2+Rmsc

i
t
)2ℓ. Since each iteration requires ℓ table lookups,

it suffices to compute

t
∑

i=1

ℓ

(

1 − Rmsc

2 + Rmsc

i

t

)2ℓ

≈ tℓ

∫ 1

0

(

1 − Rmsc

2 + Rmsc
u

)2ℓ

du,

to arrive at the expected number of table lookups. �

A Comparison of Cryptanalytic Tradeoff Algorithms 603

We now turn to the issue of efficient storage use. The number of online iterations,

which is of Θ(t2ℓ) order, is much larger than the number of table lookups, given by

the above lemma as being of Θ(tℓ) order. This indicates that truncation to slightly

more than logm bits, which allows unique identification of table entries, should be

reasonable. A more accurate analysis is given below. We reuse the concept of truncated

match probability, defined for the DP tradeoffs, also in the rainbow tradeoff case.

Lemma 32. Assume the use of ending point truncation with the truncated match prob-

ability set to 1
r
. The number of additional one-way function invocations induced by

alarms related to ending point truncations is expected to be

t2ℓ
m

r

(−2 + (2ℓ + 1)Rmsc)(2 + Rmsc) + 4(2
2+Rmsc

)2ℓ

(2ℓ + 1)(2ℓ + 2)R2
msc

.

Proof. For exactly the same reason given in the proof of Lemma 24, the probability

for a randomly generated second chain to produce a truncation induced alarm without

merging with the first chain is

(

1 − 1

N

)i(
1

r
− 1

N

)

≈
(

1 − i

N

)(

1

r
− 1

N

)

≈ 1

r
.

After recalling Lemma 28, the probability for the ith iteration to be processed, and

taking into account all the mℓ precomputed chains, the expected online cost can be

written as

t
∑

i=1

(t − i + 1)
mℓ

r

(

1 − Rmsc

2 + Rmsc

i

t

)2ℓ

.

Replacing i
t

with u, the above can be approximated by the definite integral

mt2ℓ

r

∫ 1

0

(1 − u)

(

1 − Rmsc

2 + Rmsc
u

)2ℓ

du,

when 1
t

is small, and the claimed value appears when this is computed. �

After reviewing the arguments concerning ending point truncation made for the DP

and Hellman tradeoffs, we can combine (22) and Lemma 32 to write the effects of

ending point truncation in terms of the number of bits remaining.

Proposition 33. Fix a set of parameters for the rainbow tradeoff and suppose that

its implementation which stores full ending point information is expected to require

T iterations of the one-way function for the online phase. Then, an implementation that

leaves

logm + log

(

(2ℓ + 3){−2+(2ℓ+1)Rmsc

2+Rmsc
+ (2

2+Rmsc
)2ℓ+2}

{(2ℓ − 1) + (2ℓ + 1)Rmsc} − {(2ℓ − 1) + ℓ(2ℓ + 3)Rmsc}(2
2+Rmsc

)2ℓ+2

)

±ε

604 J. Hong and S. Moon

bits per ending point after truncation, where ε is a small non-negative integer, requires

2∓εT additional iterations of the one-way function to complete.

Referencing Sect. 2.7, let us summarize the number of bits required to store each

starting point and ending point pair. Each starting point requires logm bits. Ending

points may be truncated so that slightly more than logm bits remain without visible side

effects on the online running time. The index table method allows most of the remaining

logm bits to be removed from the ending point without any loss of information. In all,

logm bits are required for each starting point and only a very small number of bits are

required for each ending point. We have thus confirmed the claims of [4,6].

Example 34. The parameters for a rainbow tradeoff that roughly correspond to those

used in Examples 18 and 26 are m = 250, t = 225, and ℓ = 1. Assume that the index table

allows removal of 48 bits. The middle term appearing in the equation of Proposition 33

for the parameters being used is log 215
228

≈ 0. Each table entry will require 50 + 2 + ε

bits.

Let T be the number of iterations expected of a nontruncated implementation. When

ε is changed from 6 to 5, the storage decreases by 58−57
58

≈ 1.72 %, while the iterations

increase by {(1 + 1
25)T − (1 + 1

26)T }/{(1 + 1
26)T } ≈ 1.54 %. This is an acceptable

tradeoff. However, the change of ε from 5 to 4 results in a 1.75 % decrease in storage,

which cannot justify the corresponding 3.03 % increase in online time.

In summary, for the assumed rough range of parameters, it is advisable to allocate

approximately 55 bits per table entry and accept the 33
32

T online time, which is only

slightly higher than T .

7. Optimal Tradeoff Parameters

In this section, we find the optimal set of parameters for the three tradeoff algorithms.

The notion of optimality in this section ignores the cost of precomputation.

Let us present our initial arguments in terms of the Hellman tradeoff. The balance be-

tween time and memory achievable by the Hellman tradeoff is expressed by the tradeoff

curve T M2 = HtcN
2. It is clear that the Hellman algorithm at parameters m, t , and ℓ that

bring about a smaller tradeoff coefficient Htc will require less resources to run. In other

words, tradeoff coefficient Htc is a measure of the tradeoff efficiency, with a smaller

value representing a more desirable balancing of storage and online time.

The tradeoff coefficient Htc is fully determined by the parameters m, t , and ℓ. It

should first be noticed that a better tradeoff coefficient should always be achievable, if

one decides to sacrifice the success probability of finding the correct answer. Hence, any

comparison between two Hellman tradeoff coefficients, achievable through two differ-

ent sets of parameters, should be done under the condition that they produce the same

success probability.

Arguments similar to the above may be made for the DP and rainbow tradeoffs.

Hence, for each of the three algorithms, we will work to find the smallest tradeoff coef-

ficient achievable under a fixed requirement on the success rate.

The smallest possible tradeoff coefficient value for a tradeoff algorithm is referred to

as the tradeoff characteristic in [1], where it is used to compare the perfect version of the

A Comparison of Cryptanalytic Tradeoff Algorithms 605

rainbow table method against other algorithms. However, we wish for the optimal trade-

off coefficients given in this work to be understood separately for each algorithm. Using

it to argue the superiority of one algorithm over another may seem plausible, but is of

limited value in practice. Parameters achieving better tradeoff efficiency may require

more precomputation, and with large-scale implementations of the tradeoff technique,

lowering the precomputation cost may be significantly more valuable than achieving

better tradeoff efficiency. Our purpose of locating the optimal tradeoff parameters is

so that they may be used in the next section to bound the range of parameters, when

making fair comparisons between different algorithms.

7.1. DP Tradeoff

The parameter set that achieves the optimal DP tradeoff efficiency, under a fixed re-

quirement on the probability of success, is given below.

Proposition 35. Let 0 < Dps < 1 be any fixed value. The DP tradeoff, under any set of

parameters m, t , ℓ, and t̂ , that are subject to the relations

mt2 = 1.26453N, ℓ = 1.28007
{

− ln(1 − Dps)
}

t, and t̂ = 2.59169t,

attains the given value Dps as its probability of success, and exhibits a tradeoff perfor-

mance corresponding to

Dtc = 5.49370Dps

{

ln(1 − Dps)
}2

,

as the four parameters are varied. Under any such choice of parameters, the number of

one-way function invocations required for the precomputation phase is

DpcN = 1.61869
{

− ln(1 − Dps)
}

N.

The three relations restricting the parameter choices give optimal parameters in the

sense that no choice of m, t , ℓ, and t̂ can lead to a tradeoff coefficient smaller than the

above while achieving Dps as its probability of success.

Proof. The relation of Proposition 5 may equivalently be stated as

ℓ = N

Dcrmt

{

− ln(1 − Dps)
}

= 1

DcrDmsc

{

− ln(1 − Dps)
}

t. (23)

Now, referencing Proposition 9, we know that the DP coverage rate Dcr = Dcr[Dmsc, t̂/t]
may be treated as a function of the two variables Dmsc and t̂

t
. Hence, given any m, t ,

t̂ , and Dps, if we set Dmsc = mt2

N
and Dcr = Dcr[Dmsc, t̂/t], and also fix ℓ through the

relation (23), then the DP tradeoff with these parameters will always achieve the success

probability of Dps. We remark that ℓ must be set to an integer, but since the right-hand

side of (23) is rather large, the error to the success probability, introduced by taking the

nearest integer to the right-hand side value, will be very small.

Keeping in mind that we may freely choose m, t , and t̂ and still obtain any requested

success probability, we now work to minimize the DP tradeoff coefficient Dtc, as given

606 J. Hong and S. Moon

Fig. 2. Tradeoff coefficient for DP tradeoff at fixed probability of success (Dtmp = Dtc

Dps·{ln(1−Dps)}2).

by Theorem 13. We drop from the expression for Dtc any part that depends only on Dps

and consider

Dtmp

[

Dmsc,
t̂

t

]

=
(2Dmsc + 1) − 8Dmsc

et̂ /2t
+

(5+ 3t̂
t
− t̂2

2t2
)Dmsc−2

et̂/t
+ Dmsc+1

e2t̂/t

(1 − e−t̂/t)Dcr[Dmsc,
t̂
t
]3
Dmsc

, (24)

which is a function of the two variables Dmsc and t̂
t
. It is clear that, when the prob-

ability of success requirement is fixed, minimizing Dtc is equivalent to minimizing

Dtmp[Dmsc, t̂/t]. Note that, even though Dmsc = mt2

N
and t̂/t share the parameter t , since

we are free to set m, t , and t̂ to any value, there are enough degrees of freedom, and

we may treat Dmsc and t̂/t as independent variables when looking for the minimum

of Dtmp[Dmsc, t̂/t].
After Dcr[Dmsc, t̂/t], as given by Proposition 9, is substituted into the right-hand side

of (24), we can use numerical methods to find its minimum. One discovers that the

minimum value of Dtmp = 5.49370 is obtained at Dmsc = 1.25453 and t̂/t = 2.59169.

The claimed relation between ℓ and t follows from (23). The final claim concerning the

precomputation cost is obtained by combining Proposition 4 with the first two relations

stated by the claim. �

The parameter set that achieves the minimum tradeoff coefficient for the DP tradeoff

is visible through Fig. 2. It plots Dtmp = Dtc

Dps{ln(1−Dps)}2 , which is given by (24), as a

function of the variables Dmsc and t̂/t .

The tradeoff curve reflected by this proposition allows us to say more about the

tradeoff than the previously known rough curve (8). Suppose that, for some fixed set

of parameters, the success rate of the DP tradeoff is not too small, and suppose that

one wishes to increase the success rate, to the extent that the failure rate becomes the

square of its current value. Then, for an optimal choice of parameters, the Dps factor

A Comparison of Cryptanalytic Tradeoff Algorithms 607

will change little and the {ln(1 − Dps)}2 factor will increase by a factor of four. Hence,

one must allow an increase in the online time by a factor of four or use twice the current

storage. The proposition also shows that one must endure twice the precomputation cost

to achieve this aim. Of course, the simplest way of doing this would be to double the

number of tables, while keeping all other parameters the same.

While the above result gives the parameters that achieve the optimal tradeoff effi-

ciency, in practical applications, precomputation is very costly and one is more likely

to choose a sufficiently large t̂ , so as not to discard any of the precomputed re-

sults.

Proposition 36. Let 0 < Dps < 1 be any fixed value. When the use of a sufficiently

large t̂ is assumed, the DP tradeoff, under any set of parameters m, t , and ℓ, that are

subject to the relations

mt2 = 0.562047N and ℓ = 2.18614
{

− ln(1 − Dps)
}

t,

attains the given value Dps as its probability of success, and exhibits a tradeoff perfor-

mance corresponding to

Dtc = 7.01057Dps

{

ln(1 − Dps)
}2

,

as the three parameters are varied. Under any such choice of parameters, the number

of one-way function invocations required for the precomputation phase is

DpcN = 1.22871
{

− ln(1 − Dps)
}

N.

The two relations restricting the parameter choices give optimal parameters in the sense

that, when t̂ is sufficiently large, no choice of m, t , and ℓ can lead to a tradeoff coefficient

smaller than the above while achieving Dps as its probability of success.

Proof. The proof is almost identical to that of Proposition 35. The only difference is

that we rely on Proposition 10 to view Dcr as a function of Dmsc and obtain the tradeoff

coefficient from Corollary 14, so that

Dtc =
(

2 + 1

Dmsc

)(
√

1 + 2Dmsc + 1

2

)3

Dps

{

ln(1 − Dps)
}2

. (25)

It suffices to minimize

Dtmp[Dmsc] = Dtc

Dps{ln(1 − Dps)}2
=

(

2 + 1

Dmsc

)(
√

1 + 2Dmsc + 1

2

)3

,

which is a function of the single variable Dmsc. �

In comparison to the previous optimal set of parameters that utilizes t̂ as a free vari-

able, this version shows a less efficient tradeoff, but requires less precomputation. The

behavior of the DP tradeoff coefficient with sufficiently large t̂ , under a fixed require-

ment for success rate, is given as the left-hand graph of Fig. 3. The point of minimum

608 J. Hong and S. Moon

Fig. 3. Tradeoff coefficients at fixed probability of success for the DP tradeoff with a sufficiently large t̂ and

the Hellman tradeoff.

tradeoff coefficient is marked, together with the position corresponding to the more

commonly used matrix stopping rule of Dmsc = 1. The advantage of using a smaller

matrix stopping constant than usual is clearly visible.

7.2. Hellman Tradeoff

We now turn to the Hellman tradeoff. This is very similar to the DP tradeoff case that

uses a sufficiently large t̂ .

Proposition 37. Let 0 < Hps < 1 be any fixed value. The Hellman tradeoff, under any

set of parameters m, t , and ℓ, that are subject to the relations

mt2 = 2.25433N and ℓ = 0.598941
{

− ln(1 − Hps)
}

t,

attains the given Hps as its probability of success, and exhibits a tradeoff performance

corresponding to

Htc = 1.50217Hps

{

ln(1 − Hps)
}2

,

as the three parameters are varied. Under any such choice of parameters, the number

of one-way function invocations required for the precomputation phase is

HpcN = 1.35021
{

− ln(1 − Hps)
}

N.

The two relations restricting the parameter choices give optimal parameters in the sense

that no choice of m, t , and ℓ can lead to a tradeoff coefficient smaller than the above

while achieving Hps as its probability of success.

Proof. The proof given here shall be concise, since it is similar to those of Propo-

sitions 35 and 36. Based on Proposition 20, we may fix ℓ = 1
HcrHmsc

{− ln(1 − Hps)}t .
Reference to Proposition 21 shows that the Hellman coverage rate Hcr = Hcr[Hmsc] may

be seen as a function of Hmsc = mt2

N
. Hence, given any m, t , and Hps, we can set ℓ to

an appropriate value with which the Hellman tradeoff achieves a success probability

of Hps.

A Comparison of Cryptanalytic Tradeoff Algorithms 609

We now work to minimize the Hellman tradeoff coefficient. By combining Theo-

rem 22 and Proposition 21, we obtain

Htc =
(

1

Hmsc
+ 1

6

)(√
Hmsc√

2

e
√

2Hmsc + 1

e
√

2Hmsc − 1

)3

Hps

{

ln(1 − Hps)
}2

. (26)

For a fixed success probability, it suffices to minimize the part that depends only on the

single variable Hmsc.

One can use numeric methods to identify the minimum value Htc

Hps{ln(1−Hps)}2 =
1.50217, which is attained at Hmsc = 2.25433. The two remaining constants appearing

in the proposition may now be obtained through appropriate evaluations. �

The most typical Hellman tradeoff, which is set to use mt2 = N and ℓ = t , attains a

success probability of 57.68 % and the tradeoff curve T M2 = 0.7797N
2, when the cost

of resolving alarms is taken into account. In comparison, the choice of mt2 = 2.2543N

and ℓ = 0.5160t , suggested by Proposition 37, gives T M2 = 0.6409N
2, while achieving

the same success rate. This improvement in tradeoff efficiency is visible through the

right-hand graph of Fig. 3, where the two dots mark the two parameter choices we have

just discussed.

The price paid for this better tradeoff efficiency is the increase in precomputation

from N to 1.1630N. Indeed, after combining Propositions 20 and 21 into

Hpc =
√
Hmsc√

2

e
√

2Hmsc + 1

e
√

2Hmsc − 1

{

− ln(1 − Hps)
}

, (27)

one can check that the precomputation Hpc[Hmsc] required under any fixed probability

of success is an increasing function of Hmsc. Hence, while any point that is situated

to the left of the minimal point in Fig. 3 may not be optimal in view of tradeoff ef-

ficiency, it corresponds to less precomputation. Depending on the available computa-

tional resources, one may choose to lower the precomputation cost rather than increase

the tradeoff efficiency. On the other hand, increasing Hmsc beyond the minimizing value

2.25433 will have bad effects on both the precomputation and the tradeoff efficiency

and should be avoided.

Let us briefly return to the DP tradeoff that uses a sufficiently large t̂ . By combining

Propositions 5 and 10, we can write

Dpc =
√

1 + 2Dmsc + 1

2

{

− ln(1 − Dps)
}

, (28)

and, as with the Hellman tradeoff, confirm that Dpc is an increasing function of Dmsc.

Since we know from Proposition 36 that the best performance is achieved at Dmsc =
0.562047, the choice of Dmsc ≤ 0.562047 may be reasonable in view of the lower pre-

computation cost, but using Dmsc > 0.562047 should be avoided. In particular, the use

of Dmsc = 1 cannot be justified.

610 J. Hong and S. Moon

Fig. 4. Tradeoff coefficient of rainbow tradeoff as a function of success rate requirement at small number of

tables (ℓ = 1: dotted, ℓ = 2: dashed, ℓ = 3: solid).

7.3. Rainbow Tradeoff

The analyses of optimal parameters for the DP and Hellman tradeoffs were very similar.

However, the rainbow tradeoff does not allow the same approach, because we have less

control over the parameter ℓ. The number of tables ℓ used with the DP and Hellman

tradeoffs are quite large, and we had treated ℓ as if it were a continuous variable. In the

rainbow tradeoff case, the table count is usually a small integer, and we must keep in

mind that it takes only discrete values.

Let us start with a fixed number of tables ℓ. For any given requirement on the success

rate, we can rewrite Proposition 29 as

Rmsc = 2
{

(1 − Rps)
−1/2ℓ − 1

}

(29)

and understand this as a lower bound on Rmsc that can be used with ℓ to achieve Rps. It is

clear that increasing Rmsc under a fixed ℓ will increase the precomputation cost RmscℓN.

One can also work with the tradeoff coefficient Rtc, as provided by Theorem 30, to

confirm that increasing Rmsc under a fixed ℓ will reduce the tradeoff efficiency. Hence,

under any fixed ℓ, the exact value of Rmsc, suggested by (29), should be used to achieve

the required success rate.

We can now treat Rmsc as a function of the success rate requirement Rps, for any

fixed ℓ. After substituting Rmsc, as given by (29), into the tradeoff coefficient of Theo-

rem 30, one can rewrite it as

Rtc = 4ℓ3

(2ℓ + 1)(2ℓ + 2)(2ℓ + 3)

×
({

−(2ℓ + 3) + 2(2ℓ + 1)(1 − Rps)
−1/2ℓ

}

(1 − Rps)
−1/ℓ

+
{

(2ℓ + 1)2 − 2ℓ(2ℓ + 3)(1 − Rps)
−1/2ℓ

}

(1 − Rps)
)

. (30)

For each fixed ℓ, this is a function of the single variable Rps. A plot of this is given as

Fig. 4 for table counts ℓ = 1, 2, and 3. The right-hand box is a magnified partial view of

the left-hand box in logarithmic scale.

Recalling that a smaller tradeoff coefficient implies better tradeoff efficiency, one

can clearly read from the figure that the use of ℓ = 1 is optimal when the requirement

A Comparison of Cryptanalytic Tradeoff Algorithms 611

Table 1. Range of success probability requirements for which each table count ℓ is optimal.

ℓ Rps log2(1 − Rps) log2 Rtc Rmsc[Rps, ℓ ↑] Rmsc[Rps, ℓ ↓]

0 0 −∞ 0

1 0.734166 −1.91140 0.565848 1.87905 0.785335

2 0.886651 −3.14116 2.08082 1.44688 0.874929

3 0.946562 −4.22600 2.88968 1.25878 0.884357

4 0.973305 −5.22729 3.41666 1.14577 0.873341

5 0.986146 −6.17353 3.79818 1.06812 0.856920

6 0.992618 −7.08171 4.09387 1.01079 0.839893

7 0.995992 −7.96295 4.33425 0.966542 0.823891

8 0.997795 −8.82486 4.53663 0.931326 0.809415

9 0.998775 −9.67274 4.71157 0.902658 0.796529

10 0.999314 −10.5104 4.86585 0.878902 0.785129

11 0.999614 −11.3404 5.00406 0.858929 0.775059

12 0.999782 −12.1649 5.12941 0.841927 0.766150

13 0.999877 −12.9850 5.24421 0.827299 0.758246

14 0.999930 −13.8020 5.35019 0.814594 0.751208

15 0.999960 −14.6163 5.44869 0.803466 0.744914

for success rate is very low and that the use of successively higher numbers of tables

becomes optimal as the success rate requirement is made more stringent. We have nu-

merically solved for the explicit probabilities at which the transition to the next table

count should be made and have recorded this in Table 1.

Let us briefly explain the content of the table with examples. Suppose one aims to

achieve a success probability of 99.9 % with the rainbow tradeoff. Since 0.999 sits

between 0.998775 and 0.999314, it is optimal to use ten tables. If one is requested to

set the probability of failure to 1
27 , we locate −7 between −6.17353 and −7.08171 and

conclude that six tables would be optimal. To understand the other three columns of the

table, let us focus on the row that sits between ℓ = 1 and ℓ = 2. The use of a single

table with Rmsc = 1.87905, or the use of two tables at Rmsc = 0.785335 will both result

in an optimal tradeoff coefficient of Rtc = 1.48026 = 20.565848 and a success rate of

73.4166 %.

Note that any given success rate requirement Rps makes a certain number of tables ℓ

as optimal, and the ℓ value fixes Rmsc through (29). Since the tradeoff coefficient of

Theorem 30 is already determined by ℓ and Rmsc, and since the relation (29) guaran-

tees the Rps success rate, any parameter set satisfying the mentioned restriction will be

optimal in view of the tradeoff coefficient. Let us gather what we have discussed in a

proposition.

Proposition 38. Let 0 < Rps < 1 be any given fixed value. Locate the table count ℓ

from Table 1 that corresponds to the given Rps and compute

Rmsc = 2
{

(1 − Rps)
−1/(2ℓ) − 1

}

.

Then the rainbow tradeoff that uses the located ℓ and any parameters m and t satisfying

the relation

mt = RmscN

612 J. Hong and S. Moon

attains the given value Rps as its probability of success. The tradeoff performance cor-

responding to

Rtc = ℓ3

(2ℓ + 1)(2ℓ + 2)(2ℓ + 3)

({

(2ℓ − 1) + (2ℓ + 1)Rmsc

}

(2 + Rmsc)
2

− 4
{

(2ℓ − 1) + ℓ(2ℓ + 3)Rmsc

}

(1 − Rps)
)

can be observed as m and t are varied under the restriction. With any such choice of pa-

rameters, the number of one-way function invocations required for the precomputation

phase is

RpcN = RmscℓN.

The choice of ℓ through Table 1 and the single relation concerning m and t lead to

optimal parameters in the sense that no choice of m, t , and ℓ can result in a tradeoff

coefficient smaller than the above while achieving Rps as its probability of success.

To be strictly logical, one must also consider the possibility that allowing the multiple

tables to be of different sizes may lead to better tradeoff coefficients. The case of three

tables with the most general table sizes is analyzed in [21], and the conclusion is made

that optimal tradeoff performance is achieved at equal sized tables. The method used

can probably be extended to larger numbers of tables, but the required computations

will be much more complicated than the computations done in this work. Since the

examination of the three-table case showed that we are not likely to gain anything from

the more general analysis, we chose to work with equal sized tables. However, for the

case of perfect rainbow tables, we have reasons to believe that this extra flexibility will

bring about better tradeoff performance.

Finally, we want to provide an argument that is analogous to what was discussed at

the end of Sect. 7.2. One can check that

Rpc = Rmscℓ = 2ℓ
{

(1 − Rps)
−1/(2ℓ) − 1

}

(31)

is a decreasing function of ℓ, for each fixed Rps. Hence, use of an ℓ count that is larger

than what is suggested by Table 1 will decrease the precomputation requirement at the

cost of reduced tradeoff efficiency. This may be preferable in some situations. On the

other hand, use of an ℓ count that is smaller than the optimal count will have bad effects

on both the precomputation cost and tradeoff efficiency, and should be avoided.

8. Comparison of Tradeoff Performances

All the ingredients required for a fair comparison of performances between the tradeoff

algorithms are now ready. Any discussion of the DP tradeoff in this section assumes

that the chain length bound t̂ is sufficiently large.

A Comparison of Cryptanalytic Tradeoff Algorithms 613

8.1. Conversion of the Tradeoff Coefficients to a Common Unit

It is clear that for any comparison of tradeoff algorithms to be fair, the algorithms must

be made to present the same probability of success. One must also consider the precom-

putation cost required by each algorithm, and this aspect will be considered later on in

this section. For now, we focus on the fact that the tradeoff coefficient is a measure of

tradeoff efficiency. Let us assume that the DP, Hellman, and rainbow tradeoff algorithms

display the respective tradeoff curves

TDM
2
D

= DtcN
2, THM

2
H

= HtcN
2, and TRM

2
R

= RtcN
2, (32)

at the same success rate. We will discuss how to interpret the ratio Dtc : Htc : Rtc of the

tradeoff coefficients as a ratio of tradeoff efficiencies.

8.1.1. Unit for Storage

Let us first consider the storage variable M . For the moment, we will disregard any

issues concerning the time unit.

In all three tradeoff algorithms, M represents the number of starting point and ending

point pairs that need to be stored, but the actual number of bits required to store each

table entry will be different among the tradeoff algorithms. We saw through Proposi-

tions 17, 25, and 33 that the number of bits required to store each table entry is as

follows for each tradeoff algorithm.

DP: slightly more than logmD bits,

Hellman: slightly more than logmH + log tH bits,

rainbow: slightly more than logmR bits.

Let us assume from this point on that the ending point truncations for the three algo-

rithms were done in such a way that their effects on the online time are minimal. In

particular, we assume that the contents of Corollary 14, Theorems 22 and 30 remain

valid after ending point truncation. We further assume that the slightly more bits men-

tioned above can be ignored.

A fair comparison of tradeoff performances would express storages for the three algo-

rithms in terms of number of bits that are required for the precomputation tables rather

than the number of starting point and ending point pairs. Under the two assumptions

made, one is led to focus on the ratio

(logmD)
2
Dtc : (logmH + log tH)

2
Htc : (logmR)

2
Rtc, (33)

rather than the raw tradeoff coefficient ratio Dtc : Htc : Rtc. The bit sizes per entry are

multiplied in squares because any change in storage affects the tradeoff efficiency

through a square factor.

The implementation environment and tradeoff requirements will place the choice of

suitable parameters into a certain range, and it is reasonable to assume that the parame-

ters that would be chosen for each algorithm would be related through

log tD ≈ log tH ≈ log tR, logmD ≈ logmH, and logmR ≈ logmH + log tH.

(34)

614 J. Hong and S. Moon

Some readers may object that our discussion on the number of bits required for each

table entry makes mD = 2mH more reasonable than mD = mH, but this difference by a

factor of two is lost in the approximations when they are converted bit sizes, as is done

in the expression (34).

Assuming the rough correspondence (34) between parameters, the ratio (33) simpli-

fies to
(

logmD

logmR

)2

Dtc : Htc : Rtc. (35)

When issues concerning time units are ignored, this is the correct ratio to focus on when

comparing the tradeoff efficiencies of different algorithms.

8.1.2. Unit for Online Time

Unification of the time unit T is now considered. Issues concerning the storage unit,

which we have already discussed, are ignored for the moment.

Recall that the time variable T used in the tradeoff curves counts the number of one-

way function iterations and ignores the table lookups. Hence, parameter sets which lead

to identical times TD = TH = TR do not guarantee that the simultaneous executions of

the three algorithms will finish at the same time. For a fair interpretation of a tradeoff

coefficient ratio as a ratio of tradeoff efficiency, the difference in the time units used by

the algorithms must be taken into account.

It is reasonable to expect the time taken for a single one-way function iteration by

the three algorithms to be quite similar. Let us fix the notation and express this common

time length as |Itr|. We also fix the notation |TL-D|, |TL-H|, and |TL-R| for the time

required for lookups to the DP, Hellman, and rainbow tables, respectively. Depending

on the implementation platform, it is possible to experience |TL-D| ≈ |TL-H| ≪ |TL-R|,
even when equal sized storages are allocated to the three algorithms, since the DP or

Hellman tradeoffs utilize a large number of small tables, whereas the rainbow tradeoff

uses a small number of large tables.

Referencing Lemma 15, the real-world time required to process the online phase of a

DP tradeoff can be written as TD|Itr| + tD
Dps

DcrDmsc
|TL-D|. Since we know from (18) that

TD = t2
D

Dps

DcrDmsc
(1 + 2Dmsc), the real-world online time for DP tradeoff can be expressed

as
(

1 + 1

1 + 2Dmsc

|TL-D|
tD|Itr|

)

TD|Itr|. (36)

Similarly, gathering information from (21) and Lemma 23, the real-world execution

time for the Hellman online phase can be written as

(

1 + 6

6 + Hmsc

|TL-H|
|Itr|

)

TH|Itr|. (37)

The corresponding expression for the rainbow tradeoff, relying on (22) and Lemma 31,

is given by
(

1 + Rtmp[ℓ,Rps]
|TL-R|
tR|Itr|

)

TR|Itr|, (38)

A Comparison of Cryptanalytic Tradeoff Algorithms 615

where

Rtmp[ℓ,Rps] =
(

(2ℓ + 2)(2ℓ + 3)
(

(1 − Rps)
−1/ℓ − (1 − Rps)

−1/(2ℓ)

− (1 − Rps)
1−1/(2ℓ) + (1 − Rps)

))

×
(

2(2ℓ + 1)(1 − Rps)
−3/(2ℓ) − (2ℓ + 3)(1 − Rps)

−1/ℓ

− 2ℓ(2ℓ + 3)(1 − Rps)
1−1/(2ℓ) + (2ℓ + 1)2(1 − Rps)

)−1

is of Θ(1) order. We have used (29) to remove all occurrences of Rmsc in the expression,

because our graphs for each fixed Rps in the later part of this section are drawn using ℓ

as a parameter.

The three equations (36), (37), and (38) can be used to easily find the correct way to

compare tradeoff coefficients. For example, consider the simplest case where all table

lookups are negligible, i.e., when |TL-D|, |TL-H|, |TL-R|,≪ |Itr|. Then, all the second

terms in the three equations are negligible. Hence, the raw coefficient ratio Dtc : Htc : Rtc

reflects the true tradeoff efficiency ratio of the three algorithms.

Let us next consider the case where |Itr| ≪ |TL-D| ≈ |TL-H| ≤ |TL-R| ≪ tD|Itr| ≈
tR|Itr|. This might be the situation experienced by a large implementation that requires

disk accesses for table lookups. The probable use of large tD and tR partially justifies

the third inequality. In this case, the second term of (37) dominates all other five terms

of the three equations. The Hellman tradeoff clearly cannot compete with the other two

algorithms, and the comparison between the DP and rainbow tradeoffs can fairly be

done with Dtc : Rtc.

The final example we consider is when |Itr| ≈ |TL-D| ≈ |TL-H| ≤ |TL-R| ≪ tD|Itr| ≈
tR|Itr|. Then neither of the two terms of (37) dominates the other and neither can be

ignored. The appropriate ratio to study when comparing tradeoff algorithms would be

Dtc :
(

1 + 6

6 + Hmsc

|TL-H|
|Itr|

)

Htc : Rtc. (39)

There are many other cases to consider, but the correct way to adjust the tradeoff

coefficients so that they reflect the tradeoff efficiency ratio of the tradeoff algorithms

can easily be found from (36), (37), and (38).

This ends our discussion on the unit of time, but let us briefly digress and discuss the

exceptional situation of |TL-R| ≫ tR|Itr| for the rainbow tradeoff. This could happen

when the precomputation tables must be reached over the Internet during the online

phase. Then, table lookups dominate the online phase, and we can combine TR = Θ(tℓ),

MR = Θ(mℓ), and ℓ = Θ(1) to conclude that TRMR ∝ N. At first thought, this might

seem to be a much better tradeoff curve than the usual T M2 ∝ N
2 curve.

The counterintuitive conclusion hides the fact that the unit of time TR is now |TL-R|,
rather than |Itr|. Furthermore, unless N is small, the assumption |TL-R| ≫ tR|Itr| cannot

continue to hold as tR is increased, so the tradeoff curve will eventually return to the

usual T M2 ∝ N
2 after a certain point. The tradeoff curve TRMR ∝ N remains valid

when tR is moved in the decreasing direction, but having TRMR constant is worse than

having TRM
2
R

constant in that direction.

Similar arguments may be made for the DP tradeoff, but lookups to DP tables over a

slow network are even less likely to be seen than with the rainbow tradeoffs. Since each

616 J. Hong and S. Moon

individual DP table is rather small, each could be stored on the node that computes the

online chain corresponding to that table.

8.1.3. Combined Unit Conversion

The storage unit conversion and the time unit conversion are orthogonal, and the two

conversions may simply be multiplied to give modified tradeoff coefficients that are

appropriate for comparisons of different tradeoff algorithms. For example, under the

reasonable assumption (34), we know that the storage conversion must follow (35).

If the one-way function computation and table lookup speeds satisfy |Itr| ≈ |TL-D| ≈
|TL-H| ≤ |TL-R| ≪ tD|Itr| ≈ tR|Itr|, the time unit conversion must follow (39). Combing

the two, we know that comparisons of tradeoff algorithms must focus on

(

logmD

logmR

)2

Dtc :
(

1 + 6

6 + Hmsc

|TL-H|
|Itr|

)

Htc : Rtc,

under the stated circumstances.

In our further discussions below, we will mainly restrict ourselves to parameter sets

that roughly satisfy

logmD ≈ logmH ≈ log tD ≈ log tH ≈ log tR ≈ 1

3
log N and logmR ≈ 2

3
log N

and mostly assume that the time required for a single table lookup is negligible in com-

parison to that required for a single one-way function computation. Under these as-

sumptions, the ratio that needs to be studied when comparing tradeoff efficiencies is

1

4
Dtc : Htc : Rtc. (40)

We shall refer to the situation that has just been described as the typical situation, as it

often appears during theoretic developments of the tradeoff technique. However, we do

not claim this to be typical in practical applications of the tradeoff technique.

We emphasize that our further discussions given below concerning tradeoff perfor-

mance comparisons will only be valid under the typical situation assumption. If the

environment and tradeoff performance requirements make parameter choices such that

logmD
≈ log tD is more appropriate, or if the table lookup delays cannot be ignored, the

algorithm comparison conclusions will be different. Still, one will be able to use the

information explained in this subsection to easily make the proper adjustments.

Even for the typical situation, the ratio (40) can be made more accurate for each

explicit situation. Based on Examples 18, 26, and 34, we can state that

282 9

8
Dtc : 552 17

16
Htc : 552 33

32
Rtc = 1.00Dtc : 3.64Htc : 3.54Rtc,

is a more accurate version of (40), for the typical situation with N = 275. This new

ratio does not ignore the extra one-way function invocations caused by ending point

truncations and does not ignore the slightly more bits discussed at the start of Sect. 8.1.1.

8.2. DP Tradeoff Versus Hellman Tradeoff

As discussed in the previous subsection, it suffices to compare 1
4
Dtc against Htc for a

fair comparison between the DP and Hellman tradeoffs. We are assuming the typical

A Comparison of Cryptanalytic Tradeoff Algorithms 617

situation explained at the end of the previous subsection; any conclusions we make

could be different under different circumstances. The precomputation effort is finally

considered during tradeoff comparison in this section.

Propositions 36 and 37 show that the optimal tradeoff efficiencies of the two algo-

rithms are given by

1

4
Dtc = 1.75264Dps

{

ln(1 − Dps)
}2

and Htc = 1.50217Hps

{

ln(1 − Hps)
}2

.

One may want to conclude that the Hellman tradeoff, with the smaller tradeoff coeffi-

cient, is more efficient, but this is acceptable only when the precomputation cost can be

totally ignored. In practice, precomputation cost is the largest barrier to any large-scale

deployment of tradeoff algorithms and is hard to ignore.

The precomputation costs required to achieve the above tradeoff efficiencies are

Dpc = 1.22871
{

− ln(1 − Dps)
}

and Hpc = 1.35021
{

− ln(1 − Hps)
}

.

The precomputation cost of the DP tradeoff is lower and we are faced with the problem

of comparing high efficiency at high cost against low efficiency at low cost.

After a moment of thought, one must admit that such a comparison cannot be done in

an objective manner. The comparison must reflect how valuable tradeoff efficiency is to

the user and how willing one is to invest more time and resources into the precomputa-

tion phase. There is no unit with which to express either of these unquantifiable values.

Furthermore, one must also question whether it is reasonable to compare the two trade-

offs at parameters giving their respective optimal tradeoff efficiencies. Non-optimal pa-

rameters may be preferable under many situations in view of lower precomputation

cost.

We can conclude that all we can do is present the range of choices that can be made

with each algorithm and allow the users to make their conclusions based on their explicit

circumstances. The crucial information that must be displayed to allow easy judgement

of which tradeoff is more suitable is the relation between tradeoff efficiency and pre-

computation cost. This must be done at each fixed requirement for the inversion success

rate.

As was previously noted through (28) and (27), when under a fixed probability of

success requirement, both Dpc and Hpc are functions of their respective Dmsc and Hmsc

values. The tradeoff coefficients Dtc and Htc, under a fixed success rate requirement,

were similarly expressed as functions of the corresponding Dmsc and Hmsc values in (25)

and (26).

For a comparison of the DP tradeoff against the Hellman tradeoff, it now suffices to

present the graphs

{(

Dpc[Dmsc],
1

4
Dtc[Dmsc]

)
∣

∣

∣

∣

Dmsc ≤ 0.562047

}

(41)

and
{(

Hpc[Hmsc],Htc[Hmsc]
) ∣

∣ Hmsc ≤ 2.25433
}

, (42)

618 J. Hong and S. Moon

Fig. 5. The tradeoff coefficients 1
4
Dtc (dotted) and Htc (dashed) in relation to their respective precomputa-

tion cost.

where the bounds on Dmsc and Hmsc were placed in accordance with the discussion

at the end of Sect. 7.2. These graphs are given in Fig. 5. Since the two graphs are to

be compared at identical success rate requirements Dps = Hps, we have removed the

common parts that depend on the success probability from both of the cases before

plotting the graphs. Hence, the graphs do not depend on the success rate and are valid

for all success rate requirements. Both graphs extend further upward, but the right ends,

corresponding to the optimal tradeoff performances, are clearly marked with dots.

The two graphs are very close to each other. Even though slightly better tradeoff

efficiency can be obtained with the Hellman tradeoff at higher precomputation cost, in

practice, unless parameters far from the typical m ≈ t ≈ N
1/3 region are to be used, the

DP tradeoff will be favored in view of fewer table lookups. For example, if the table

lookup time makes 1
5
Dtc : Htc a more appropriate measure of tradeoff performance ratio

than the current 1
4
Dtc : Htc, the dotted curve for the DP tradeoff would move down and

present itself as a more advantageous algorithm.

If table lookup time is absolutely negligible in comparison to the one-way function

computation time, there is a short range of parameter sets with which the Hellman trade-

off can slightly outperform the DP tradeoff using the same amount of precomputation. If

table lookup time is negligible and precomputation is not to be considered, the Hellman

tradeoff can be slightly better.

8.3. Rainbow Tradeoff Versus DP and Hellman Tradeoffs

We now include the rainbow tradeoff into the comparison graphs. As was discussed in

Sect. 8.1, we assume the typical situation concerning the approximate range of param-

eters and table lookup time, and consider comparisons between 1
4
Dtc, Htc, and Rtc to be

fair.

In addition to the graphs (41) and (42), we need to plot all possible (Rpc,Rtc) points.

We can first check through (31) that Rpc can be seen as a function of the table count ℓ,

when the success rate requirement Rps is fixed. As for the tradeoff coefficient, equa-

tion (30) presents it as a function of just ℓ, when Rps is fixed. Given any requirement on

the success rate Rps, it is now possible to draw the graph

{(

Rpc[ℓ],Rtc[ℓ]
) ∣

∣ ℓ ≥ optimal table count for Rps

}

, (43)

A Comparison of Cryptanalytic Tradeoff Algorithms 619

Fig. 6. Tradeoff coefficients 1
4
Dtc (dotted), Htc (dashed), and Rtc (large dots) in relation to their respective

precomputation cost at success rates 25 %, 50 %, 75 %, 90 %, 95 %, and 99 % (X-axis: Dpc , Hpc , and Rpc;

Y-axis: 1
4
Dtc, Htc, and Rtc).

where the optimal table count can be obtained from Table 1. Note that this is no longer

a continuous graph, but a discrete set of points. In the strict sense, the previous graphs

for the DP and Hellman tradeoffs were also discrete sets of points, but unless N is very

small, the points are extremely close to each other.

Unlike our comparison between DP and Hellman tradeoffs, the parts that depend

on Rps appearing in the expressions (31) and (30) are not identical to those appearing in

the corresponding expressions (28), (27), (25), and (26). Hence, separate graphs need to

be drawn for each success rate. This is given in Fig. 6 for some success rates.

In all of the graphs, one can see that the curve for the rainbow tradeoff sits closer to

the origin than the curves for the DP and Hellman tradeoffs. Note that a graph sitting

lower shows better tradeoff efficiency and being positioned more to the left implies

lower precomputation cost. In all the cases except for the ones corresponding to 25 %

and 50 % success rates, given any position on the curve for either the DP or Hellman

tradeoff there is a rainbow tradeoff position that presents better tradeoff performance

620 J. Hong and S. Moon

at a smaller precomputation cost. Use of the rainbow tradeoff is definitely advisable in

these cases.

The existence of better rainbow position is also mostly true in the 50 % case. The ex-

ception is marked with an ⊗ on the curve for the Hellman tradeoff. This position is very

slightly to the left of the optimal rainbow position and hence corresponds to less pre-

computation than the optimal rainbow position. At the same time, it is positioned lower

than the second best rainbow position and hence shows better tradeoff efficiency than

this second best position. Hence, there can be no rainbow tradeoff parameter set that can

replace the Hellman position marked with an ⊗ without at least very slightly sacrificing

either the precomputation cost or the tradeoff efficiency. Still, anybody will agree that

this exception is quite unreasonable, and one would normally choose to sacrifice the

extremely small amount of either the precomputation cost or the tradeoff performance

for a visibly better value of the other factor.

The 25 % case also displays the rainbow tradeoff requiring less precomputation than

the other two tradeoffs in achieving equal tradeoff efficiency, but the awkward excep-

tional position discussed for the 50 % case can be found here as rather large segments.

In addition, the best tradeoff efficiency achievable by the rainbow tradeoff falls short

of what is reachable by the other two algorithms. Hence there will be situations where

the DP or Hellman tradeoff is preferable over the rainbow tradeoff, when required to

achieve a 25 % success rate.

The relative advantage of using the rainbow tradeoff is clearly seen to grow with the

increase in the success rate requirement. For the 99 % success rate case, it seems almost

safe to say that the rainbow tradeoff performs approximately two times better than the

other two tradeoff algorithms in any of their reasonable usages.

In conclusion, the use of the rainbow tradeoff is advisable for high success rate

requirements, and there may occasionally be low success rate applications with spe-

cial situations where the other two tradeoffs are preferable. We emphasize once more

that this conclusion is only valid under the typical situation assumption explained in

Sect. 8.1. For example, if we must work with parameters such that 2 logmD ≈ log tD and

2 logmH ≈ log tH and table lookups are negligible, then comparison of the coefficients
1
9
Dtc, Htc, and Rtc would be appropriate. This would bring the curve for the DP tradeoff

lower and we would arrive at a different conclusion.

8.4. Revisit to the Preliminary Tradeoff Comparison

In Sect. 2.9, we recalled how [23] claimed the rainbow tradeoff to be more efficient than

the DP tradeoff by a factor of two. We also explained how [3,4] pointed out that the two

algorithms require different numbers of bits to represent each table entry and argued that

the DP tradeoff was twice as efficient as the rainbow tradeoff. Since our conclusions of

Sect. 8.3 are once again supportive of the rainbow tradeoff, let us explain where in

the arguments of [3,4] the inaccuracies were introduced. Details of the current paper,

including the proofs, need to be understood if the computations of this section are to be

followed.

According to Propositions 5, 10, and Corollary 14, the DP tradeoff performance at

parameters m = t = ℓ = N
1/3 and a sufficiently large chain length bound is given by

Dps = 51.9 %, Dtc = 2.13, Dpc = 1. (44)

A Comparison of Cryptanalytic Tradeoff Algorithms 621

In comparison, Proposition 29 and Theorem 30 allow us to state that the rainbow trade-

off at the naturally corresponding parameters m = N
2/3, t = N

1/3, and ℓ = 1 shows the

performance

Rps = 55.6 %, Rtc = 0.422, Rpc = 1. (45)

As claimed in [3,4] and confirmed in Sect. 8, we must apply an adjustment factor to

compensate for the difference in bits required per table entry before comparing these

two sets of figures. Comparing 1
4
Dtc = 0.532 against Rtc = 0.422, we can conclude that,

for the same amount of physical storage, the rainbow tradeoff is both faster and succeeds

more often than the DP tradeoff. This disagrees with the claim of [3,4] and does not go

against our conclusion, which stated that the rainbow tradeoff is slightly better than the

DP tradeoff at low success rates.

The main argument of [3,4] that the number of bits required to store each entry of the

rainbow tradeoff is twice that required for the DP tradeoff was certainly correct. The pri-

mary source of their incorrect conclusion is the inaccurate estimations of running time

complexities for the two algorithms. The tradeoff coefficient for the DP was estimated

at 1, but in reality, it was a much larger Dtc = 2.13.

After understanding the details of the proof to Theorem 13, one can compute that,

out of the value 2.13, the part that corresponds to the online chain computation is only

0.709. This is smaller than 1, the estimate of [3,4], but the remaining 1.42, which is

due to the resolving of alarms, was much larger. In the case of the rainbow tradeoff,

the tradeoff coefficient was estimated at 0.5 by [3,4], and the actual value Rtc = 0.422

was smaller. Details of the proof to Theorem 30 show that, out of the 0.422, the cost

of online chain creation corresponds to a mere 0.306 and the cost of resolving alarms

corresponds to an even smaller 0.117.

The true online chain creation efforts for the two algorithms being smaller than the

initial rough estimates is a consequence of the algorithms terminating prematurely with

the discovery of the correct answer, and the upper bounds for the cost of online chain

creation given by the preliminary analysis [3,4] were correct. Since 1
4

× 0.709 is less

than 0.306, a comparison of the two algorithms based only on the online chain creation

time would have concluded that the DP tradeoff was superior. In fact, the ratio
0.709/4
0.306

≈
0.579 is somewhat in agreement with the performance ratio of two that was claimed

by [3,4], based on their rough upper bounds. However, when the costs of resolving

alarms were taken into account, the conclusions were quite the opposite. This is a clear

indication that a careful analysis of the cost associated with resolving of alarms was

necessary for a fair comparison of tradeoff algorithms.

Let us now discuss how sensitive a role the success rate plays in making algorithm

comparisons. Note that the parameters used in [3,4] achieved success probabilities

Dps = 51.9 % and Rps = 55.6 %. According to Proposition 36, the optimal tradeoff

performances of the DP tradeoff at the two success rates are

Dps = 51.9 %, Dtc = 1.95, Dpc = 0.899, (46)

and

Dps = 55.6 %, Dtc = 2.56, Dpc = 0.996. (47)

622 J. Hong and S. Moon

The figures of (46) show that the typical parameters m = t = ℓ = N
1/3 considered

in [3,4] should not be used. We can obtain the success probability of (44) at a better

tradeoff efficiency and with a smaller investment in precomputation.

A comparison of (46) and (47) clearly shows that a small difference in success rate

can lead to a large difference in the optimal tradeoff coefficient. It can be seen from

Proposition 36 that the optimal tradeoff coefficient will become even more sensitive to

the success probability as the demand on success rate is increased.

The figures we gave concerning the success rate difference were not as dramatic as

those concerning the alarm resolving cost in that no conclusion was overturned. How-

ever, since the performances of the different algorithms are close to each other, it is clear

that the ability to accurately predict the success probabilities of tradeoff algorithms is

critical in comparing the tradeoff algorithms.

9. Conclusion

In this work, we analyzed the running time complexities of the DP, Hellman, and rain-

bow tradeoffs, and summarized their abilities to balance storage against online time as

tradeoff curves that are correct up to small multiplicative factors. These results were

used in the later part of this work to compare the performances of tradeoff algorithms

against each other. Our comparison is different from previous attempts in that the efforts

for precomputation have been taken into account.

Although we did provide explicit statements comparing the three tradeoff algorithms,

our conclusions are only true under certain assumptions concerning the tradeoff envi-

ronment. We emphasize once more that one should not blindly extend our conclusions

to other situations. Rather, researchers should see this work as providing the tools and

methodology for fair comparisons of tradeoff algorithms and use them to arrive at their

own final judgements specific to their circumstances.

One conclusion we can provide about the relative performances of different tradeoff

algorithms is that their differences will be small. The practical inconvenience of having

to align each entry of the precomputed table at a byte boundary has not been considered

in this work, and the performance differences between algorithms can be so small that

such obscure issues may be of equal importance in practice. This fact is disappointing

to us as authors of the current work, but should be relieving to practitioners of the trade-

off algorithm that are not concerned with small performance differences. Nevertheless,

even if one decides to ignore small performance differences, the comparison graphs of

the previous section show that a meaningful reduction in precomputation cost can be

achieved with only a small sacrifice in tradeoff efficiency, and being able to take ad-

vantage of this knowledge will be of practical importance. Furthermore, with extremely

large-scale implementations, having accurate access to the small differences will be of

significant value.

Complexity analyses of perfect table versions of the tradeoff algorithms at the accu-

racy level treated in this paper and their inclusion into the tradeoff performance com-

parison picture remain to be done. Perfect table tradeoffs are expected to display better

tradeoff efficiency and are certainly of interest, even though they require larger amounts

of precomputation.

A Comparison of Cryptanalytic Tradeoff Algorithms 623

Appendix A. Technical Approximation

The following lemma shows that the approximation (1 − 1
b
)a ≈ e− a

b , which we have

used frequently in this work, is very accurate for large integers a and b such that a =
O(b).

Lemma 39. For positive integers a and b, we have

∣

∣

∣

∣

exp

(

−a

b

)

−
(

1 − 1

b

)a
∣

∣

∣

∣

<

{

1

2

a

b
2

+ 1

(a + 1)!

(

a

b

)a+1}

exp

(

a

b

)

.

Proof. We start by writing exp(− a

b
) in its Taylor series form and fully expanding the

term (1 − 1
b
)a.

∣

∣

∣

∣

exp

(

−a

b

)

−
(

1 − 1

b

)a
∣

∣

∣

∣

=
∣

∣

∣

∣

{

1 − a

b
+ 1

2!

(

a

b

)2

− · · ·
}

−
{

1 −
(

a

1

)

1

b
+

(

a

2

)

1

b
2

− · · · + (−1)a

(

a

a

)

1

b
a

}∣

∣

∣

∣

.

After noting that the beginning two pairs of terms cancel out, we collect corresponding

pairs from the two sequences of terms and bound the above by

{∣

∣

∣

∣

a
2

2! −
(

a

2

)∣

∣

∣

∣

1

b
2

+ · · · +
∣

∣

∣

∣

a
a

a! −
(

a

a

)∣

∣

∣

∣

1

b
a

}

+
{

1

(a + 1)!

(

a

b

)a+1

+ · · ·
}

. (A.1)

It is easy to see that

0 ≤ a
k

k! −
(

a

k

)

= 1

k!
{

a
k − a(a − 1) · · · (a − k + 1)

}

= 1

k!

{

k(k − 1)

2
a
k−1 − · · · + (−1)k(k − 1)!a

}

≤ 1

k!
k(k − 1)

2
a
k−1 = 1

2

a
k−1

(k − 2)! ,

for every k ≥ 2, where the last inequality can be checked through induction on k. This

shows that the terms of (A.1) that appear inside the first set of braces are bounded by

1

2

{

a

0!
1

b
2

+ a
2

1!
1

b
3

+ a
3

2!
1

b
4

+ · · · + a
a−1

(a − 2)!
1

b
a

}

= 1

2

a

b
2

{

1 + 1

1!
a

b
+ 1

2!

(

a

b

)2

+ · · · + 1

(a − 2)!

(

a

b

)a−2}

≤ 1

2

a

b
2

exp

(

a

b

)

.

624 J. Hong and S. Moon

As for the second set of braces from (A.1), it is easy to see that

1

(a + 1)!

(

a

b

)a+1

exp

(

a

b

)

can serve as its very rough bound. It now suffices to gather the two bounds to arrive at

the claim. �

Appendix B. Random Function Arguments

Any analysis of a tradeoff algorithm assumes the one-way function F to be a one-way

function, and most results given in this work as equations are certain values expected of

a random function. In other words, we have been stating values that had been averaged

over the choice of all functions F : N → N . In this section, we point out that many of

the arguments made during these computations are not strictly correct, and we then try

to justify heuristically that the existing logical error may safely be ignored.

B.1. Existence of a Logical Gap

Recall the expected image size of a random function given by (1) and the expected

iterated image sizes given by (2). The claim that (1) implies (2) is acceptable in the

realm of cryptology. In this subsection, we clarify that there is a small logical gap in

such a claim.

Let us rewrite (1) as an explicit self-contained statement which is precisely correct.

Lemma 40. Let F : N → N be a random function on a finite set of size N. If M ⊂
N is of size m0, then the size of F(M) is expected to be

m1 = N

{

1 −
(

1 − 1

N

)m0
}

.

The proof of this lemma is quite trivial. It suffices to consider the ratio of points

among N that remain untouched throughout the sequential assignments made to el-

ements of M for the random function construction.

We want to emphasize two things about this lemma. The first is that the value claimed

by this lemma is the exact expected value and does not involve any approximation. In

fact, the largest reason for rewriting the statement here was to remove the approximate

expression. The second point we make is that the statement of this lemma does not

contain any averaging over input sets. The expected image size claim holds true for

every set M ⊂ N of size m0.

Discussing just the double iteration case will be sufficient for our purposes. Let us

define

m1 = N

{

1 −
(

1 − 1

N

)m0
}

and m2 = N

{

1 −
(

1 − 1

N

)m1
}

, (B.1)

for any given m0. One might believe that m2 is the expected size of F 2(M), when F :
N → N is a random function and M ⊂ N is of size m0. Since Lemma 40 contains

A Comparison of Cryptanalytic Tradeoff Algorithms 625

no approximation, one might expect (B.1) to hold exactly. However, this reasonable

prediction is not met, at least in the strict sense, by the explicit example given below.

The set of all functions F : {0,1} → {0,1} can be visualized as follows.

When the input set M is a single point, the image size expectation is clearly 1.

This is in agreement with the value 2{1 − (1 − 1
2
)1} = 1, computed according to

Lemma 40. When the input set is the complete domain {0,1}, the image size expec-

tation is EF [|F({0,1})|] = 1
4

· 1 + 1
4

· 2 + 1
4

· 2 + 1
4

· 1 = 3
2

, and this is also identical to

the value EF [|F({0,1})|] = 2{1 − (1 − 1
2
)2} = 3

2
, computed according to Lemma 40.

We have just verified that Lemma 40, which had already been proved, holds exactly for

the N = {0,1} case, regardless of the input set size and the choice of the set itself.

Now, the four functions F 2 = F ◦ F can be visualized as follows.

When the input set M is taken to be the complete domain, the expected image size of

the double iteration is

EF

[∣

∣F 2
(

{0,1}
)∣

∣

]

= 2

4
· 1 + 2

4
· 2 = 3

2
. (B.2)

In comparison, the corresponding value computed through (B.1) is

2

{

1 −
(

1 − 1

2

)2{1−(1−1/2)2}}

= 2

{

1 −
(

1 − 1

2

)3/2}

≈ 1.293. (B.3)

The two values given above are clearly in disagreement.

A cryptographer would naturally attempt to rectify the current situation by relax-

ing the strict correlation between the two functions that are being composed. Let

F : N → N and G : N → N be two independent random functions operating on

a finite set of size N. One would like to claim that if M ⊂ N is of size m0, then the

size of G(F(M)) is expected to be the m2 value given by (B.1). This second version for

the doubly iterated image size expectation seems structurally much simpler to analyze

than the previous attempt, and one might be tempted to say that the modified claim is a

trivial consequence of Lemma 40.

We again turn to the example F,G : {0,1} → {0,1}. The complete set of all possible

double iterations can be visualized as follows.

626 J. Hong and S. Moon

When the input set M is the full domain {0,1}, after separately counting the number of

functions with image sizes one and two, the expected image size can be computed as

EF,G

[
∣

∣G
(

F
(

{0,1}
))

∣

∣

]

= 12

16
· 1 + 4

16
· 2 = 5

4
. (B.4)

Once again, this disagrees with (B.3), which was computed through (B.1).

It is now clear that (2) does not directly follow from (1). The claims to the iterated

image sizes are not consequences of the single step image size, at least not without

additional arguments. The logical gap persists even when all iterations are allowed to

be independent random functions.

B.2. Narrowing the Logical Gap

The failed attempt (B.1) at giving a doubly iterated image size expectation had substi-

tuted the m1 value in the place of m0 in the single step result Lemma 40. This reuse of

average value in the computation of another average value was the source of our prob-

lem. In reality, as can be seen in the two counterexamples, inputs to the second step

function are not all of m1 size, but of varying sizes that only average to m1. After this

simple observation, we can state that, if M0 is a set of size m0 such that the image size

|F(M0)| is exactly m1 for every choice of function F and the image size |F(M1)| is

exactly m2 for every choice of function F and every input set M1 of size m1, then m2 is

the exact expected size of F 2(M0). The assumptions included in this statement cannot

be met, but it is reasonable to expect the conclusion to hold approximately, when a slight

relaxation is given to the assumptions. We are thus justified in stating that, if for the vast

majority of the sets M ⊂ N and functions F : N → N , the image size |F(M)| is

very close to N{1 − (1 − 1
N
)|M |}, then the m2 of (B.1) will be a good approximation for

the doubly iterated image size expectation.

Therefore, we consider the images of a fixed set M under different functions F and

discuss how their sizes |F(M)| are distributed around its average. Let us use μN,m and

σN,m to denote the average and standard deviation of the image set size |F(M)|. These

are to be computed for a fixed input set M ⊂ N of size m and with F : N → N

running over all possible function choices. We already know μN,m ≈ N{1 − exp(−m
N
)}.

A proof of the following lemma is given in Appendix C.

Lemma 41. We have
σN,m

μN,m
< 2√

N
for all N and m.

According to Chebyshev’s inequality, at least 99 % of the N
N image sizes will fall

within the range μN,m ± 10σN,m. The above lemma states that this deviation of sizes

from the mean is bounded by
20μN,m√

N
. Hence, the distribution or clustering of image

sizes around the expected value μN,m will tighten, at least in comparison to the expected

value, as N is increased.

This observation can be restated in more plain terms as follows. Suppose we take

some input set and measure its image size under a single function, chosen at random,

and take it to be an estimate of the true average image size. We make it clear that

the averaging over multiple measurements made with multiple functions is not being

performed here. In such a situation, we can expect each measurement to return a larger

A Comparison of Cryptanalytic Tradeoff Algorithms 627

number of significant digits as N is increased. Let us briefly work with some explicit

numbers. For parameters N = 264 and m = 250 the average image size can be computed

to be μN,m ≈ 1.13×1016. For the same parameters, the standard deviation is bounded by

σN,m ≤ 5.24 × 105. Chebyshev’s inequality ensures that at least 99 % of the N
N image

sizes will lie in the range μN,m ± 10σN,m, which is 1.13 × 1016 ± 5.24 × 106 in the

current situation. For any practical purposes, we can believe that close to 10 significant

digits from any single measurement are highly likely to be identical to those of the true

expected value.

Let us summarize the discussion of this subsection. For any function acting on a large

set that was chosen at random and any input set of size m0, the image size of the first

iteration will be very close to the m1 value given by (B.1). At the second iterated ap-

plication of the same function, even though the input size was not exactly m1, we can

expect the output size to be very close to the m2 value given by (B.1). Actually, the

output size could be different from m2 even if the input size was exactly m1. In any

case, the fact that the standard deviation of the image sizes is very small relative to its

expected value implies a tight clustering of image sizes, and allows us to believe that

the formula (2) will predict doubly iterated image sizes with accuracy, in the sense that

a large number of significant digits are returned. The heuristic arguments of this subsec-

tion have added further justification to the already acceptable cryptographic argument

that (1) implies (2).

B.3. Other Reuses of Average Values

The intention of this section was not to test the validity of (2). In fact, although the

authors of the current paper are unfit to verify its correctness, a full proof is provided

in [11] for at least the case when M is the full domain. What we have done so far

in the current section is to first point out that average values have erroneously been

reused in the computation of other average values and then argue heuristically that such

methods are still acceptable as long as the distribution of values that are being treated is

tightly gathered around the average. This reasoning does not have to be restricted to the

discussion of iterated image sizes, or even random function arguments.

There are many occasions in this paper where an average value was used during the

computation of another average value. It should now be clear that (10), stating the suc-

cess probability of a single rainbow matrix, is also slightly problematic, but acceptable.

The different reduction functions at each rainbow matrix column do not provide inde-

pendence of the colored iterating functions, and the existing logical gap would not be

closed even if different columns were processed with independent random functions.

However, the small standard deviation of image sizes justifies (10) as a good approxi-

mation.

The success probability (4) of the DP and Hellman tradeoffs, computed from the

average number of points in a tradeoff matrix, is another example of average value

reuse. We have not checked if the standard deviation of the coverage rate is small, but

we know from experience that (4) predicts the correct value accurately, so this should

not be a problem. In fact, this situation is less problematic than the iterated image case,

because the arguments become strictly correct when independent random functions are

used in different tables.

628 J. Hong and S. Moon

Readers may have noticed that we were more careful in reusing average values in

Sect. 4.2. The distribution of chain lengths in a DP matrix can be inferred from (16),

and it is clear that the lengths are not at all centered around the average length t . Hence,

we were careful to work with the full range of possible chain lengths, rather than treat t

as being the typical precomputation or online chain length. In particular, we did not treat

the DP matrix as consisting of m chains of identical length t . This cautious handling of

chains should not be confused with our free use of the value (16) itself, which is an

expected value, in other computations.

Appendix C. Standard Deviation of Image Sizes

The purpose of the section is to provide a proof to Lemma 41 concerning the standard

deviation of image sizes. We first prepare a couple of technical lemmas.

Lemma 42. Let F : N → N be a random function. Fix a subset M ⊂ N of size

m and let y1,y2 ∈ N be any two distinct points. The probability for F(M) to contain

both y1 and y2 is

{

1 −
(

1 − 1

N

)m}2

−
(

1 − 1

N

)m{(

1 − 1

N

)m

−
(

1 − 1

N − 1

)m}

.

Proof. The probability under consideration may be computed as follows:

(

m

1

)(

1

N

)1(

1 − 1

N

)m−1{

1 −
(

1 − 1

N − 1

)m−1}

+
(

m

2

)(

1

N

)2(

1 − 1

N

)m−2{

1 −
(

1 − 1

N − 1

)m−2}

+ · · ·

+
(

m

m − 1

)(

1

N

)m−1(

1 − 1

N

)1{

1 −
(

1 − 1

N − 1

)1}

.

In each additive term, the part
(

m
k

)

(1
N
)k(1− 1

N
)m−k gives the probability for exactly k out

of the m inputs to map to y1. The remaining {1 − (1 − 1
N−1

)m−k} part is the probability

for at least one of the (m−k) inputs that are known not to have reached y1 to map to y2.

The above sum is equal to the expression

{

1

N
+

(

1 − 1

N

)}m

−
{

1

N
+

(

1 − 1

N

)(

1 − 1

N − 1

)}m

−
(

1 − 1

N

)m

+
(

1 − 1

N

)m(

1 − 1

N − 1

)m

.

To check this claim, it suffices to expand the first two pairs of braces. This expression

can be rewritten in the form stated by this lemma. �

A Comparison of Cryptanalytic Tradeoff Algorithms 629

Lemma 43. For positive integers N and m, we have

(

1 − 1

N

)m

−
(

1 − 1

N − 1

)m

≥ m

N(N − 1)

(

1 − 1

N − 1

)m−1

.

Proof. It suffices to check the following sequence of equalities and inequality:

(

1 − 1

N

)m

−
(

1 − 1

N − 1

)m

=
{(

1 − 1

N

)

−
(

1 − 1

N − 1

)}{(

1 − 1

N

)m−1

+
(

1 − 1

N

)m−2(

1 − 1

N − 1

)

+ · · · +
(

1 − 1

N − 1

)m−1}

= 1

N(N − 1)

{(

1 − 1

N

)m−1

+
(

1 − 1

N

)m−2(

1 − 1

N − 1

)

+ · · · +
(

1 − 1

N − 1

)m−1}

≥ 1

N(N − 1)
m

(

1 − 1

N − 1

)m−1

.

In fact, a similar upper bound is also easy to obtain. �

In the remainder of this section, M ⊂ N will be a fixed set of size m. For each

y ∈ N , let us define the function χy : N N → {0,1} by

χy(F) =
{

1 if y ∈ F(M),

0 if y
∈ F(M).

The dependence of χy on M was not made explicit in the notation since we will keep

M fixed for the rest of this section. The size of the image of M under any function

F : N → N can be expressed in terms of this indicator function as

∣

∣F(M)
∣

∣ =
∑

y∈N

χy(F).

Using this observation, one can present

E
[
∣

∣F(M)
∣

∣

]

= E

[

∑

y∈N

χy(F)

]

=
∑

y∈N

E
[

χy(F)
]

= NE
[

χy′(F)
]

= N

{

1 −
(

1 − 1

N

)m}

, (C.1)

630 J. Hong and S. Moon

where y′ is any fixed point of N , as an alternative way of writing the proof to

Lemma 40.

Let us fix the notation

χ =
∑

y∈N

χy

and view this as a random variable defined on the space N N , which is given the

uniform probability distribution. It maps each element F to the positive integer |F(M)|.
Equation (C.1) is equivalent to

E[χ] = N

{

1 −
(

1 − 1

N

)m}

(C.2)

and we need to work with the standard deviation

stdev(χ) =
√

E
[

χ2
]

−
(

E[χ]
)2

.

One can easily check that

E
[

χ2
]

= E

[(

∑

y

χy

)2]

= E

[

∑

y1,y2

χy1
χy2

]

= E

[

∑

y

χy +
∑

y1
=y2

χy1
χy2

]

= E[χ] +
∑

y1
=y2

E[χy1
χy2

]

= E[χ] + N(N − 1)E[χy′
1
χy′

2
],

where y′
1 and y′

2 are any two distinct points of N . The expectation E[χy′
1
χy′

2
] is equal

to the probability for both y′
1 and y′

2 to belong to the image space, and this is the content

of Lemma 42. Referring also to (C.2) and Lemma 43, we can compute a bound for the

variance as follows:

{

stdev(χ)
}2 = E

[

χ2
]

−
(

E[χ]
)2 = E[χ] + N(N − 1)E[χy′

1
χy′

2
] −

(

E[χ]
)2

= N

(

1 − 1

N

)m({

1 −
(

1 − 1

N

)m}

− (N − 1)

{(

1 − 1

N

)m

−
(

1 − 1

N − 1

)m})

≤ N

({

1 −
(

1 − 1

N

)m}

− m

N

(

1 − 1

N − 1

)m−1)

≤ N

{

m

N
− m

N

(

1 − m − 1

N − 1

)}

= m(m − 1)

N − 1
≤ m2

N
.

Here, the second inequality follows from the observation (1 − 1
N
)m ≥ 1 − m

N
. The final

expression allows us to state that stdev(χ) ≤ m√
N

.

A Comparison of Cryptanalytic Tradeoff Algorithms 631

On the other hand, from the observation (1 − 1
N
)m ≤ 1 − m

N
+ m(m−1)

2N
2 , which holds

for every m ≤ N, we know that

E[χ] ≥ N

{

m

N
− m(m − 1)

2N
2

}

> N

(

m

N
− m

2N

)

= m

2
.

Finally, by combining the two bounds, we can state that

stdev(χ)

E[χ] <
2√
N

.

This concludes the proof of Lemma 41.

Appendix D. Note on the Index Tables Method

The index table method can be seen as a special case of a more general and widely

known data structure called hash tables. To store m starting point and ending point

pairs, one first fixes a hash function that maps elements of N to logm-bit strings. This

function need not be a cryptographic hash function, although the same term is used.

Instead of sorting the data, each starting point and ending point pair is recorded at the

position in the storage addressed by the hash value of the ending point. Collisions of

addresses are inevitable, but there are various ways to deal with this problem.

Table lookups to hash tables are performed by first hashing the ending point to be

searched for in the table and fetching the data located at the address pointed to by the

hash value. Since the address holds logm bits of information, even if almost logm bits

from each ending point are removed before storage, we can reliably determine whether

or not a match has occurred.

One advantage of the hash table method, other than reducing storage and not requiring

any sorting, is that it provides constant time table lookups. In comparison, a lookup to a

sorted table requires time that is logarithmic in the table size.

If the hash function is set to return the first {(logm) − ε} bits of its input and buckets

to hold approximately 2ε table entries are placed at the position pointed to by each hash

value, then the hash table technique reduces to the index table technique.

Appendix E. Experimental Results

In this section we verify that the main parts of our arguments agree well with the exper-

imental results. Experiments are done to check the validity of our results concerning the

coverage rate and the cost of false alarms for the DP tradeoff. Analogous testing for the

Hellman and rainbow tradeoffs is not provided, as this testing was done in [15]. We also

provide experimental evidence supporting our arguments surrounding the effects of the

ending point truncation method.

Since averaging over all functions defined on any reasonably large space is not at all

possible, all our tests were conducted with a very small subset of explicitly constructed

one-way functions. The one-way function used was always the encryption key to ci-

phertext mapping, under a fixed plaintext, computed with the block cipher AES-128.

632 J. Hong and S. Moon

Table 2. Coverage rate of DP tradeoff (N = 230)

logm log t t̂/t Dmsc Test Theory

11 9 1/2 0.5 0.225357 0.224285

9 10 1/2 0.5 0.225368 0.224285

11 9 1 0.5 0.400071 0.399566

9 10 1 0.5 0.398824 0.399566

11 9 2 0.5 0.628349 0.627405

9 10 2 0.5 0.629802 0.627405

11 9 5 0.5 0.816415 0.814339

9 10 5 0.5 0.811530 0.814339

12 9 1/2 1.0 0.221190 0.219643

10 10 1/2 1.0 0.220655 0.219643

12 9 1 1.0 0.384839 0.383464

10 10 1 1.0 0.385049 0.383464

12 9 2 1.0 0.582370 0.581801

10 10 2 1.0 0.581019 0.581801

12 9 5 1.0 0.722192 0.723263

10 10 5 1.0 0.721465 0.723263

13 9 1/2 2.0 0.212476 0.211204

11 10 1/2 2.0 0.212538 0.211204

13 9 1 2.0 0.357424 0.356587

11 10 1 2.0 0.355287 0.356587

13 9 2 2.0 0.515214 0.515495

11 10 2 2.0 0.514631 0.515495

13 9 5 2.0 0.611834 0.612748

11 10 5 2.0 0.610616 0.612748

Different randomly chosen plaintexts were used to provide multiple one-way functions.

The size of the input space was controlled by utilizing only a small number of key bits

and padding the remaining key bits with zeros. The output space size was controlled by

masking the ciphertext to an appropriate bit length. When working with the DP tradeoff,

as discussed at the start of Sect. 4, we constructed m0 = m

1−e−t̂/t
precomputation chains

and gathered every resulting DP chain, rather than incrementally generating additional

chains until m DP chains were collected.

E.1. Coverage Rate of DP Tradeoffs

The experimental results supporting Proposition 9, which presents the coverage rate of

a DP table, are given in Table 2. The coverage rate was measured by simply storing

all DP matrix entries while constructing the DP chains and later counting the number

of distinct matrix entries that were used as inputs to the one-way function. Each test

result value given in the table is an average over 100 experiments. Different randomly

generated plaintexts for AES were used for each of these experiments. All the tests were

done on a space of size N = 230. One can check that the test figures are very close to

what the theory predicted.

E.2. Cost of Resolving Alarms for the DP Tradeoff

Our next goal is to check the validity of our arguments concerning the time complexity

that incorporates the extra cost of false alarms. We could do this with the expression for

A Comparison of Cryptanalytic Tradeoff Algorithms 633

time complexity stated during the proof of Theorem 13, but such an approach would

hide much of the inner workings. Hence, we decided to verify the following lemma,

which allows access to much finer detail.

Lemma 44. Consider the DP tradeoff. The expected number of chain collisions at the

ith iteration of the online phase is

1

t

Dmsc

1 − e−t̂/t

{

−e−t̂/t + e−t̂/t exp

(

− i

t

)

+ i

t
exp

(

− i

t

)}

.

Proof. The expected number of chain collisions is the sum over all rows of the DP

matrix of the respective probabilities for the ith iteration to sound an alarm in associa-

tion with that row. After reading the proof of Lemma 12, it should be clear that the sum

of probabilities we are looking for is

t̂
∑

j=1

m
t

1 − e−t̂/t
exp

(

−j

t

)

· t

N

{

exp

(

min{i, j}
t

)

− 1

}

exp

(

− i

t

)

.

In integral form, this is approximately

1

t

mt2

N

1 − e−t̂/t
exp

(

− i

t

)∫ t̂/t

0

exp(−v)

{

exp

(

min

{

i

t
, v

})

− 1

}

dv,

which simplifies to what is claimed. �

This lemma contains the core of our arguments given in the main text concerning the

cost of alarms, and its verification through experiments should provide good support for

the correctness of our theory.

To test this lemma, we first initialized an array of t̂ counters to zeros. Next, we fixed

a one-way function by randomly choosing a plaintext and constructed a DP table with

the fixed function. Then, a random password (= zero-padded encryption key) was gen-

erated and the password hash (= masked ciphertext) corresponding to that password

was computed. The online chain starting from the password hash was computed until a

DP was found or the t̂ th iteration was reached. If the online chain terminated at a DP

and it was found to reside within the DP table, the counter corresponding to the cur-

rent online iteration count was incremented. The online chain generation was repeated

multiple times with the same table, but with newly generated random keys. Note that,

since we are not using perfect tables, it is possible for the online chain to collide si-

multaneously with more than one entry of the DP table. Care was taken to increment

the counter corresponding to the current iteration count as many times as the number of

collisions found. The whole process described after the counter initialization step was

repeated multiple times, with each repetition using a newly generated one-way function

and a DP table.

The test results for four different parameter sets are presented in Fig. 7. Each of these

experiments was performed with 2000 tables and 5000 random online chains per table.

In each of the four boxes, the barely visible thin dashed line represents our theory as

634 J. Hong and S. Moon

Fig. 7. Expected number of collisions at each iteration of the DP tradeoff (dots: experiment; dashed line:

theory).

given by Lemma 44. There are t̂-many tiny dots in each box, and these represent our

experimental results. The height of the ith dot, counting from the left, is the value of

the ith iteration counter at the end of the experiment divided by 2000 × 5000, the total

number of chains that were utilized. All the experiment results match our theory very

well.

E.3. Ending Point Truncation

Finally, we test the validity of our arguments concerning the ending point truncation

method for reducing storage. The straightforward approach would be to simply test

Lemma 16, Lemma 24, and Lemma 32, which present the cost of truncation related

alarms, but we decided to work with the probability of alarms related to truncations, so

as to expose more of our argument details to the tests.

Lemma 45. Consider the DP tradeoff that uses an ending point truncation of 1
r

trun-

cated match probability. At the ith iteration of the online processing of a single DP table,

the number of pseudo-collisions that are due to the ending point truncations, i.e., those

that are not associated with any true chain collisions, is expected to be m
r

exp(− i
t
). The

corresponding value for the Hellman tradeoff is m
r

, and that for the rainbow tradeoff is

also m
r

, if one decides to fully process a single rainbow table without terminating, even

when the correct answer is found.

A Comparison of Cryptanalytic Tradeoff Algorithms 635

Fig. 8. Expected number of collisions, induced by ending point truncation, at each iteration of the DP

tradeoff (dots: experiment; dashed line: theory).

Fig. 9. Expected number of collisions, induced by ending point truncation, at each iteration of the Hellman

tradeoff (dots: experiment; dashed line: theory).

Proof. The proof of Lemma 16 shows that the claimed expected value for the DP

tradeoff case can be computed as

t̂
∑

j=1

m
t

1 − e−t̂/t
exp

(

−j

t

)

· exp

(

− i

t

)

1

r
≈ m

1 − e−t̂/t

∫ t̂/t

0

exp(−v)dv exp

(

− i

t

)

1

r
,

which simplifies to what is claimed. The statement for the Hellman tradeoff case follows

immediately from the proof of Lemma 24, and the rainbow tradeoff case can be inferred

from the proof of Lemma 32. �

The three claims given by this lemma are at the core of our arguments concerning

the ending point truncation method, and experimental verification of these statements

should provide confidence as to the validity of our arguments given in the main text.

As in the previous section, we generated random tradeoff tables and tested with ran-

dom online chains for the occurrence of alarms induced from truncations. We stored

the full ending points, together with the truncated ending points, in the precomputation

table. The full ending point information was used to distinguish between alarms that

were caused by ending point truncations and those that arose from true chain collisions.

The test results are given in Figs. 8, 9, and 10. As before, the thin dashed lines are

the graphs claimed in Lemma 45 and the numerous tiny dots represent the experimental

636 J. Hong and S. Moon

Fig. 10. Expected number of collisions, induced by ending point truncation, at each iteration of the rainbow

tradeoff (dots: experiment; dashed line: theory).

data. All the test results are in good agreement with the theory. Each of the two diagrams

for the DP tradeoff was obtained by averaging over 2000 tables and 5000 online chains

per table. For the Hellman tradeoff we generated 2000 tables and 5000 inversion targets

per table. The online chain was computed to the full length t for each inversion target,

and a search was made for the truncated match with the table elements after each one-

way function iteration. In the rainbow tradeoff case, each diagram is the result of 100

tables with 5000 inversion targets per table. Recall that the kth iteration for the rainbow

tradeoff refers to a process that consists of (k − 1) invocations of the one-way function

and one table lookup. Full t iterations were attempted for each inversion target; hence

each inversion target generated t searches to the table for truncated matches.

References

[1] G. Avoine, P. Junod, P. Oechslin, Characterization and improvement of time-memory trade-off based

on perfect tables. ACM Trans. Inf. Syst. Secur. 11(4), 17:1–17:22 (2008). Preliminary version in IN-

DOCRYPT 2005

[2] S.H. Babbage, Improved exhaustive search attacks on stream ciphers, in European Convention on Secu-

rity and Detection. IEE Conference Publication, vol. 408 (IEE, London, 1995), pp. 161–166

[3] E.P. Barkan, Cryptanalysis of ciphers and protocols. Ph.D. Thesis, Israel Institute of Technology, March

2006

[4] E. Barkan, E. Biham, A. Shamir, Rigorous bounds on cryptanalytic time/memory tradeoffs, in Advances

in Cryptology—CRYPTO 2006. LNCS, vol. 4117 (Springer, Berlin, 2006), pp. 1–21

[5] A. Biryukov, A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, in Advances in

Cryptology—ASIACRYPT 2000. LNCS, vol. 1976 (Springer, Berlin, 2000), pp. 1–13

[6] A. Biryukov, A. Shamir, D. Wagner, Real time cryptanalysis of A5/1 on a PC, in FSE 2000. LNCS, vol.

1978 (Springer, Berlin, 2001), pp. 1–18

[7] J. Borst, Block ciphers: Design, analysis, and side-channel analysis. Ph.D. Thesis, Katholieke Univer-

siteit Leuven, September 2001

[8] J. Borst, B. Preneel, J. Vandewalle, On the time-memory tradeoff between exhaustive key search and

table precomputation, in Proceedings of the 19th Symposium on Information Theory in the Benelux

(WIC, 1998)

[9] C. Calik, How to invert one-way functions: time-memory trade-off method. M.S. Thesis, Middle East

Technical University, January 2007

[10] D.E. Denning, Cryptography and Data Security (Addison-Wesley, Reading, 1982)

[11] P. Flajolet, A.M. Odlyzko, Random mapping statistics, in Advances in Cryptology—EUROCRYPT’89.

LNCS, vol. 434 (Springer, Berlin, 1990), pp. 329–354

A Comparison of Cryptanalytic Tradeoff Algorithms 637

[12] S. Goldwasser, M. Bellare, Lecture notes on cryptography. Unpublished manuscript, July 2008. Avail-

able at: http://cseweb.ucsd.edu/~mihir/papers/gb.html

[13] J.Dj. Golić, Cryptanalysis of alleged A5 stream cipher, in Advances in Cryptology—EUROCRYPT’97.

LNCS, vol. 1233 (Springer, Berlin, 1997), pp. 239–255

[14] M.E. Hellman, A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory 26, 401–406 (1980)

[15] J. Hong, The cost of false alarms in Hellman and rainbow tradeoffs. Des. Codes Cryptogr. 57, 293–327

(2010)

[16] J. Katz, Y. Lindell, Introduction to Modern Cryptography (Chapman & Hall/CRC, London, 2008)

[17] I.-J. Kim, T. Matsumoto, Achieving higher success probability in time-memory trade-off cryptanalysis

without increasing memory size. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-A, 123–

129 (1999)

[18] K. Kusuda, T. Matsumoto, Optimization of time-memory trade-off cryptanalysis and its application to

DES, FEAL-32, and Skipjack. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 79(1), 35–48

(1996)

[19] D. Ma, J. Hong, Success probability of the Hellman trade-off. Inf. Process. Lett. 109(7), 347–351 (2009)

[20] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography (CRC Press, Boca

Raton, 1997)

[21] S. Moon, Parameter selection in cryptanalytic time memory tradeoffs. M.S. Thesis, Seoul National

University, June 2009

[22] A. Narayanan, V. Shmatikov, Fast dictionary attacks on passwords using time-space tradeoff, in Pro-

ceedings of the 12th ACM CCS (ACM, New York, 2005), pp. 364–372

[23] P. Oechslin, Making a faster cryptanalytic time-memory trade-off, in Advances in Cryptology—CRYPTO

2003. LNCS, vol. 2729 (Springer, Berlin, 2003), pp. 617–630

[24] R. Oppliger, Contemporary Cryptography (Artech House, Boston, 2005)

[25] J.-J. Quisquater, J. Stern, Time-memory tradeoff revisited. Unpublished manuscript, December 1998

[26] N. Saran, Time memory trade off attack on symmetric ciphers. Ph.D. Thesis, Middle East Technical

University, February 2009

[27] N. Saran, A. Doganaksoy, Choosing parameters to achieve a higher success rate for Hellman time

memory trade off attack, in 2009 International Conference on Availability, Reliability and Security

(IEEE, New York, 2009), pp. 504–509

[28] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, J.-D. Legat, A time-memory tradeoff using distinguished

points: New analysis & FPGA results, in Cryptographic Hardware and Embedded Systems—CHES

2002. LNCS, vol. 2523 (Springer, Berlin, 2003), pp. 593–609

http://cseweb.ucsd.edu/~mihir/papers/gb.html

	A Comparison of Cryptanalytic Tradeoff Algorithms
	Abstract
	Introduction
	Time-Memory Tradeoff Algorithms
	Technical Preliminaries
	Overview of the Tradeoff Technique
	Hellman Tradeoff
	Parameter Setup
	Precomputation Phase
	Online Phase
	Success Probability
	Cost of Resolving Alarms
	Tradeoff Curve

	DP Tradeoff
	Parameter Setup
	Precomputation Phase
	Online Phase
	Preliminary Analysis
	Chain Length Bound

	Rainbow Tradeoff
	Parameter Setup
	Precomputation Phase
	Online Phase
	Success Probability
	Preliminary Analysis
	Further Analysis

	Perfect Table Tradeoffs
	Storage Optimization
	Consecutive Starting Points
	Taking Advantage of the DP Definition
	Index Table
	Ending Point Truncation

	Parameter Optimization
	Comparison of Tradeoff Algorithms
	Checkpoint

	Applying Time-Memory Tradeoff to Password Hashes
	Password Hash
	Uniqueness of the Pre-image to a Password Hash
	The Reduction Function
	Two Versions of the Inversion Problem

	DP Tradeoff
	Probability of Success
	Time-Memory Tradeoff Curve
	Efficient Use of Storage

	Hellman Tradeoff
	Rainbow Tradeoff
	Optimal Tradeoff Parameters
	DP Tradeoff
	Hellman Tradeoff
	Rainbow Tradeoff

	Comparison of Tradeoff Performances
	Conversion of the Tradeoff Coefficients to a Common Unit
	Unit for Storage
	Unit for Online Time
	Combined Unit Conversion

	DP Tradeoff Versus Hellman Tradeoff
	Rainbow Tradeoff Versus DP and Hellman Tradeoffs
	Revisit to the Preliminary Tradeoff Comparison

	Conclusion
	Appendix A. Technical Approximation
	Appendix B. Random Function Arguments
	Existence of a Logical Gap
	Narrowing the Logical Gap
	Other Reuses of Average Values

	Appendix C. Standard Deviation of Image Sizes
	Appendix D. Note on the Index Tables Method
	Appendix E. Experimental Results
	Coverage Rate of DP Tradeoffs
	Cost of Resolving Alarms for the DP Tradeoff
	Ending Point Truncation

	References

