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Abstract

Ordinal regression learning has characteris-
tics of both multi-class classification and met-
ric regression because labels take ordered,
discrete values. In applications of ordinal re-
gression, the misclassification cost among the
classes often differs and with different mis-
classification costs the common performance
measures are not appropriate. Therefore we
extend ROC analysis principles to ordinal re-
gression. We derive an exact expression for
the volume under the ROC surface (VUS)
spanned by the true positive rates for each
class and show its interpretation as the prob-
ability that a randomly drawn sequence with
one object of each class is correctly ranked.
Because the computation of V US has a huge
time complexity, we also propose three ap-
proximations to this measure. Furthermore,
the properties of VUS and its relationship
with the approximations are analyzed by sim-
ulation. The results demonstrate that opti-
mizing various measures will lead to different
models.

1. Introduction

In multi-class classification labels are picked from a
set of unordered categories. In metric regression labels
might take continuous values. Ordinal regression can
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be located in between these learning problems because
here labels are chosen from a set of ordered categories.
Applications of ordinal regression frequently arise in
domains where humans are part of the data gener-
ation process. When humans assess objects for their
beauty, quality, suitability or any other characteristic,
they really prefer to qualify them with ordinal labels
instead of continuous scores. This kind of datasets is
obtained in information retrieval and quality control,
where the user or the human expert frequently evalu-
ates objects with linguistic terms, varying from “very
bad” to “very good” for example. Also in medicine and
social sciences, where many datasets originate by in-
teraction with humans, ordinal regression models can
be used.

In these applications of ordinal regression one is often
the most interested in a subset of the classes. In many
cases these classes of interest are the “extreme” cat-
egories, such as the documents with the highest rel-
evance to the query or the products with the lowest
quality. Moreover, there is often an unequal number
of training objects for the different categories in real-
world ordinal regression problems. The overall classi-
fication rate or mean absolute error are in these cases
not the most pertinent performance measures. Crite-
ria such as the area under the receiver operating char-
acteristics (ROC) curve — which is related to defining
an optimal ranking of the objects — are more appro-
priate. This article aims to discuss possible extensions
of ROC analysis for ordinal regression.

Nowadays the area under the ROC curve is used as a
standard performance measure in many fields where a
binary classification system is needed. A ROC curve is
created by plotting the true positive rate (TPR) versus



ŷ = −1 ŷ = 1
y = −1 TN FP n−
y = 1 FN TP n+

NP PP n

Table 1: Confusion matrix for a two class classification
problem of size n

the false positive rate (FPR). The TPR (or sensitiv-
ity) and the FPR (also known as 1 - specificity) are
computed from the confusion matrix or contingency
table (shown in Table 1). Sensitivity is defined as
the number of positive predicted examples from the
positive class TP divided by the number of positive
examples n+ and specificity is defined as the number
of negative predicted examples TN from the negative
class divided by the number of negative examples n−:

Sens = TPR =
TP

TP + FN
(1)

Spec = TNR = 1− FPR =
TN

TN + FP
(2)

With a classifier that estimates a continuous function
f , the class prediction ŷ for an object x is obtained by
the following rule:

ŷ = sgn(f(x) + b) (3)

The points defining the ROC curve can then be com-
puted by varying the threshold b from the most nega-
tive to the most positive function value and the area
under the ROC curve (AUC) gives an impression of
quality of the classifier. It has been shown [Cortes &
Mohri, 2003,Yan et al., 2003] that the AUC is equiv-
alent to the Wilcoxon-Mann-Whitney statistic:

WMW = AUC(f) =
1

n−n+

n−∑
i=1

n+∑
j=1

If(xi)<f(xj) (4)

The value of the indicator function I will be one when
its argument is true and zero otherwise. The mea-
sure AUC(f) can be seen as a nonparametric estimate
for the probability that the function value of an ob-
ject randomly drawn from the negative class is strictly
smaller than the function value of an object randomly
drawn from the positive class:

AUC(f) = P (f(xi) < f(xj) | yi = −1 ∧ yj = 1)) (5)

2. ROC Measures for Ordinal
Regression

Recently, different approaches have been proposed to
extend ROC analysis for multi-class classification. In

the most general case, the volume under the ROC sur-
face (V US) has to be minimized in multi-class clas-
sification. The ROC surface can be seen as a Pareto
front, where each objective corresponds to one dimen-
sion. In case there are more then two classes (let’s
say r), then the number of objectives depends on the
multi-class method that is used:

• For a one-versus-all method, r functions fk are
estimated that try to separate objects of class k
from the other classes. As a consequence mis-
classification costs for each class are fixed and the
corresponding ROC surface will have r dimensions
representing the true positive rates TPRk for each
class [Flach, 2004]. ROC points are here obtained
by varying the thresholds bk in the prediction rule
ŷ = argmaxkfk(x) + bk.

• For a one-versus-one method, a function fkl is es-
timated for each pair of classes, which allows to
specify the cost for a misclassification of an object
of class k predicted as class l. The corresponding
ROC space is in this case spanned by r(r−1)

2 objec-
tives [Ferri et al., 2003]. A prediction for new in-
stances is done by majority voting over all r(r−1)

2
classifiers based on the outcomes sgn(fkl + bkl).

In ordinal regression the picture is slightly differ-
ent. The vast majority of existing methods for or-
dinal regression — including traditional statistical
methods like cumulative logit models and their vari-
ants [Agresti, 2002], kernel methods [Chu & Keerthi,
2005,Shashua & Levin, 2003] and bayesian approaches
[Chu & Gharhamani, 2005] — fit in general one func-
tion f to the data together with r − 1 thresholds bk

for r ordered classes. New observations can then be
classified by predicting them into the class k for which
it holds that

bk−1 < f(x) ≤ bk with b0 = −∞ and br = +∞. (6)

The simplicity of this kind of models has as disadvan-
tage that one can not control the cost of misclassifying
an object of a given class into another specified class.
In other words, like in one-versus-all multi-class clas-
sification only r objectives can be simultaneously min-
imized. Therefore one could wonder whether a one-
versus-one approach could be useful for ordinal regres-
sion. However, the answer is negative because it would
lead to a more complex model with more variables to
be estimated. Fortunately, Misclassification costs are
always proportional to the absolute difference between
the real and the predicted class, so defining a loss func-
tion with this property will solve the problem [Rennie
& Srebro, 2005].



We will further assume that the misclassification costs
are fixed for each class (they are always to proportional
to the absolute difference between the real and the pre-
dicted label). Like in binary classification, we want a
model f that imposes an optimal ranking of the data
objects. There are several ways to define an optimal
ranking. By analogy with (5) an optimal ranking could
here be defined as a ranking that maximizes the joint
probability that an r-tuple (x1, ..., xr) is correctly or-
dered where each element xk is randomly drawn from
class k. This probability is given by

P (
r−1∧
k=1

(f(xk) < f(xk+1) | yk = k) (7)

and it can be estimated for a given model by count-
ing the number of ordered r-tuples occurring in the
training dataset, i.e.

OrdTuples(f) =
1Qr

k=1 nk

X

yj1<...<yjr

If(xj1 )<...<f(xjr ) (8)

Here nk stands for the number of objects with label k.
It is straightforward to see that OrdTuples(f) reduces
to (4) in case of two classes. Furthermore, we can show
the following.

Theorem 2.1 Given a continuous function f that im-
poses a ranking over a dataset with r ordered classes,
OrdTuples(f) is the volume under the ROC surface
(V USord(f)) spanned by the true positive rates for
each class.

In statistics there has some related work on this topic.
[Dreisetl et al., 2000] derive formulas for the variance
of V USord and the covariance between two volumes
in the three class case. This work is extended to the
general r-class case in [Nakas & Yiannoutsos, 2004].
They conclude that bootstrapping is preferred over U-
statistics for large values of n and r. In this article we
focus more on the use of V USord(f) as performance
measure for ordinal regression problems.

For three ordered classes the ROC surface can be vi-
sualized. We have constructed this ROC surface for a
synthetic dataset. We sampled 3 ∗ 100 instances from
3 bivariate Gaussian clusters with consecutive ranks.
The mean of the clusters was set to (10,10), (20,10)
and (20,20) respectively, σ1 and σ2 were set to 5 for
the first two clusters and were set to 7 for the last
cluster. ρ was fixed to 0. This dataset is visualized in
Figure 1. We used the support vector ordinal regres-
sion algorithm of [Chu & Keerthi, 2005] to estimate

Figure 1: Synthetic dataset

Figure 2: 3D ROC surface for the synthetic dataset

the function f , without looking at the thresholds. The
ROC surface is shown in Figure 2.

Optimizing the AUC instead of accuracy has been
suggested for binary classification, for example with
gradient descent or a quadratic solver. However, the
computation of V USord(f) has a large time complex-
ity. The function I is evaluated

∏r
k=1 nk times, which

is exponential in the number of classes r. As a con-
sequence, minimizing V USord(f) will lead to a hard
optimization problem.

We will look at approximations of V USord(f) which
can be more easily transformed into a suitable loss
function. The biggest problem is that all r − tuples
need to be verified. Much would be gained if only
pairs of function values have to be correctly ranked in
each evaluation of I. This is another way of evaluating
the imposed ranking. We discuss here three approx-
imations of V USord that all reduce to I-evaluations



(a) First ROC-curve

(b) Second ROC-curve

Figure 3: The three dimensional ROC surface approx-
imated by a set of two ROC-curves for the synthetic
dataset.

with only one condition.

The first approximation Cons(f) is directly deduced
from the way the majority of existing ordinal regres-
sion models are constructed. With a function f and
r− 1 thresholds one could look at threshold bk as pro-
viding the separation between the consecutive ranks k
and k + 1. Varying this threshold will change the pro-
portion between objects predicted lower than or equal
to class k and objects predicted higher than class k.
This corresponds to measuring the non-weighted sum
of r− 1 two-dimensional ROC curves representing the
trade-off between consecutive classes:

Cons(f) =
1

r − 1

r−1X

l=1

AUCl(f) (9)

AUCl(f) =
1

Pl
i=1 ni

Pn
j=l+1 nj

X

i:yi≤l

X

j:yj>l

If(xi)<f(xj)

The two ROC curves belonging to the synthetic
dataset are shown in figure 3.

For a second approximation of V USord(f) we looked
at the statistical literature. In nonparametric statis-

tics the Jonckheere-Terpstra test is known as a more
powerful alternative for a Kruskal-Wallis test for test-
ing

H0 : µ1 ≤ µ2 ≤ ... ≤ µr (10)

versus the one side alternative

Ha : µ1 ≥ µ2 ≥ ... ≥ µr (11)

if there is a cdf F for which Fk(x) = F (x− µk)). It is
composed of a set of one sided WMW-tests:

JT =
∑
i<j

WMWij (12)

JT computes the WMW statistic for all possible pairs
of classes, which is the same as computing the AUC for
each pair of classes. This has been done for one-versus-
one multi-class classification [Hand & Till, 2001],
which gives rise to the following approximation:

Ovo(f) =
2

r(r − 1)

∑
l<k

AUClk(f) (13)

AUClk(f) =
1

nlnk

∑
i:yi=l

∑
j:yj=k

If(xi)<f(xj)

A third measure could exist of counting the number
pairs that are correctly ranked among all possible pairs
of data objects:

Pairs(f) =
1∑

k<l nknl

n∑
i=1

n∑
j=1;yi<yj

If(xi)<f(xj)(14)

A loss function based on (14) is used in the ordinal
regression method of [Herbrich et al., 2000]. The dif-
ference with Ovo(f) is that here a weighted average of
the ROC areas for each of pair of classes is taken. The
weights are the prior πk probabilities of observing an
object of class k, i.e.

Pairs(f) =
2

r(r − 1)

∑
l<k

πkπlAUClk(f) (15)

3. Simulation experiments

To see the characteristics of the different measures, we
conducted some simulation experiments. In the first
experiment we wanted to find out which values are ob-
tained for different levels of separability and for an in-
creasing number of classes. Therefore we assume that
the function values of the model f can be represented
by a distribution with cdf F (x), in which the function
values for the objects of class k are distributed with cdf
Fk(x) = F (x − kd). Furthermore we chose to sample



Figure 4: Relation between V USord(f) and Cons(f)
for r = 1, ..., 5 and d = 0, ..., 5 with step size 0.25. The
values are averaged over 20 runs.

Figure 5: Relation between V USord(f) and Ovo(f)
for r = 1, ..., 5 and d = 0, ..., 5 with step size 0.25. The
values are averaged over 20 runs.

from a Gaussian distribution with standard deviation
σ = 1. So the function values conditioned on the la-
bels are normally distributed with equidistant ordered
means. Repeatedly 100 data points were sampled from
each class while we increased the distance d between
the means of consecutive clusters. We started at d = 0
(random classifier) and stopped at d = 5 (as good as
perfect separation) with step size 0.25.

The results obtained for V USord(f), Cons(f) and
Ovo(f) are graphically compared. In this simulation
all classes have the same prior of occurring, so Ovo(f)
and Pairs(f) will always have the same value. Conse-
quently the results for Pairs(f) are omitted. The rela-
tionship between V USord(f) and Cons(f) on the one
side and between V USord(f) and Ovo(f) on the other
side are shown in Figures 4 and 5. One can see that,
as expected, the relation between V USord(f) and the
other two measures is without doubt nonlinear. The
expected value for V USord(f) heavily depends on the
number of classes, while this is not the case for the
approximations. The approximations all take an aver-
age over a set of two dimensional ROC-curves, so their
expected value is never lower than a half, irrespective

Figure 6: Relation between Cons(f) and Pairs(f) for
r = 1, ..., 5 and d = 0, ..., 5 with step size 0.25. The
values are averaged over 20 runs.

of the number of classes. Nevertheless, one can also
see that V USord(f) converges rapidly to one when the
distance between the subsequent means increases. In
addition, Cons(f) and Ovo(f) behave quite similar
in this simulation. This is also shown in Figure 6.
Their observed values become more dissimilar when
the number of classes increases.

In a second experiment we wanted to investigate
whether optimizing the various performance measures
would lead to the same model. For two measures M1

and M2 this implies that

∀f, f∗ ∈ H : M1(f) < M1(f∗) ⇔ M2(f) < M2(f∗)(16)
∀f, f∗ ∈ H : M1(f) = M1(f∗) ⇔ M2(f) = M2(f∗).(17)

The following experiment was set up to test whether
this property holds for the four measures. All measures
only quantify the quality of the ordering of a dataset
for a function f . For a dataset of size n there are n!
possible rankings of the objects, so evaluating them all
is computationally intractable. Therefore we sampled
randomly 1000 rankings from all possible orderings of
the dataset. We assumed we had 50 samples per class
with four ordered classes, resulting in a sample size of
200 objects and 200! possible rankings. The results
are given in Figure 7, which shows the distributions
of all measures together with pairwise scatter plots.
All classes again have the same prior of occurring,
so Ovo(f) and Pairs(f) have a perfect correlation.
This is however not true for the other measures. One
can clearly see that for no pair of measures conditions
(16) or (17) hold. In general, V USord(f), Cons(f) and
Ovo(f) will have different maxima over a hypothesis
space H and a given dataset. So, optimizing one of the
proposed approximations of V USord(f) will give rise
to different classifiers.



Figure 7: Histograms and pairwise scatter plots for all the measures.

4. Discussion and further research

In this article we argued that accuracy or mean ab-
solute error are not the most powerful performance
measures to evaluate ordinal regression models when
misclassification costs are not equal for each class or
when the data is unbalanced. Therefore we proposed
some new measures, which extend binary and multi-
class ROC analysis to ordinal regression. They all
measure the quality of the ranking imposed by an or-
dinal regression model. First of all we showed that
counting the number of ordered r-tuples in the rank-
ing is equivalent to the area under the r-dimensional
ROC curve spanned by the true positive rates of all
classes. However, V USord(f) can’t be transformed
easily into a suitable loss function for learning algo-
rithms, so three approximations were also analyzed.
By simulation we showed that these four measures in
general have a different distribution and that none of
them is a monotone function of another. Further re-
search will be devoted to converting measures like the
area under the ROC curve into a loss function for a
learning algorithm and to further analyse the charac-
teristics of the presented measures.
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