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Abstract. The paper deals with formulation and numerical solution of problems of identi-
fication of material parameters for continuum mechanics problems in domains with hetero-
geneous microstructure. Due to a restricted number of measurements of quantities related
to physical processes, we assume additional information about the microstructure geometry
provided by CT scan or similar analysis. The inverse problems use output least squares
cost functionals with values obtained from averages of state problem quantities over parts
of the boundary and Tikhonov regularization. To include uncertainties in observed values,
Bayesian inversion is also considered in order to obtain a statistical description of unknown
material parameters from sampling provided by the Metropolis-Hastings algorithm acceler-
ated by using the stochastic Galerkin method. The connection between Bayesian inversion
and Tikhonov regularization and advantages of each approach are also discussed.
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1. Introduction

The paper begins with a description of a kind of inverse problems for identifica-

tion of local material characteristics of heterogeneous (composite) materials, which
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appear in micromechanics. Then, it shows an application of both deterministic and

stochastic tools for analysis of these inverse problems. It finishes with conclusions

concerning a comparison of both approaches.

For a description of the inverse problems, we restrict ourselves to the analysis of

stationary physical processes described by a differential equation D(k, u) = f in the

domain Ω ⊂ R
d, d = 2, 3, with boundary conditions C(k, u) = g on the boundary ∂Ω.

Moreover, we also consider a sequence of boundary value problems (tests, state

problems) for i = 1, . . . ,m,

D(k, ui) = fi in Ω and Ci(k, ui) = gi on ∂Ω,

with the same material coefficient k but possibly different sources fi mainly with

different localization and data for boundary conditions.

As an example, we consider a (Darcy) flow in saturated porous media or heat

conduction described by the equation D(k, ui) = −div(k∇ui). We assume isotropic

material, i.e. k : Ω → R
1 is a scalar function on Ω. The boundary is divided into

disjoint Dirichlet and Neumann parts, ∂Ω = ΓD
i ∪ ΓN

i , where

ΓD
i =

#Di⋃

j=1

ΓD
ij and ΓN

i =

#Ni⋃

j

ΓN
ij .

The boundary conditions are of the form

Ci(k, ui) = ui = gDij on ΓD
ij ⊂ ∂Ω,

Ci(k, ui) = −n · k∇ui = gNij on ΓN
ij ⊂ ∂Ω,

where n denotes the unit outer normal to ∂Ω.

If there are enough measurements of the state variable ui or values derived from

ui, then we can think about using these measurements for determination or approx-

imation of the function k, which represents material characteristics (permeability,

conductivity). But in the case considered in this paper, we typically do not have

enough measurements to recover k without additional information. Suitable addi-

tional information can be a knowledge of the decomposition of the domain Ω =
#S⋃
l=1

Ωl

in such way that the function k is constant on Ωl for all l = 1, . . . ,#S. In the case

of material samples, such decomposition can be naturally determined e.g. by X-ray

CT scanning, see e.g. [4]. Consequences of such a priori given domain decomposition

are discussed e.g. in [12].

To solve the inverse problems, we first use a deterministic approach using out-

put least squares minimization, see e.g. [22]. Second, we use a stochastic approach
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with Bayesian inverse and its implementation via delayed acceptance variant of

the Metropolis-Hastings algorithm (DAMH) and surrogate model provided by the

stochastic Galerkin method.

The paper is organized as follows. In Section 2, we specify the considered inverse

problem in more details. Especially, we restrict ourselves to the data provided by

measurements of integral flux over parts of the boundary. The inverse identifica-

tion problem is formulated as an output least squares minimization. Section 3 then

describes a model problem and experience with inverse analysis realized through

a minimization of the cost functional by a classical method (quasi-Newton). It is

shown that the minimization of the cost functional without regularization is not

sufficient in the case of measurements corrupted by noise. It is also shown that

Tikhonov type regularization with a suitable weighting parameter can help. In Sec-

tion 4, we consider a Bayesian inversion instead of the regularization. The Bayesian

inversion requires additional statistical information but provides a broader and more

natural information. An implementation of the Bayesian inversion with the use of

the Metropolis-Hastings algorithm and the stochastic Galerkin method is discussed

in Section 5. Numerical experiments with the Bayesian inversion are described in

Section 6 and a summary with a comparison of deterministic and stochastic approach

and possible generalizations are outlined in Section 7.

2. Inverse problems in micromechanics

In micromechanics, one considers mainly tests and their evaluation on laboratory

size samples. We assume samples of heterogeneous (composite) materials, similarly

to [3]. In many cases, the geometry of the microstructure can be determined by CT

scans. This geometry can be of different types with separated and mixed material

distributions, see Fig. 2.1.

Figure 2.1. Different microstructure geometries, left: separated material subdomains, mid-
dle: a CT scan of a binary material (marble in PE resin), right: a randomly
generated log-normal random field.
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The testing of material samples is usually performed with zero volume sources but

with different boundary conditions. The testing includes measurements of quantities

derived from the state variables ui. In our case, it will be measurements of the flux

over parts ΓD
ij of the Dirichlet boundary Γ

D
i . More precisely, let us consider one or

more tests Ti, i = 1, . . . ,m, of the process (flow) described by the boundary value

problem

(2.1)





−div(k∇ui) = 0 in Ω,

ui = gDij on ΓD
ij , j = 1, . . . ,#Di,

n · k∇ui = k
∂ui
∂n

= 0 on ΓN
i , j = 1, . . . ,#Ni.

We assume that we are able to measure some integral quantities on parts ΓD
ij ⊂

ΓD
i ⊂ ∂Ω, j = 1, . . . ,#Di, #Di > 1. In particular, we consider the integral flux

(2.2) qij =

∫

ΓD
ij

n · k∇ui ds =

∫

ΓD
ij

k
∂ui
∂n

ds

over ΓD
ij ⊂ ∂Ω in the direction of (unit) outer normal n. It is recommended to get as

many measurements as possible, which means using more parts ΓD
ij as well as more

tests (m > 1).

Let µij denote the measurements of qij . Then the inverse problem for the identi-

fication of k can be written as a minimization problem:

find k∗ ∈ Uad such that J (k∗) 6 J (k) ∀ k ∈ Uad,(2.3)

J (k) =
1

2

m∑

i=1

#Di∑

j=1

Jij(k), Jij(k) = (qij − µij)
2,

Uad = {k ∈ L∞(Ω); 0 < kmin 6 k 6 kmax in Ω, k|Ωl
∈ P0(Ωi), l = 1, . . . ,#S},

where P0 denotes a set of constant functions. Note that for k ∈ Uad the values k|Ωl

are positive and can be represented as values of the exponential function. Therefore,

these values can be represented by a vector kexp from a compact set Uad ⊂ R
#S
+ ⊂

R
#S , where R#S

+ is the set of vectors with all components positive. For the numerical

optimization, we shall use the transformation to k = ln(kexp) componentwise.

To enable the computation of integral fluxes qij directly, we use a mixed variational

formulation of problem (2.1) with the quantities u (pressure) and v (velocity) as two

state variables. More precisely, let

U = L2(Ω) and Vi = {v ∈ H(div,Ω); v · n = 0 on ΓN
i }.

668



Then we seek for (ui, vi) ∈ U × Vi such that

∫

Ω

k−1vi · w dx−

∫

Ω

div(w) · ui dx = −

#Di∑

j=1

∫

ΓD
ij

gDij (w · n) ds ∀w ∈ Vi,

−

∫

Ω

div(vi)z dx = 0 ∀ z ∈ U.

It can be shown that there exists a unique solution (ui, vi) ∈ U × Vi and

qij = −

∫

ΓD
ij

n · vi ds.

See e.g. [5] or [11].

For the numerical implementation, we replace the function spaces U , Vi by their

finite element approximations Uh, Vih. Especially, we use a triangulation of the

domain Ω aligned with the decomposition of Ω into Ωl, l = 1, . . . ,#S, and spaces Uh

of piece-wise constant functions and Vih ⊂ Vh, where Vh is the lowest order Thomas-

Raviart space. Then there exists a unique solution (uih, vih) ∈ Uh × Vh and

(2.4) qij ∼ qijh = −

∫

ΓD
ij

n · vih ds.

See again [5] or [11]. Using the numerically computed fluxes, we can solve a discrete

minimization problem (2.3) with J replaced by Jh,

(2.5) Jh(k) =
1

2

m∑

i=1

#Di∑

j=1

Jijh(k), Jijh(k) = (qijh − µij)
2.

Choosing bases in the finite element spaces, one can formulate the discretized state

problem algebraically: find vi, pi which solve the algebraic system

Ai(kexp)

[
vi

ui

]
= F =

[
Fv,i

FP

]
, Ai(kexp) =

[
Mi(kexp) BT

i

Bi 0

]
,

see [5] or [11]. Note that here kexp ∈ R
#S denotes an algebraic vector, kexp,l =

k|Ωl
. The average fluxes qijh can be grouped into column vectors qih = [qijh ; j =

1, . . . ,#Di], qh = [qih ; i = 1, . . . ,m] and computed from vi, qih = Livi ∈ R
#Di ,

where Li are linear operators.

The cost functions can be expressed as J (k) = 1
2‖G(k) − µ‖2 and Jh(kexp) =

1
2‖Gh(kexp) − µ‖2, where µ = [µij ] ∈ R

#M , #M =
m∑
i=1

#Di, and the mappings
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G : k → q(k) and Gh : kexp → qh(kexp) are continuous and discretized observation

operators, respectively. The following theorem concerns the smoothness properties

of Gh and Jh, which are important for the numerical solution of inverse problems.

Theorem 2.1. (i) The discretized observation operator Gh and the cost func-

tion Jh are continuous in R
#S
+ .

(ii) The function kexp → Ai(kexp) and the discretized observation operator Gh are

continuously differentiable in R
#S
+ .

P r o o f. In the discretized case

Gh(kexp) = [q1h, . . . , qmh]
T, qi = [Li, 0]A

−1
i (kexp)F, i = 1, . . . ,m.

The elements of Ai(kexp) = [ai,rs(kexp)] depend linearly on kexp, because they are

assembled from local contributions depending linearly on kexp. Denote A
−1
i (kexp) =

[āi,rs(kexp)]. Then

āi,rs(kexp) = (−1)r+s det(A
(sr)
i (kexp))/ det(Ai(kexp)),

where det denotes determinant, A
(rs)
i (kexp) is a submatrix (minor) of A arising after

deleting sth row and rth column, det(Ai(kexp)) 6= 0 because the finite element sys-

tem is non-singular. As the elements ai,rs(kexp) and consequently det(A
(rs)
i (kexp))

and det(Ai(kexp)) depend continuously on kexp, it holds that āi,rs ∈ C(R#S
+ ). More-

over, āi,rs ∈ Cl(R#S
+ ) for any integer l > 0, where C and Cl stand for the spaces

of continuous functions and functions with continuous derivations up to order l, re-

spectively. �

Corollary 2.2. (i) Due to continuity of Jh and compactness of Uad from (2.3),

there exists a solution of the discrete minimization problem.

(ii) Minimization is possible with the use of gradient methods.

Note that for the numerical solution, the gradient should be computed numerically,

using numerical differentiation or adjoint equation techniques. It is also possible to

show continuity of the observation operator G with consequences similar as discussed

in [12].
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3. Solution of inverse problem with exact and noisy measurements:

An example

Let us consider a model problem of isotropic Darcy flow in a unit square with

7 materials in separated subdomains as shown in Fig. 3.1. The material is repre-

sented by k = ln(kexp) ∈ R
7. The localization of the parts with Dirichlet boundary

condition can be seen in Fig. 3.2. Note that we use ui = gDij = 1 on red (input) ports

and ui = gDij = 0 on green (output) ports. Different localization of these segments is

taken for three considered tests.

Ω1

Ω2

Ω3

Ω4

Ω4Ω5

Ω6

Ω7

Figure 3.1. Domain Ω divided into 7 artificially selected subdomains.

0.2

0.4

0.6

0.8

Figure 3.2. Three tests with input (red) boundary segments (gDi = 1 on Γ
D
ij ) and output

(green) boundary segments (gDi = 0 on Γ
D
ij ). The images show velocity (arrows)

and pressures (colour scale).

One measurement of the inflow/outflow is performed at each boundary segment

providing 4, 2, and 4 values for tests 1, 2, and 3, respectively. We shall work

with artificial measurements µ0 = [µ11, . . . , µ14, µ21, µ22, µ31, . . . , µ34] for all three

tests computed for given permeabilities kref = ln([9000, 100, 5000, 4, 300, 2, 200]). As

an initial guess for the optimization methods, the vector k0 = [9, 5, 9, 1, 5, 1, 5] was

used. As an alternative to µ0, we consider noisy measurements µp = µ0 + η, where

η ∼ N(0, p2Σ) with p being a scaling parameter. The matrix Σ is diagonal with

values computed as squares of the measurements µ0.

The finite element discretization of the described type uses a 500× 500 grid. The

optimization problem (2.3) with approximate qij ∼ qijh can be solved by various
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numerical methods, see e.g. [22]. We assumed that there are box (element-wise)

constraints kmin 6 k 6 kmax, but the minimization can be also done under a weaker

condition k > 0. After the transformation we get an unconstrained minimization

problem for k = ln(kexp). This transformation also brings computational benefits

for kexp with components of different orders of magnitude. We used the quasi-Newton

method from MATLAB Optimization Toolbox, which uses a mixed quadratic/cubic

line search procedure and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

for updating the approximation of the Hessian matrix. The derivatives are approxi-

mated as differences. For more details see [14].

In the case of measurements without noise, the parameters are identified quite

precisely, see Fig. 3.3. But for noisy measurements, the identification without regu-

larization fails and we need a regularization, e.g. the Tikhonov regularization with

the weight ̺, JTR(k) = Jh(k) +
1
2̺‖k − k0‖2. Note that there is also a possibility

of adaptive choice of the regularization parameter, see e.g. [22]. Another natural

possibility is to use the Bayesian inversion, which will be discussed in Section 4.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 3.3. Ratio of identified parameters to the exact values from kref. Blue (left)
columns—no noise; red (middle) columns—noise with p = 0.02 and no regular-
ization (after 78 iterations, 704 function evaluation); green (right) columns—
noise with p = 0.02 and regularization with the parameter ̺ = 20 (after
42 iterations, 352 function evaluation).

4. Bayesian inversion

The case with noisy measurements can be investigated more thoroughly by

the Bayesian inverse approach [20]. It assumes given statistical properties of the

measurement error and does not attempt to get deterministic material characteris-

tics. Instead, we assume that the material is in some level uncertain and attempt to

obtain its statistical description, i.e. to estimate the joint probability distribution of
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a vector representing the piece-wise constant material property. A thorough presen-

tation on the topic of stochastic computations is e.g. [13]. The results presented in

this article are direct continuation of the work presented in [8], [9].

The Bayesian inverse approach uses again the observation operator G : Uad →

R
#M , now expressed as a function of transformed parameters k = ln(kexp), G :

R
#S → R

#M , and vector of the measurements µ ∈ R
#M corrupted by noise η ∈

R
#M . The aim is to characterize the vector of material parameters k for which

µ = G(k) + η.

The Bayesian inversion uses a prior statistical information given in the form of the

joint probability density function (pdf) π0 to preliminarily characterize material

parameters k, and statistical information about the noise η given by its joint pdf πη.

The aim is then to find the posterior pdf π(k|µ) of the vector k of uncertain (random)

material parameters.

According to the Bayes theorem, see e.g. [20], the posterior pdf can be character-

ized as

(4.1) π(k|µ) = Θ−1[πη(µ−G(k))π0(k)],

where Θ is a normalizing factor

(4.2) Θ =

∫

R#S

πη(µ−G(k))π0(k) dk.

Therefore, the expression

(4.3) π(k|µ) ∝ πη(µ−G(k))π0(k),

where ∝ denotes a proportionality, is used for specification of the posterior pdf. Note

that πη(µ−G(k)) = fη(µ|k) is called the data likelihood.

As we consider the transformed parameters k = ln(kexp), it is natural to consider

the normal distribution as a prior guess, k ∼ N (k0, σ
2
kI#S),

(4.4) π0(k) = ((2π)#Sσ2#S
k )−1/2 exp

(
−
(k − k0)

T(k − k0)

2σ2
k

)
,

and normal distribution for noise, η ∼ N (0, σ2
ηI#M ), the data likelihood gets the

form of

(4.5) πη(µ−G(k)) = ((2π)#Mσ2#M
η )−1/2 exp

(
−
(µ−G(k))T(µ−G(k))

2σ2
η

)
,
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and consequently

(4.6) π(k|µ) ∝ exp
(
−
‖µ−G(k)‖2

2σ2
η

−
‖k − k0‖2

2σ2
k

)
.

Therefore, the minimization of observation least squares with regularization used in

Section 3 corresponds to seeking the parameter k, where the posterior pdf π(k|µ) is

maximal (mode). Formula (4.6) provides some idea about the weights for regulariza-

tion. Note that if G is linear and both the measurements and prior distributions are

Gaussian, then the posterior distribution is also Gaussian. But this is not the case

of our application.

For the numerical realization, the operator G is fully replaced by an inexact

model Gh, i.e. a model which primarily involves the discretization of the state prob-

lem by the finite element method. (Besides the discretization error possibly also

some other numerical errors from numerical implementation can be present.) We

could also consider these errors as a numerical noise. It means that our analysis

aims at the posterior distribution

πh(k|µ) ∝ πη(µ−Gh(k))π0(k).

5. Implementation of the Bayesian inverse analysis

In standard cases, we cannot evaluate the posterior distribution πh(k|µ) analyt-

ically, but we can generate samples from it using the Metropolis-Hastings (MH)

algorithm [17]. The MH algorithm is based on proposing samples from a pre-defined

instrumental density q and accepting them with some computed probability.

A l g o r i t hm 5.1 (MH algorithm).

⊲ Choose an initial guess k(0).

⊲ For t = 1, 2, . . . , T :

(1) Generate κ from q(κ|k(t−1)).

(2) Compute the acceptance probability

(5.1) αt = min

{
1,

πh(κ|µ)q(k(t−1)|κ)

πh(k(t−1)|µ)q(κ|k(t−1))

}
.

(3) (a) Set k(t) = κ with probability αt, otherwise

(b) set k(t) = k(t−1).
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The basic MH algorithm can be seen in Algorithm 5.1. We choose a symmetric

random-walk proposal distribution with a conditional pdf

(5.2) q(κ|k) = ((2π)#Sσ2#S
MH )−1/2 exp

(
−
(k − κ)T(k − κ)

2σ2
MH

)
.

In this case (symmetry of q), the fraction in (5.1) can be reduced.

Theorem 5.2. The basic MH algorithm described in Algorithm 5.1 with (5.2)

generates a Markov chain with the limiting distribution πh(k|µ) despite of the choice

of σMH > 0.

For the proof of a more general form of this theorem see [18]. Note that the

implementation of this algorithm requires the number of steps T to be estimated,

which is usually done adaptively by watching some values as e.g. the average of

generated k(t) and stopping the iterations when this value stabilizes enough. When

the Markov chain is created, its autocorrelation is analyzed. The autocorrelation

time can also be estimated to determine the distance between almost uncorrelated

samples.

Computational labour of the MH algorithm is concentrated in evaluation of the

observation operator G, in practice of its discretized version Gh. Having an approxi-

mation G̃h to Gh, we can use the modified MH algorithm with the following extended

Step (2):

(2a) Compute the pre-acceptance probability

α̃t = min

{
1,

π̃h(κ|µ)q(k(t−1)|κ)

π̃h(k(t−1)|µ)q(κ|k(t−1))

}
.

(2b) Pre-accept κ with probability α̃t, otherwise go to Step (3b), i.e. k
(t) = k(t−1).

(2c) If the sample κ is pre-accepted, compute the modified acceptance probability

αt = min

{
1,
πh(κ|µ)π̃h(k(t−1)|µ)

πh(k(t−1)|µ)π̃h(κ|µ)

}

and continue with Step (3).

Above, the computation of α̃t with π̃h(κ|µ) = πη(µ− G̃h(k))π0(k) saves the compu-

tational labour-expensive operator Gh should be evaluated only for samples, which

are more likely to be accepted. This technique is called the Delayed acceptance MH

(DAMH) algorithm (see [7]). In comparison with the direct replacement of the op-

erator Gh with its approximation G̃h, the DAMH algorithm preserves the limiting
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distribution. Intuitively, this comes from the fact that the pre-acceptance using G̃h

can be understood as a different proposal density

q∗(κ|k) = g(k,κ)q(k|κ) +

(
1−

∫

R#S

g(k,κ)q(k|κ) dκ

)
δk(κ),

where

g(k,κ) = min

{
1,
π̃h(κ|µ)q(k|κ)

π̃h(k|µ)q(κ|k)

}

and δk(·) denotes the Dirac mass at k. It can be shown that the MH algorithm with

proposal density q∗(κ|k) has the same limiting distribution as with q(κ|k).

Theorem 5.3. If q(κ|k) > 0 implies π̃h(κ|µ) > 0, the DAMH algorithm described

above with (5.2) generates a Markov chain with the limiting distribution πh(k|µ)

despite of the choice of σMH > 0.

For the proof, see [7], [18]. Note that for (4.4) and (4.5), the assumption is fulfilled

despite of the choice of G̃h.

There are many ways of constructing G̃h including the FEM computation on

a coarser grid, the stochastic collocation method and various methods for surrogate

models construction. In our paper, the approximation of the FEM solution using

the stochastic Galerkin method (SGM) is considered, see [2]. The SGM fitted to our

problem is described in the next subsection.

5.1. Stochastic Galerkin method. The SGM denotes the Galerkin method ap-

plied to the PDE with uncertain parameters in the form of functions of a random

vector, for a more thorough introduction see [13], [23], [2]. The SGM assumes a dis-

cretization of both the physical space (functions on the domain) and the stochas-

tic/parametric space (functions of random variables). The SGM solution is then

a function of both space variable and vector of random parameters, see (5.4).

Here, we aim to create a suitable approximation G̃h to the discretized observation

operator Gh for numerical realization of the DAMH algorithm. This means to create

an approximate operator assigning integral fluxes over each Dirichlet part of the

boundary in each of m tests to a parameterized material field. For this, we first solve

each of m boundary value problems (tests) separately and then we obtain the fluxes

for each Dirichlet window. Note that here we will use standard variational and FEM

formulation instead of the mixed formulation.
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Pointing out the stochastic nature, each of the boundary value problems (tests)

can be described by the following equation:

(5.3)





−∇x · (k(x;Z)∇xu(x;Z)) = 0 ∀x ∈ Ω, Z ∈ R
#S,

u(x;Z) = g(x) ∀x ∈ ΓD, Z ∈ R
#S ,

n(x) · k(x;Z)∇xu(x;Z) = 0 ∀x ∈ ΓN , Z ∈ R
#S.

To complete the formulation, we need to specify some probability distribution of

vector Z = (Z1, . . . , Z#S). This should reflect the random nature of the material

field from the previous sections-constant on given subdomains. Within the DAMH

algorithm, k(x;Z) is defined through the vector k. It means that we work with

a random material field, which can be expressed as

k(x;Z) =

#S∑

i=1

χΩi
(x) exp(aiZi + bi),

where χΩi
(x) is a characteristic function of the subdomain Ωi, ki = aiZi+ bi (for the

convenience of the computation, parameters of the problem are normalized), bi is the

mean value of the material on subdomain Ωi (see values of k0 in Section 6) and ai is

the standard deviation of the material on subdomain Ωi (see σk in Section 6). Then

the components of Z are independent standard normal random variables. Note that

for all Z ∈ R#S the function k(x;Z) is bounded and positive on Ω, therefore the

deterministic counterpart of problem (5.3) has a unique solution for all Z ∈ R
#S .

Problem (5.3) can be formulated variationally with bilinear form a in a tensor

product of standard Sobolev space H1(Ω) and L2
dFZ

(R#S), which is a space of

square integrable functions on R
#S with respect to the measure/distribution of Z,

see e.g. [1], [16]. For the Galerkin discretization we shall use finite dimensional

space with the basis created as a tensor product of basis 〈ϕ1(x), . . . , ϕNd+NDd
(x)〉

of standard linear elements on Ω and basis 〈ψ1(Z), . . . , ψNs
(Z)〉 of orthonormal

polynomials (with respect to the distribution of Z) on R
#S (here it means the

products of one dimensional Hermite polynomials). Note that we assume that the

last basis functions ϕNd+1(x), . . . , ϕNd+NDd
(x) correspond to the degrees of freedom

on the Dirichlet part of the boundary ∂Ω.

The Galerkin approximation of u(x, Z) then takes the form

(5.4) ũ(x, Z) =

Nd+NDd∑

i=1

Ns∑

j=1

uijϕi(x)ψj(Z).

Note that once we have computed ũ, the evaluation of the approximation of u for

some given sample of Z consists only of a matrix-vector multiplication and an eval-

uation of polynomials 〈ψ1(Z), . . . , ψNs
(Z)〉, which is a fairly cheap operation. Due
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to separable nature of the material field, the values of bilinear form on elements of

tensor product basis can be written as

a(ϕiψj , ϕkψl) =

#S∑

t=1

∫

R#S

ψjψl exp(atZt + bt) dFZ

∫

Ωt

∇ϕi∇ϕk dx.

Assuming ũ = ũh + ũ0, where ũh =
Nd∑
i=1

Ns∑
j=1

(uh)ijϕiψj is a homogeneous part of the

solution and ũ0 =
NDd∑

i=Nd+1

(u0)iϕi is a particular part of the solution fulfilling Dirichlet

boundary condition, we obtain a large system (Ns ×Nd) of linear equations in the

form of

A · uh = b, A =

#S∑

t=1

Gt ⊗Kt, b =

#S∑

t=1

gt ⊗ f t,

Aij,kl = a(ϕiψj , ϕkψl), bij = a(ϕiψj , ũ0),

(Gt)j,l =

∫

R#S

ψjψl exp(atZt + bt) dFZ, (Kt)i,k =

∫

Ωt

∇ϕi∇ϕk dx,

(gt)j =

∫

R#S

ψj exp(atZt + bt) dFZ, (f t)i =

∫

Ωt

∇ϕi∇ũ0 dx,

i, k = 1, . . . , Nd; j, l = 1, . . . , Ns,

where Gt/gt are matrices/vectors corresponding to the discretization of parameter

space andKt/f t are matrices/vectors corresponding to the discretization using linear

finite elements. The form of the matrix and the right-hand side allows us to greatly

reduce the memory requirements and computation costs. The multiplication by the

matrix A can be performed in the following way:

A · uh = vec

(#S∑

t=1

KtuhG
T
t

)
,

where uh denotes the vector uh reshaped into an Nd×Ns matrix and vec(·) reshapes

the same sized matrix back into a vector.

This form of the matrix allows us to view the system as a matrix equation. We

solve the system using the reduced basis method, which involves a creation of the

reduced rational Krylov approximation of matrices Kt, for more details see [15].

Next part is to obtain the values of fluxes over the parts ΓD
j of the Dirichlet

boundary ΓD. This can be done using the Green theorem and the fact, that we do

not assume any volume sources and the Neumann boundary is homogeneous. The
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flux over a Dirichlet window ΓD
j can be calculated as

qj(Z) =

∫

ΓD
j

k(x;Z)
∂u(x;Z)

∂n(x)
ds =

∫

Ω

k(x;Z)∇xu(x;Z)∇xvDj
(x) dx,

where vDj
(x) ∈ H1(Ω) is an arbitrary function such as vDj

(x) = 1 for all x ∈ ΓD
j

and vDj
(x) = 0 for all x ∈ ΓD \ ΓD

j . It is a generalization of the idea described

e.g. in [6]. The approximation of qj(Z) can be obtained from the SGM solution ũ in

the following way:

q̃j(Z) = vTDj

[#S∑

t=1

exp(atZt + bt)K̂tu

]
ψ(Z),

where vDj
stands for a vector of length Nd +NDd containing 0/1 denoting if a basis

function ϕi(x) is nonzero on Γ
D
j , K̂t (a square matrix of size Nd +NDd) denotes an

augmented form of the matrix Kt, u denotes the solution u reshaped into a matrix

of size (Nd + NDd) × Ns and ψ(Z) vector of basis functions 〈ψ1(Z), . . . , ψNs
(Z)〉.

Note that the evaluation of fluxes over multiple Dirichlet parts of the boundary can

be done cheaply at once (e.g. the value ψ(Z) is the same for each part and for each

test/boundary value problem). Moreover, vTDj
K̂tu can be calculated only once for

each Dirichlet part and each material parameter, therefore we store and work with

reasonably small vectors (#S ×#M vectors of size Ns).

6. Numerical experiments

Let us consider the model problem described in Section 3. First we illustrate the

principle of the Bayesian inversion by studying the impact of the number of mea-

surements to the posterior distribution. Further aim of the numerical experiments

is to analyze sampling using the DAMH method and compare it with the basic MH

algorithm.

6.1. Impact of the number of measurements. The following numerical ex-

periments were performed three times: first by using only the measurements from

test 1, then from tests 1 and 2 and finally using all 10 measurements from tests 1,

2, and 3. The measurements correspond to the noise distribution from Section 3

with p = 0.02. The prior pdf is defined by (4.4), where k0 = [9, 5, 9, 1, 5, 1, 5] and

σk = 0.5. This prior information expresses that the material is highly permeable in

subdomains Ω1 and Ω3, medium permeable in subdomains Ω2, Ω5, and Ω7 and hardly

permeable in remaining subdomains Ω4 and Ω6. Additionally, this prior information

corresponds to the initial guess of optimization methods used in Section 3.
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subdomain 1 2 3 4 5 6 7

original values kref 9.105 4.605 8.517 1.386 5.703 0.693 5.298

posterior mean 8.983 4.657 8.555 1.350 5.694 0.710 4.974

posterior std 0.509 0.106 0.085 0.178 0.025 0.067 0.493

Gh(k
∗) sensitivity 1.050 32.30 121.8 9.805 334.9 7.327 0.172

Table 1. An overview of the parameters and the results obtained using all measurements
(7 parameters).

Table 1 provides the results of the Bayesian inverse approach (approximated means

and standard deviations). Here, the sensitivity of the material i is calculated as the

approximation of
#M∑

j=1

∣∣∣
(∂Gh(k

∗)

∂ki

)
j

∣∣∣

(approximated using forward differences with a step equal to 0.01·k∗), where k∗

denotes the least squares solution from Section 3. The marginal posterior distribu-

tions for the seven parameters of the original problem are approximately Gaussian,

see Fig. 6.1. With the increasing number of measurements, the std decreases and

the mean of the posterior distribution moves away from the mean of the prior dis-

tribution (in the case with the most parameters).
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Figure 6.1. Marginal posterior distributions of the 7 parameters obtained using different
numbers of measurements compared to the prior distribution.
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To illustrate the Bayesian approach, a simplified problem with two parameters is

also considered. It is assumed that the subdomains Ω4 and Ω6 form one subdomain

with permeability exp(4.605) and the remaining subdomains form the second sub-

domain with permeability exp(5.704). The impact of the amount of measurements

is shown in Fig. 6.2 (the red circle has a radius of one std of the prior distribution).
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4.4

4.6

4.8

5

5 5.5 6

 

5 5.5 6

posterior samples real values prior

Figure 6.2. A simplified problem with 2 material parameters (logarithms of permeability).
The points represent 400 samples from the posterior distribution obtained by
the MH algorithm with the use of measurements from test 1 (left), 1+2 (middle),
1+2+3 (right).

6.2. Analysis of DAMH and MH. In the rest of the experiments, all 10 mea-

surements were considered. Samples from the posterior distribution were provided

using the DAMH algorithm (see Section 5) and for comparison also using the MH

algorithm. The quality of the sampling process can be influenced by the choice

of the proposal density. Here we choose (5.2) with various values of the proposal

std σMH. The value of σMH controls the length of steps of the sampling algorithm

and therefore, it influences the autocorrelation of the resulting Markov chain. Fig-

ure 6.3 shows the dependence of the autocorrelation time on the proposal std, both

for the MH algorithm (left) and the DAMH algorithm (right). Generally, for a stable

estimation of the autocorrelation time, long chains are required. We compared three

different methods and in the rest of this section we use the estimation obtained by

the method labeled as “Foreman-Mackey” in this figure. This method approximates

the integrated autocorrelation time defined as

τ =
∞∑

i=−∞

̺(i),

where ̺(i) is the normalized autocorrelation function of a studied stochastic process,

by the value

1 + 2

M∑

i=1

ˆ̺(i),
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Figure 6.3. Estimation of the autocorrelation time using several methods (see [21], [10], [19])
depending on the proposal std (for the 1st component of the Markov chain).
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Figure 6.4. Estimation of the autocorrelation time according to [10] depending on the pro-
posal std (for all 7 components of the Markov chain).

where ˆ̺ is the estimation of ̺ obtained from a finite chain {X(n)}Nn=1 and M ≪ N .

The comparison of these methods is performed on the first component of the Markov

chain; however, the behavior is similar for all components (as illustrated in Fig. 6.4).

For the comparison of the efficiency of several DAMH based sampling processes,

we use the quantity CpUS (Cost per Uncorrelated Sample) calculated as

(6.1) CpUS =

(
#[Gh evaluations]

[chain length]
+ [G̃h evaluation cost]

)
· [autocorr. time],

where [G̃h evaluation cost] is the ratio between evaluation cost of G̃h and of Gh. The

quantity CpUS is meant to approximate the efficiency of the sampling procedure, it

calculates the cost per one sample calculation relative to the cost of Gh as

#[Gh evaluations] + [chain length] · [G̃h evaluation cost]

[chain length]

and multiplies it by the auto-correlation time. Higher auto-correlation time means

lower amount of information in the chain, we can view the auto-correlation time
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as the number of chain steps to an almost “uncorrelated” sample. Therefore, this

value expresses approximate computational cost per one almost uncorrelated sample

in the units corresponding to the cost of one Gh evaluation. Figure 6.5 shows the

dependence of the computational cost on the proposal std for several costs of G̃h

evaluations. For comparison, the efficiency of the MH algorithm is also shown in the

same figure. Since the basic MH algorithm does not work with G̃h, (6.1) goes to the

form CpUS = [autocorr. time].
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Figure 6.5. Efficiency of sampling processes depending on the proposal std (lower value is
better)

First line of Table 2 shows additional properties of the MH sampling process

for σMH = 0.0761 that was chosen as optimal proposal std (according to previous

experiments). Similarly, second line contains properties of the DAMH sampling

process for σMH = 0.3509. Average acceptance rates are calculated as the ratio

between the number of accepted samples and the length of the chain. Generally, the

efficiency of the DAMH algorithm is given by the quality of the approximation G̃h.

In the DAMH implementation used in our experiments, the ratio between the G̃h

and Gh evaluation cost was approximately 1:1000 (evaluation cost of our surrogate

model was approximately 1000 times lower than the evaluation cost of Gh). The

efficiency was approximately 80 times higher compared to the basic MH algorithm.

method σMH chain average number of Gh estimated CpUS
length acceptance rate evaluations autocorr. time

MH 0.0761 104 4.80 · 10−2 104 2848 2848

DAMH 0.3509 107 2.55 · 10−4 3516 26297 35.54

Table 2. Comparison of MH and DAMH sampling process.

For the construction of the SGM surrogate model we choose the finite element grid

500 × 500 and complete orthogonal polynomials up to the degree 4 (330 polynomi-

als). The resulting SGM system of equations has approximately 82 · 106 unknowns.
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Figure 6.6 shows the convergence of the reduced basis method (RB). We can see that

for obtaining the relative residual (of the large SGM matrix) less or equal to 10−9 we

need only 16 iterations of the RB method. The computational cost of one iteration

of the RB method consists of #S solutions of finite element systems (same in each

iteration, same finite element grid), orthogonalization of #S vectors and rank com-

pression. Therefore, we can roughly compare the computational cost of the SGM

solution to 16×#S evaluations of Gh.
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Figure 6.6. Convergence of reduced basis method

7. Summary and possible generalizations

In this paper, we described a specific type of inverse problems in micromechanics

and outlined deterministic and stochastic approaches to their solution. We should

stress the importance of enough data-multiple measurements within one test and

multiple tests. The state equation can be efficiently solved by the standard or mixed

finite element method with a special care for accurate computing of averaged bound-

ary fluxes. Concerning comparison of deterministic and stochastic approaches, we

could see that the deterministic approach is cheaper, but not robust without reg-

ularization. The proper setting of regularization is then a special problem, which

should be overcome. Stochastic approach with the Bayesian inversion requires some

additional statistical inputs-a guess of a prior distribution of the analyzed quantities

and statistical characterization of measurement errors. It also requires to think how

these inputs can be obtained in real situations. The benefits of the Bayesian inversion

are robustness and more thorough analysis of the analyzed quantities (material pa-

rameters in our case). A disadvantage is in highly increased computational demands

in the numerical realization of the Bayesian inversion. In this respect, a lot of effort

has been recently devoted to the research on efficient methods for implementation of

the Bayesian inversion with the construction of an approximate observation opera-

tor. In this paper, we used the delayed acceptance Metropolis-Hastings method with

the stochastic Galerkin method for the construction of an approximate observation

operator and showed the potential and benefits of this approach.
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We skipped some points, like a suitable localization of the measurements on the

boundary, which could enhance the sensitivity and robustness of the identification.

We also skipped the generalization to other types of problems, e.g. anisotropy or

elasticity considered in [4]. Applications of the considered type of inverse analy-

sis to fractured porous media, multiphysics, as e.g. poroelasticity, and to nonlinear

problems are planned in the future.
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