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Abstract. Vertical number fluxes of aerosol particles and

vertical fluxes of CO2 were measured with the eddy covari-

ance method at the top of a 53 m high tower in the Amazon

rain forest as part of the LBA (The Large Scale Biosphere

Atmosphere Experiment in Amazonia) experiment. The ob-

served aerosol number fluxes included particles with sizes

down to 10 nm in diameter. The measurements were carried

out during the wet and dry season in 2008. In this study focus

is on the dry season aerosol fluxes, with significant influence

from biomass burning, and these are compared with aerosol

fluxes measured during the wet season.

Net particle deposition fluxes dominated in daytime in

both seasons and the deposition flux was considerably larger

in the dry season due to the much higher dry season particle

concentration. The particle transfer velocity increased lin-

early with increasing friction velocity in both seasons. The

difference in transfer velocity between the two seasons was

small, indicating that the seasonal change in aerosol num-

ber size distribution is not enough for causing any significant

change in deposition velocity. In general, particle transfer

velocities in this study are low compared to studies over bo-

real forests. The reasons are probably the high percentage of

accumulation mode particles and the low percentage of nu-

cleation mode particles in the Amazon boundary layer, both

in the dry and wet season, and low wind speeds in the tropics

compared to the midlatitudes.

In the dry season, nocturnal particle fluxes behaved very

similar to the nocturnal CO2 fluxes. Throughout the night,

the measured particle flux at the top of the tower was close

to zero, but early in the morning there was an upward parti-
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cle flux peak that is not likely a result of entrainment or local

pollution. It is possible that these morning upward particle

fluxes are associated with emission of primary biogenic par-

ticles from the rain forest. Emitted particles may be stored

within the canopy during stable conditions at nighttime, sim-

ilarly to CO2, and being released from the canopy when con-

ditions become more turbulent in the morning.

1 Introduction

The Amazonian forest is the largest tropical forest on Earth.

During the wet season, the atmospheric boundary layer over

the Amazon is relatively clean with low aerosol number con-

centrations (Artaxo et al., 2002; Martin et al., 2010; Zhou et

al., 2002). In the dry season, however, when biomass burning

is no longer suppressed by intense precipitation, aerosol con-

centrations are considerably higher and the aerosol popula-

tion is dominated by anthropogenic particles (Andreae et al.,

1988; Artaxo et al., 1998; Bowman et al., 2009). Elevated

particle concentrations in the dry season influence climate

directly through increased scattering of incoming solar radi-

ation which in turn may affect the photosynthetic rate and

thereby the regional carbon balance (Oliveira et al., 2007).

Additionally, biomass burning particles are efficient cloud

condensation nuclei (CCN) and therefore influence the for-

mation of clouds and precipitation (Andreae et al., 2004;

Gunthe et al., 2009; Koren et al., 2008). Moreover, ab-

sorption of solar radiation by smoke particles may lower

the relative humidity and increase temperature in the absorb-

ing layer, thereby reducing cloudiness and changing the at-

mospheric stability profile (Ackerman et al., 2000), which

in turn affects turbulent fluxes of heat, moisture and even
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aerosol particles. Because of the intense convective activ-

ity over the rain forest, often associated with the Intertrop-

ical Convergence Zone (ITCZ), natural and anthropogenic

aerosols can be uplifted to higher altitudes and be transported

far away from the tropics and in this manner also have a

global impact on climate (Andreae et al., 2001).

In order to fully represent the impact from biomass burn-

ing on regional and global climate, it is important to reduce

the uncertainties in particle number emission factors from

biomass burning (Andreae and Merlet, 2001; Lohmann et

al., 2007), but also to understand the processes controlling

removal of aerosols from the atmosphere. The most impor-

tant deposition processes are wet and dry deposition. The ef-

ficiency of dry deposition is highly dependent on particle size

(Slinn et al., 1982). Particle emission from biomass burning

is dominated by accumulation mode particles (Artaxo et al.,

1994; Reid et al., 2005), for which there is no efficient dry

deposition mechanism.

Rissler at al. (2004) investigated the surface aerosol size

distribution in Balbina, located 125 km northeast of Man-

aus, and found that the size distribution was dominated by

an Aitken and an accumulation mode both in the dry and

wet season. In the same study, particle concentrations were

elevated during an aged biomass burning period compared

to the clean background air mass by nearly a factor of 2 in

the Aitken mode size range, and 4–5 times in the accumu-

lation mode size range. Thus, a higher percentage of accu-

mulation mode particles may be expected in the dry season

compared to the wet season, since biomass burning is active

primarily in the dry season. Furthermore, reduced wet re-

moval of accumulation mode particles during transition from

wet to dry season will also result in an increasing percentage

of accumulation mode particles. This percentage increase

could have an impact on the average dry deposition veloc-

ity. By measuring vertical aerosol number fluxes, the dry

deposition sink can be quantified. Furthermore, vertical par-

ticle fluxes reveal whether the rain forest always acts as a net

particle sink, or if it under certain conditions may be a net

particle source. Natural biogenic particles are present in the

Amazon basin in both the dry and wet season. The coarse

aerosol fraction is dominated by primary biogenic aerosol

particles (Graham et al., 2003). However, the contribution

of primary aerosol emission to the fine aerosol fraction is

more uncertain. Several biogenic related elements (e.g. K,

P, S, Zn) in plants are present in the fluids circulating in the

plants and can be released from the plant during transpira-

tion (Nemeruyk, 1970). Fish (1972) suggested that haze ob-

served over forests could be due to submicrometer particles

from electrical generation of biogenic aerosol by leaves. Fur-

thermore, decaying vegetation may produce aerosol particles

(Schnell and Vali, 1973). Fungal spores are usually in the

diameters size range 1–30 µm (Jones and Harrison, 2004),

suggesting that they do not contribute significantly to the

aerosol number population. However, the number of fun-

gal spores existing on Earth is assumed to be in the range

of 1–1.5 million (Elbert et al., 2007), but only about 40 000

are well-characterized (Rossman, 1994), why it cannot be

excluded that fungal spores also makes a significant contri-

bution to the fine mode. Finally, bacteria are typically 0.25–

8 µm in diameter (Thompson, 1981) and may therefore make

a contribution also in the sub-micron range.

To our knowledge, Ahlm et al. (2009) contains the

first peer-review published results ever on eddy covariance

aerosol particle fluxes over the Amazon rain forest. That

study was based on wet season measurements in the Cuieiras

Ecological Reserve close to Manaus in the Northern part of

the Amazon rain forest. The study showed that net particle

fluxes pointed downward even in the absolute cleanest con-

ditions. This was an indication that the contribution from

primary aerosol emission may be low in the wet season.

In this study, focus is on the dry season aerosol num-

ber fluxes, with larger impact from anthropogenic sources,

and these fluxes are compared with particle fluxes measured

in the wet season. The goal is to quantify the dry deposi-

tion sink and also to investigate whether the particle depo-

sition velocities change during transition from the wet sea-

son into the dry season. Furthermore, it is tested whether

the rain forest is a net sink of particles also in the dry

season, or if particle emission from the surface under cer-

tain circumstances may dominate over the dry deposition

sink. This Brazilian-Swedish project AMAFLUX (Amazo-

nian Biosphere-Atmosphere Aerosol Fluxes in view of their

potential control of cloud properties and climate) was car-

ried out as a part of the larger international project LBA (The

Large Scale Biosphere Atmosphere Experiment in Amazo-

nia) and the measurement were performed in 2008.

2 Method

2.1 Site description

The measurements were carried out at the top of the

53 m high tower K34 in the Reserva Biológica do Cuieiras

(2◦35.37′ S, 60◦06.92′ W), approximately 60 km NNW of

Manaus, Brazil. The tower is a research facility operated by

INPA (The Brazilian National Institute for Research in Ama-

zonia). The canopy height in the Cuieiras Reserve is between

30 and 35 m (Kruijt et al., 2000). Figure 1 shows the location

of the measurement site. A more detailed description of this

site can be found in Ahlm et al. (2009).

2.2 Eddy covariance measurements

The eddy covariance method was used to measure the mean

vertical turbulent aerosol number flux N ′w′, where N ′ and

w′ represents fluctuations in aerosol number concentration

and vertical wind speed from the temporal means of these

parameters, and the cross bar represents a temporal mean of

the product of the two fluctuations.
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Campos et al. (2009) investigated turbulent time scales

at K34 by using a multiresolution decomposition technique.

They found that the average time scale was below 200 s at

nighttime and below 1200 s in daytime for CO2 and energy

fluxes. Hence, it is preferable to use short time scales when

rotating and de-trending fluxes measured within the noctur-

nal boundary layer to obtain as stationary conditions as possi-

ble and thereby minimizing the uncertainty of the flux. How-

ever, in daytime it is necessary to use longer time scales

to include the largest eddies within the mixed layer. Even

though the daytime turbulence time scale is on average be-

low 1200 s, eddies with considerably lower frequencies have

been observed to contribute to energy fluxes over the Ama-

zon (Finnigan et al., 2003). However, the variability of the

aerosol number concentration is much larger than the vari-

ability of temperature and water vapor (or even CO2). To de-

trend particle concentrations and calculate the particle fluxes

over very long time scales would often produce large errors

and increase the uncertainty of the particle flux.

For this study the vertical aerosol flux N ′w′ was calcu-

lated and linearly de-trended over three different time scales

to make it possible to investigate both daytime and nighttime

fluxes. The chosen time scales were 30, 10 and 3 min long.

The aerosol data was shifted in relation to the wind data to

correct for the time lag in the sampling line (calculated from

the maximum correlation). Turbulent fluxes of momentum,

energy and CO2 were calculated in a similar way, but only

over time scales of 30 min since the magnitude of these fluxes

is not the main objective of this study.

2.3 Instrumentation

2.3.1 Flux measurements

The 3-D wind components and temperature were measured

with a Gill Windmaster ultrasonic anemometer, and logged

at 20 Hz. To measure the total aerosol number concentration

(particle diameter Dp > 10 nm) we used a Condensation Par-

ticle Counter (CPC), model TSI 3010, which was logged at

1 Hz. The aerosol was sampled just beneath the sonic head

through a 4 m long 1/4-inch stainless steel sampling line. The

sampling flow through the CPC was 1.08 l min−1.

Concentrations of CO2 and H2O were measured by a Li-

7500 Open Path Analyzer. The Licor was logged both as

digital RS232 signals through an EDG-4508 gateway and as

analog signals through the Gill windmaster auxiliary input

channels, in both cases at 20 Hz.

2.3.2 Aerosol number size distribution measurements

Aerosol number size distributions were measured with a

SMPS (Scanning Mobility Particle Sizer) system. The SMPS

system included a DMA (Differential Mobility Analyzer)

of model TSI 3081, an electrostatic classifier of model TSI

3080, and a CPC of model TSI 3010. Aerosol number con-

 

Fig. 1. Overview map of the measurement site in the Reserva

Biológica do Cuieiras. The map over northern South America to

the left is taken from Google Earth.

centrations were measured in 95 size bins in the particle di-

ameter interval 10 to 300 nm. The sampling time was 5 min

and the flow rate was 1 lpm.

2.3.3 Additional data used during data analysis

Mass concentration of equivalent black carbon (BCe) was

provided by São Paulo University using a Multi-Angle Ab-

sorption Photometer (MAAP). This measurement derives

the concentration of BCe (Andreae and Gelencsér, 2006)

from the determination of light absorption at a wavelength

of 670 nm using an empirical mass absorption efficiency of

6.5 m2 g−1. BCe was measured at a container close to the

house at the center of the research station, approximately

2 km north of K34.

Additional meteorological parameters (temperature, rela-

tive humidity, rain amount and photosynthetic active radia-

tion) were measured at the K34 tower and provided by INPA.

These were logged on a Campbell CR-10 (Campbell Scien-

tific UK) data logger with a sampling interval of 30 s and

stored as either 10 or 30 min averages.

2.4 Flux corrections and random uncertainty

The eddy covariance method requires stationary condi-

tions. In this study, the instationarity test by Foken and

Wichura (1996) was applied to the particle fluxes measured

over 30 min, in order to filter out fluxes measured in non-

stationary conditions. The averaging period 30 min was
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divided into sub-periods of 5 min. If the difference between

the flux calculated over 30 min and the mean of the covari-

ances calculated over the 5 min intervals was larger than 60%

(Järvi et al., 2009), the flux was rejected. A fraction of 64%

of the particle fluxes passed the instationarity test.

Particle fluxes measured with the eddy covariance method

are underestimated due to the limited time response of the

CPC and attenuation of turbulent fluctuations in the sampling

line. The frequency first order response time constant τc of

the TSI 3010 has been estimated to 0.8 s (Doebelin, 1990).

A total τc for both CPC and sampling line was estimated to

1.3 s by using transfer equations for damping of particle fluc-

tuations in laminar flow (Lenschow and Raupach, 1991) and

in a sensor (Horst et al., 1997). The aerosol fluxes in this

study have been corrected for these fluctuation attenuations

according to Horst at al. (1997). The correction was on av-

erage 16% of the measured net aerosol flux in the dry season

and 15% in the wet season.

In this study, the Webb correction has been applied to the

CO2 and the latent heat flux. The Webb correction at noon

(when energy fluxes are at maximum) reduced the net down-

ward CO2 flux with about 45% in the dry season and 25% in

the wet season. The corresponding increase in latent heat flux

was 13% and 9% in the dry and wet season, respectively. The

Webb correction has not been applied to the particle fluxes.

The motivation for this can be found in Ahlm et al. (2009).

The random uncertainty in flux δF can be expressed as

(Wyngaard, 1973):

δF =

√

2τ

T

[

(w′N ′)2 −w′N ′
2
]

(1)

where T is the averaging period, and τ is the integral

time scale, in this study estimated according to Rannik et

al. (2009).

3 Results and discussion

The flux measurements included in this study were per-

formed between 12 March and 18 May (wet season) and be-

tween 15 July and 12 August 2008 (dry season). Concerning

the wet season CPC measurements, 37% of the data had to

be removed because of technical problems, mainly linked to

water uptake in the CPC butanol reservoir. The correspond-

ing loss of data from the dry season was only 8%.

Of the CO2 and H2O measurements, 15% of the data were

rejected from the wet season data and 19% from the dry sea-

son data, primarily due to problems with electricity or com-

puter software and spikes in raw data during rainfall.

Meteorological and BCe measurements ran more or less

continuously during the two flux measurement periods. The

intention was to measure aerosol number size distributions in

parallel with the aerosol flux measurements. However, due to

technical failure aerosol number size distributions have only

been measured in a separate period between 13 June and 7

July, just before the period of the dry season flux measure-

ments.

3.1 Average conditions during the campaign

Tables 1–2 show the average meteorological conditions, con-

centrations and fluxes during the two measurement periods,

the dry and wet season, respectively. The flux parameters

are defined as positive when the flux is upward and negative

when the flux is downward.

The difference in BCe concentration between the dry and

wet season (Tables 1–2) in this study shows the impact of

biomass burning emissions in the dry season at the Cuieiras

Reserve. The mean dry season BCe concentration was

259±115 ng m−3 and the corresponding concentration in the

wet season was 80±45 ng m−3 (mean ± standard deviation).

The other parameters will be discussed closer in next section.

3.2 Diurnal cycles of meteorological parameters

This section deals with the average diurnal cycles of meteo-

rological parameters. These are important when later inter-

preting the vertical aerosol number fluxes. The diurnal cycles

(Fig. 2a–j) are shown as medians of half-hour mean values.

The reason for choosing median cycles instead of mean cy-

cles is to reduce the weight of extreme values and instead

show what is typically happening. The only exception is the

diurnal cycle of rainfall (Fig. 2j), where it makes more sense

to use mean cycle, since the median rain amount is zero for

a large fraction of the half hour intervals forming the diurnal

cycle.

The sunrise was around 06:00 LT (local time) and the sun-

set at 18:00 LT, which can be seen in the curve showing

Photosynthetic Active Radiation (PAR) (Fig. 2a). The PAR

is higher in the dry season than in the wet season, due to

less cloudiness in the dry season. The curves for sensible

(Fig. 2b) and latent (Fig. 2c) heat fluxes are rather well cor-

related with the PAR, and these fluxes are larger in the dry

season because the incoming solar radiation (as well as the

PAR) then is higher. However, the sensible and latent heat

fluxes start to increase first ∼1.5 h after sunrise. This delay

might be an effect of negative radiation balance also a while

after sunrise.

Also the temperature (Fig. 2d) is higher in the dry season

with the largest difference between the two seasons prevail-

ing during the afternoon.

As discussed by Ahlm et al. (2009), the characteristics of

the tropical boundary layer and the mechanisms governing

its evolution can be revealed by investigating the diurnal cy-

cle of water vapor concentration (Fig. 2e). In the morning,

before the nocturnal inversion has been dissipated, the mixed

layer grows very slowly and the water vapor from evapotran-

spiration is trapped in a thin mixed layer connected to the

surface. However, after the nocturnal inversion has been dis-

sipated and resistance to further growth is much lower (Stull
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Table 1. Average conditions for critical parameters of measurements in the dry season. The ± range after the mean value is the standard

deviation and the numbers after the median are 10 and 90 percentiles. The average diurnal maximum and minimum have been calculated by

taking the median value of all diurnal maxima and minima throughout the campaign. The numbers within the brackets in the max and min

columns are 10 and 90 percentiles.

Mean Median Diurnal max Diurnal min

Temperature (◦C) 26.4±3.0 26.0 (22.3, 28.9) 30.8 (28.9, 32.2) 22.9 (21.9, 23.9)

Relative humidity (%) 74.6±14.6 76.2 (52.8, 92.8) 93.4 (82.9, 96.1) 52.0 (44.8, 67.5)

Rain amount per day (mm) 2.8±5.9 0.2 (0, 10.1) – –

Photosynthetic active radiation (Wm−2) 130.6±179.7 3.4 (0, 433.9) 540 (434, 603) 0

Sensible heat flux (Wm−2) 19.9 ± 44.4 −0.2 (−9.2, 91.5) 146.9 (80.3, 196.8) −24.6 (−60.8, −10.0)

Water vapor molar density (mmol m−3) 1242±125 1268 (1098, 1363) 1359 (1306, 1433) 1046 (628, 1190)

Latent heat flux (Wm−2) 90.7±144.1 11.9 (−2.2, 312.9) 429 (209, 527) −9.6 (−106.4, −2.0)

Wind speed (ms−1) 2.2±0.9 2.1 (1.1, 3.3) 4.0 (3.2, 5.3) 0.7 (0.3, 1.4)

Friction Velocity (ms−1) 0.19 ± 0.17 0.14 (0.03, 0.46) 0.59 (0.37, 0.72) 0.011 (0.006, 0.026)

Inverted Obukhov length 1/L (m−1) 3.5 ± 112.2 0.01 (−0.07, 0.24) 1.87 (0.47, 29.15) −0.76 (−22.31, −0.06)

CO2 molar density (ppm) 368 ± 18 362 (353, 388) 401 (383, 467) 352 (345, 356)

CO2 flux (µmol m−2 s−1) −1.46±6.32 0.09 (−11.05, 5.14) 11.1 (7.1, 19.5) −15.0 (−19.0, −7.3)

Particle number concentration (cm−3) 1513±721 1352 (869, 2292) 2388 (1247, 4172) 982 (513, 1363)

Particle number flux (106 m−2 s−1) −0.45±3.89 −0.20 (−2.66, 1.72) 4.11 (0.91, 16.6) −5.14 (−24.79, −1.71)

BCe concentration (ng m−3) 259±115 245 (141, 375) 453 (250, 868) 146 (53, 202)

Table 2. Average conditions for critical parameters of measurements in the wet season. The ± range after the mean value is the standard

deviation and the numbers after the median are 10 and 90 percentiles. The average diurnal maximum and minimum have been calculated by

taking the median value of all diurnal maxima and minima throughout the campaign. The numbers within the brackets in the max and min

columns are 10 and 90 percentiles.

Mean Median Diurnal max Diurnal min

Temperature (◦C) 24.6±2.3 24.0 (22.2, 28.2) 28.9 (26.3, 31.0) 22.2 (21.6, 23.1)

Relative humidity (%) 86.4±10.6 90.7 (69.2, 95.9) 96.0 (94.7, 96.5) 66.1 (54.6, 78.6)

Rain amount per day (mm) 10.8±12.8 5.6 (0.2, 29.1) – –

Photosynthetic active radiation (Wm−2) 84.6±129.7 1.5 (0, 303.6) 455 (275, 537) 0

Sensible heat flux (Wm−2) 14.4±47.2 −0.7 (−11.7, 77.3) 142.7 (36.0, 230.6) −26.7 (−102.6, −10.2)

Water vapor molar density (mmol m−3) 1120±170 1140 (970, 1250) 1246 (1160, 1606) 834 (275, 1150)

Latent heat flux (Wm−2) 71.4±133.1 11.5 (−2.2, 254.8) 368 (166, 489) −23.1 (−116.2, −0.35)

Wind speed (ms−1) 2.0±0.9 1.9 (0.9, 3.0) 3.6 (2.7, 4.8) 0.4 (0.2, 1.2)

Friction Velocity (ms−1) 0.21±0.16 0.18 (0.04, 0.42) 0.52 (0.35, 0.77) 0.018 (0.008, 0.063)

Inverted Obukhov length 1/L (m−1) 0.03±0.94 0.01 (−0.05, 0.11) 0.76 (0.05, 6.05) −0.31 (−6.2, −0.01)

CO2 molar density (ppm) 392±41 384 (366, 422) 430 (398, 540) 364 (349, 372)

CO2 flux (µmol m−2 s−1) −1.38±7.37 0.47 (−13.15, 6.06) 11.3 (4.2, 17.3) −17.6 (−19.7, −11.2)

Particle number concentration (cm−3) 682±780 466 (243, 1260) 853 (445, 5338) 263 (133, 458)

Particle number flux (106 m−2 s−1) −0.32±3.50 −0.10 (−1.44, 1.03) 1.70 (0.40, 14.3) −2.41 (−20.2, −0.51)

BCe concentration (ng m−3) 80±45 69 (36, 140) 131 (77, 263) 33.5 (21.4, 64.1)

et al., 1988), the mixed layer grows fast and entrainment

of drier air from above then dominates over evapotranspi-

ration. This results in decreasing water vapor concentration

despite enhancing evapotranspiration with increasing PAR.

In Fig. 2e, it is obvious that the switch from increasing to de-

creasing water vapor concentration occurs around 09:00 LT

both in the dry and in the wet season. Hence, it seems that

the burning off of the nocturnal inversion occurs at approx-

imately the same time in the two seasons. The water vapor

concentration is generally higher in the dry season than in

the wet season even though the relative humidity (Fig. 2f) is

higher in the wet season (due to lower temperature in the wet

season).
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Fig. 2. Meteorological parameters measured at the top of the K34 tower. Solid red lines represent dry season and dashed blue lines

represent wet season for (a) photosynthetic active radiation (PAR), (b) sensible heat flux, (c) latent heat flux, (d) temperature, (e) water vapor

concentration (f) relative humidity, (g) stability (L−1), (h) horizontal wind speed, (i) friction velocity, and (j) rain amounts.

Figure 2g reveals the differences in stability, L−1, between

the two seasons, where L is the Obukhov length. In daytime,

an unstable convective boundary layer is present both in the

dry and wet season with similar values on L−1. However,

the difference in stability between the two seasons is clearly

visible at nighttime. A typical nocturnal stable boundary

layer forms one or two hours before sunset in the dry sea-

son (also seen as negative sensible heat flux in Fig. 2b) and

at nighttime the stratification is highly stable. The nocturnal

boundary layer reaches on average a final depth of 80–180 m

(Garstang et al., 1990). However, this stable nocturnal layer

is less pronounced in the wet season with sometimes unsta-

ble conditions also at nighttime, seen in higher nighttime wet

season friction velocities (Fig. 2i) and also higher nighttime

wet season rain amounts (Fig. 2j). The daytime friction ve-

locity is often higher in the dry season than in the wet season,

probably to a large extent due to higher daytime wind speeds

(Fig. 2h). The friction velocity starts to increase rapidly first

one hour after sunrise. The top of the canopy needs to be

warmed up before the air temperature above the canopy starts

to increase. When the unstable layer reaches the top of K34,

about 20 m above the canopy, the friction velocity at the top

of K34 is expected to increase. However, since the noctur-

nal layer is 80–180 m it seems to last until 09:00 LT until the

whole nocturnal layer is dissipated (Fig. 2e).

3.3 Diurnal cycles of concentration and flux of CO2

In this section, diurnal cycles of CO2 concentration and flux

are analyzed. The primary reason for investigating also

fluxes of CO2 in this study, is that the diurnal cycles of the

CO2 and the particle flux show some similarities that will

be a help when interpreting the particle fluxes in detail in

Sect. 3.4.

The CO2 concentration and flux have a very distinct di-

urnal cycle (Fig. 3). In daytime there is an uptake of CO2

by the forest (downward fluxes) and the atmospheric CO2

concentration consequently decreases. During evening and

nighttime, when there is no photosynthetic active radiation

and only CO2 emission (upward fluxes), instead the CO2

Atmos. Chem. Phys., 10, 3063–3079, 2010 www.atmos-chem-phys.net/10/3063/2010/
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Fig. 3. Median diurnal cycles of CO2 vertical flux (solid red lines) and concentration (solid blue lines) in the dry season (a) and wet season

(b). Dashed lines are 25 and 75 percentiles.

concentration increases. An interesting difference between

the two seasons is the peak in upward flux, between 07:00 LT

and 08:00 LT, apparent in the dry season curve but not in the

wet season curve. In the same time interval, the dry season

concentration rapidly increases followed by a peak in con-

centration, whereas the wet season concentration curve has

a more continuous shape. Malhi et al. (1998) noticed that

on calm nights with stable stratification, most of the respired

CO2 is stored within the forest canopy and released in the

morning when conditions become more turbulent, while dur-

ing less stable nights most of the CO2 is released intermit-

tently throughout the night. They found the threshold fric-

tion velocity, separating the two cases, to be 0.1 ms−1. This

explains the patterns seen in Fig. 3. In the wet season, night-

time friction velocities (Fig. 2i) are close to 0.1 ms−1 and

the CO2 flux points steady upward throughout the night, al-

though varying in magnitude. In the dry season, however,

nighttime friction velocities are considerably lower and the

nighttime CO2 flux is therefore close to zero with a follow-

ing large emission peak at 07:00–08:00 LT when conditions

become more turbulent.

It has long been known that respiration is often underesti-

mated by nighttime eddy covariance measurements over for-

est canopies and that this underestimation is most significant

in calm nights with low wind speeds (Goulden et al., 1996),

a very frequent situation. At nighttime, the canopy layer be-

comes decoupled from the atmosphere above. The airflow

above the canopy is then synoptically driven, while the air-

flow within the canopy is dominated by orographic effects, in

this case leading to mainly local katabatic flows (Aubinet et

al., 2003; Marcolla el al., 2005). There is growing evidence

that nighttime advection caused by these drainage flows is

the root cause of the failure to capture the respiration flux in

stable conditions at nighttime (Finnigan et al., 2008).

Araújo et al. (2008) investigated the nocturnal CO2 con-

centration field in the heterogeneous terrain of the Cuieiras

Reserve of valleys and slopes and found that, particularly

during stable nights, large amounts of CO2 were transported

downslope by drainage flows from the K34 plateau and be-

ing accumulated in valleys. This is useful information when

later discussing the diurnal cycle of the vertical particle flux

in Sect. 3.4.4.

3.4 Aerosol number fluxes and concentrations

3.4.1 Aerosol number size distribution

The aerosol number size distributions were measured just be-

fore the dry season flux measurement period and are there-

fore representative of the dry season size distribution. Fig-

ure 4a shows the median aerosol number size distributions

during the period. The vertical bars represent 25 and 75 per-

centiles. Numbers of nucleation mode particles are low and

the size distribution is dominated by an accumulation mode,

centered at a diameter of ∼150 nm. The Aitken mode is most

evident in the 25 percentile curve, but can be observed also

in the median curve, and is centered at a diameter of ∼70 nm.

The so called Hoppel-minimum (Hoppel et al., 1994), sepa-

rating the two modes, is located at a diameter of ∼100 nm.

Particles larger than ∼100 nm are easily activated in clouds

over the Amazon basin and can thereby be cloud-processed

and grow efficiently (Rissler et al., 2004), which explains the

minimum between the two modes. The reason that the Hop-

pel minimum is most apparent in the 25 percentile curve in

Fig. 4 may be explained by that lower particle concentra-

tions are associated with days with more wet deposition and

thereby more clouds with potentially more cloud-processing

of aerosol particles.

Zhou et al. (2002) investigated the wet season aerosol

number size distribution at Balbina, located 125 km north-

east of Manaus, relatively close to the site of this study. They

described the wet season size distribution by an accumulation

mode, an Aitken mode and a nucleation mode with geomet-

rical mean diameters of 151, 68 and 24 nm, respectively. The

geometrical mean diameters of the Aitken and the accumu-

lation modes in that study are very close to the diameters of

the observed modes in Fig. 4a.
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Fig. 4. (a) Median aerosol number size distribution (solid line) with vertical bars representing 25 and 75 percentiles during the period 13

June to 7 July measured with the SMPS system. (b) The median aerosol size distribution (blue stars) described with three modes (red, green

and blue lines) resulting from a log-normal fitting. The black solid line represents the sum of the three modes.

In Fig. 4b, it is shown that the median size distribution of

this study can be described by three modes, an accumula-

tion mode, an Aitken mode and a nucleation mode, similarly

to the size distribution in Zhou et al. (2002). The number

concentrations, geometrical mean diameters, and geometri-

cal standard deviation of the three modes in both this study,

representing the dry season, and in the study by Zhou et

al. (2002), representing the wet season, are provided in Ta-

ble 3. Apart from the obvious difference between the two

seasons that the number concentrations are much higher in

the dry season, Table 3 also reveals that the percentage of

accumulation mode particles are higher in the dry season

than in the wet season. As was discussed in the introduction,

this is logical since biomass burning is known to be a large

source of accumulation mode particles (Reid et al., 2005),

and biomass burning is active primarily in the dry season.

Furthermore, wet deposition is an efficient sink of accumu-

lation mode particles, and decreasing precipitation in the dry

season therefore increases the lifetime of accumulation mode

particles.

The percentage of nucleation mode particles is lower in

the dry season than in the wet season, despite the fact that

the nucleation mode has been defined as wider in the dry

season, according to the geometrical mean diameters in Ta-

ble 3. The lower percentage of nucleation mode particles and

higher percentage of accumulation mode particles in the dry

season should have a damping effect on the average particle

deposition velocity in the dry season compared to the wet

season.

3.4.2 Concentrations of particles in the dry and wet

season

The mean aerosol number concentration and standard devia-

tion in the dry and wet season periods were 1513±721 cm−3

and 682±780 cm−3, respectively (Tables 1–2). The cor-

responding median values were 1352 cm−3 and 466 cm−3.

Hence, the mean particle concentration was roughly two

Table 3. Statistics of the aerosol number size distributions in the

wet season in March and April at Balbina (Zhou et al., 2002) and in

the dry season in June and July in the Cuieiras Reserve (this study).

Number Geometrical Geometrical

Concentration Mean Standard

Mode (cm−3) Diameter (nm) Deviation (nm)

Wet Season (Zhou et al., 2002)

Accumulation 146 151 1.40

Aitken 200 68 1.40

Nucleation 48 24 1.31

Dry Season (this study)

Accumulation 421 151 1.41

Aitken 322 71 1.49

Nucleation 42 25 1.36

times higher in the dry season than in the wet season while

the median particle concentration was approximately three

times higher in the dry season. This means that the dry sea-

son particle concentration was typically three times higher

than the wet season concentration, but some occasionally

high peaks in wet season particle concentration brings the

mean concentrations in the two seasons closer to each other

compared to the median concentrations. This can also be

seen in the higher standard deviation in the wet season

aerosol number concentration.

The difference in particle concentration between the two

seasons is much less pronounced in this study than in other

studies in Rondônia in the southwestern part of the Amazon

rain forest (Rissler et al., 2006). The reason for this is that

the Cueiras Reserve is located in an area of pristine rain forest

where the direct influence of biomass burning is much lower

than in Rondônia or other locations in the southern part of

the Amazon rain forest. Even in the dry season, impact of

biomass burning emissions is not very high at the Cuieiras

Reserve, but can be observed most of the time.
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Fig. 5. Dependence on wind direction for the aerosol number concentration in the dry (a) and wet (b) season and for the aerosol number flux

in the dry (c) and wet season (d).

3.4.3 Dependence on wind direction

Figure 5 shows the dependence on wind direction for the

aerosol number concentration in the dry (Fig. 5a) and wet

(Fig. 5b) season and for the aerosol number flux in the dry

(Fig. 5c) and wet (Fig. 5d) season. The dry season aerosol

number concentration peaks when the wind direction is be-

tween 170–200 degrees, which represents advection of air

with large influence from biomass burning in the southern

part of the Amazon rain forest. The wet season aerosol con-

centration peaks when winds are southeasterly which repre-

sents advection from the city Manaus. Hence, it seems that

Manaus is the dominant source of air pollution in the wet

season but not in the dry season.

In Fig. 5c–d it is obvious that downward particle fluxes

dominate both in the dry and wet season and deposition

fluxes are considerably larger in the dry season when parti-

cle concentrations are much higher. The net upward particle

flux in the wet season, associated with northwesterly winds

(Fig. 5d), is likely a result of local pollution from the diesel

generator (Ahlm et al., 2009) located within the research sta-

tion (Fig. 1).

3.4.4 Diurnal cycles of the vertical particle flux

In this section, median diurnal cycles of the particle flux in

the two seasons are investigated. Main focus is on the dry

season particle flux and it is compared with the wet season

particle flux. In order to exclude any possible impact from

the diesel generator and the house on the particle fluxes at

K34, time periods with mean wind directions between 310

and 20 degrees have been excluded in the calculations of

these diurnal cycles. In addition, time periods of rainfall have

been ignored to simplify interpretation of the fluxes.

Figure 6 shows median diurnal cycles of the vertical par-

ticle flux in the dry and wet season. These fluxes have been

calculated and de-trended over periods of 30 min. The parti-

cle flux is in general small at nighttime but larger in daytime

when the turbulence intensity is much higher (Fig. 2i). In

daytime, the median particle flux points downward both in

the dry and wet season, indicating net deposition. The day-

time deposition flux is significantly larger in the dry season

than in the wet season. A larger deposition flux in the dry

season is of course expected since anthropogenic impact on

the aerosol population is significantly higher in the dry sea-

son, even though also the wet season particle flux contains

some influence from anthropogenic sources.

The maximum deposition flux occurs in early afternoon

and is ∼1.2×106 particles m−2 s−1 in the dry season and

∼0.5×106 particles m−2 s−1 in the wet season (Fig. 6). An

approximate impact of these deposition fluxes on the particle

concentration for each season can be estimated by using the

median aerosol number concentration in Tables 1–2 for each

season and assuming a maximum daytime mixed layer depth

of 1100 m in the dry season and 1000 m in the wet season

(Fisch et al., 2004). Then the deposition fluxes on average

decrease the particle concentration around noon with 4.3 par-

ticles per cm3 per hour in the dry season and 1.8 particles per
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Fig. 6. Median diurnal cycles of particle flux (solid lines) in the

dry season (red) and wet season (blue). Dashed lines are 25 and 75

percentiles. Error bars represent median random uncertainty.

cm3 per hour in the wet season. The percentage loss is rather

similar in the two seasons. About 0.3% of the total particle

population is deposited per hour in early afternoon.

3.4.5 Upward particle fluxes

The wet season particle flux was analyzed in detail in Ahlm

et al. (2009). There it was concluded that the upward flux

peak between 10:00 and 11:00 LT most likely is a result of

entrainment of cleaner air from above during fast mixed layer

growth after the nocturnal inversion has been defeated. The

dry season curve, however, has a quite large upward flux peak

between 06:00 and 09:00 LT. At this time, the nocturnal in-

version has not been defeated according to the discussion of

the diurnal cycle of water vapor concentration in Sect. 3.2.

This means that the upward flux peak is not likely a result of

entrainment fluxes. The mixed layer is still thin this early

in the morning which means that the associated turbulent

time scales are short. Therefore fluxes calculated over 30 min

(Fig. 6) are associated with large uncertainties. However, the

median upward flux peak is apparent also when shorter time

scales (10 and 3 min) are used for calculating the dry sea-

son flux (Fig. 7), and therefore these early morning upward

particle fluxes seem reliable.

It is interesting to compare the median dry season diurnal

cycle of the particle flux (Fig. 6) with the dry season diurnal

cycle of CO2 flux in Fig. 3. Obviously the peaks of the morn-

ing upward flux of particles and CO2 occur at the same time.

The peak in upward CO2 flux in the morning was explained

by release of CO2 that has been stored within the canopy dur-

ing the night, when conditions become more turbulent in the

morning (Sect. 3.3). It is possible that also particles are being

emitted from the forest throughout the whole night but stay

confined within the canopy until turbulence starts increas-

Fig. 7. Median diurnal cycles of the dry season aerosol number flux

rotated and de-trended over 30 min (blue), 10 min (red) and 3 min

(green). Dashed lines represent 25 and 75 percentiles.

ing after sunrise, which mixes up these particles so an up-

ward flux appears at the altitude where the measurements are

made, at the top of the tower K34. These dry season emis-

sion fluxes are not likely a result of local pollution, since the

wind sector associated with advection from the diesel gener-

ator and the house have been excluded when calculating the

diurnal cycles. Instead these upward fluxes actually might

be a result of emission of natural biogenic particles from the

forest.

In the case of CO2, it is very clear that the morning peak

in upward flux is due to emission, because the CO2 concen-

tration peaks at the same time. However, the median diur-

nal cycle of particle concentration (Fig. 8) shows a differ-

ent behavior than the diurnal cycle of CO2 concentration.

From midnight and until morning, the particle concentration

decreases. The particle concentration actually continues its

decreasing trend from the night when the upward particle

flux appears in the morning. However, an emission source

of 0.5×106 particles m−2 s−1, like the early morning median

upward flux in Fig. 6, active during one hour would only in-

crease the particle concentration with 18 particles per cm3

in a ∼100 m thick boundary layer, which is only a little

more than a one percent increase in particle concentration.

The particle concentration in Fig. 8 shows a decreasing trend

from midnight until 10:00 LT and the relatively small gain of

particles from the emission flux in the morning is insignifi-

cant compared to the overall negative trend in concentration.

Therefore, particle emission from the forest is still a possible

explanation for the morning upward flux, even though there

is no peak in particle concentration at the same time.

The median diurnal cycle of the dry season particle flux in

Fig. 6 shows dominating upward fluxes also in the evening

and throughout the night, particularly clear between 19:00

and 22:00 LT. The fact that the upward fluxes appear at
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nighttime and in early morning does not necessarily means

that the possible emission source would be lower in day-

time than at nighttime. Particles emitted at nighttime may

be stored in the canopy layer which is decoupled from the

atmosphere in stable conditions. Artaxo and Hansson (1995)

and Guyon et al. (2003a, b), observed an increase in phos-

phorus concentration during nighttime at the lower part of

the canopy, and they attributed this enhancement to night-

time biogenic emissions of particles containing phosphorus.

Hence, the upward flux in the early morning would then be

the flux of approximately all particles that have been emit-

ted and stored under the canopy throughout the night. In

daytime, when conditions are more turbulent, an emission of

the same magnitude would generate upward fluxes that are

more continuous and these emission fluxes would drown in

the large daytime deposition flux.

Figure 9 shows an example of these early morning upward

fluxes of particles and CO2 and some related parameters.

The figure shows how the parameters vary between 05:00

and 11:00 LT on 11 August. Both the night and following

morning up until 11:00 LT were free from rainfall, and winds

were blowing from the east, meaning that there was no influ-

ence from the research station. After a night of particle and

CO2 fluxes close to zero, upward fluxes appear shortly after

07:00 LT (Fig. 9a). These upward fluxes appear at approxi-

mately the same time as the friction velocity starts to increase

(Fig. 9b). Interestingly, the heat flux (Fig. 9b) is negative at

the same time as the upward fluxes appear. This means that

the stratification is still stable and that the nocturnal inversion

has not been dissipated yet. Furthermore, the concentration

of water vapor (Fig. 9c) and CO2 (Fig. 9d) increases when

the upward fluxes appear. In fact, also the particle concen-

tration increases from 07:00 LT to slightly after 08:00 LT at

the same time as the upward particle flux increases. There-

fore the upward fluxes cannot likely be explained by dilution

from above by entrainment. In Fig. 9, it seems as the noc-

turnal inversion is dissipated around 09:00 LT. At this time,

the sensible heat flux becomes positive and the water vapor

concentration starts to decrease.

If the upward fluxes are associated with emission from the

rain forest, it is not likely that the emitted particles are sec-

ondary aerosol particles. Numbers of nucleation mode parti-

cles are low in the Amazon boundary layer. Whereas in other

continental locations 3-nm particles are regularly observed

at near-surface measurement sites, in the Amazon Basin the

smallest particles typically have sizes of 10 to 20 nm (Martin

et al., 2010). This has lead to the hypothesis that new par-

ticle formation may occur at higher altitudes, which means

that the occasionally observed 10–20 nm particles in the sur-

face layer have not likely been formed close to the surface.

Hence, a source of primary biogenic aerosol particles is a

more likely explanation for the observed upward fluxes in

the morning. To investigate this further one would have to

measure particle concentration in the canopy layer in paral-

lell with particle concentrations above the canopy, and inves-

Fig. 8. Median diurnal cycle of the dry season aerosol number con-

centration (solid line) with 25 and 75 percentiles (dashed lines).

tigate whether a higher aerosol number concentration is built

up in the canopy layer throughout the night simultaneously

with the observed higher phosphorus concentration.

3.4.6 Particle transfer velocities

There is no perfect way of estimating the particle deposition

velocity when both emission and deposition contribute to the

vertical net flux. Nor is it always possible to know whether

emission contributes to the net flux, since emission could

make a contribution even when the net flux points downward.

In this study we define the particle transfer velocity as

vt = −
F

N
(2)

where F is the particle number flux and N is the particle

number concentration. Positive values on vt represents a net

downward flux. To estimate the average deposition velocity

by calculating an average value of vt over a whole data set,

according to Eq. (2), will underestimate the deposition veloc-

ity if processes like entrainment (Nilsson et al., 2001; Ahlm

et al., 2009) or surface emission temporarily produce net up-

ward fluxes. However, a dominating part of the net upward

fluxes in this study are likely due to random errors, why these

should not be excluded.

Figure 10 shows the median diurnal cycles of vt both in

the dry and wet season for fluxes calculated and de-trended

over time scales of 30 min. vt is low at nighttime but higher

in daytime when conditions are more turbulent. The daytime

particle transfer velocities have rather similar values in the

two seasons. At nighttime, the transfer velocities have dif-

ferent signs in the two seasons as a result of net downward

fluxes at nighttime in the wet season and net upward fluxes

at nighttime in the dry season.
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Fig. 9. (a) Aerosol number flux (solid line) and CO2 flux (dashed line), (b) friction velocity (solid line) and sensible heat flux (dashed line),

(c) water vapor concentration, and (d) particle concentration (solid line) and CO2 concentration (dashed line). (a–d) show the variation of

the parameters between 05:00 and 11:00 LT on 11 August.

Fig. 10. Median diurnal cycles of vt in the dry (red) and wet (blue)

season. Dashed lines represent 25 and 75 percentiles.

In general, transfer velocities are low here compared to

several dry deposition studies over boreal forests (Ruijgrok

et al., 1997; Buzorius et al., 2000; Gaman et al., 2004).

Dominance of accumulation mode particles and low num-

bers of nucleation mode particles in the Amazon boundary

layer, both in the dry and wet season, are likely important fac-

tors for these low values on vt . Pryor et al. (2007) measured

dry deposition velocities with a relaxed eddy accumulation

(REA) system in the particle diameter range 10–100 nm in

a deciduous forest at Sorø in Denmark and in a pine forest

at Hyytiälä in Finland. They observed decreasing deposition

velocity with increasing particle geometric mean diameter in

this diameter interval. For geometric mean diameters above

50 nm, the median deposition velocity was below 2 mm s−1.

Since the aerosol number size distribution in the Amazon

boundary layer is dominated by particle diameters where the

deposition velocity (as function of particle diameter) is at its

minimum, low particle transfer velocities are logical in the

Amazon basin. Another important reason for the low trans-

fer velocities is of course the low wind speeds in the tropics

compared to the midlatitudes.

When considering the fact that wet deposition is a very

important deposition process over tropical rain forests (as a

result of the high rain amounts) and adding the low particle

transfer velocities found in this study, it can be stated that the

relative contribution of dry deposition to total deposition of

particles is much lower in the continental tropics than in the

continental midlatitudes. In this way, the continental tropics

resemble many marine environments.

3.4.7 Transfer velocity dependence on friction velocity

In both the dry and wet season, downward fluxes strongly

dominate in the afternoon (Fig. 6). At this time the mixed

layer is well developed, which means that there is not much

disturbance from entrainment. Therefore, the transfer veloc-

ities in the afternoon are likely good estimations of the depo-

sition velocity. Figure 11 shows how the particle transfer ve-

locity depends on friction velocity when only particle fluxes

measured between 12:00 and 17:00 LT are included. Obvi-

ously, the transfer velocity increases linearly with increasing

friction velocity in both seasons. The transfer velocities seem

to have very similar values in the two seasons.
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Following relations describe the linear fits shown in

Fig. 11 (in which the R2 values have been calculated for the

binned data):

vt = (2.63u∗ +0.04)×10−3(R2
= 0.84) (3)

in the dry season, and

vt = (2.78u∗ −0.04)×10−3(R2
= 0.61) (4)

in the wet season.

Most studies of dry deposition for particles have shown

that the minimum deposition velocity is located at diameters

around 0.1–0.3 µm (Zhang and Vet, 2006). For lower parti-

cle sizes, Brownian diffusion becomes more efficient and for

larger sizes interception and impaction become increasingly

important (Slinn, 1982). As been discussed in earlier sec-

tions, the percentage of accumulation mode particles within

the Amazon boundary layer increases with a following per-

centage decrease of Aitken mode particles during transition

from wet season to dry season (Table 3). A change towards

a higher percentage of particles in the accumulation mode in

the dry season will reduce the efficiency of dry deposition

since the efficiency of Brownian diffusion decreases with in-

creasing particle size. However, the very similar values in

dry and wet season values on vt (Fig. 11) indicate that the

change in size distribution between the wet and dry season

is not enough to have a significant impact on the overall par-

ticle deposition velocity. There is of course the possibility

that particle emission from the rain forest cancels part of the

deposition. An emission flux of a certain magnitude would

cancel a larger fraction of the deposition flux in the wet sea-

son than in the dry season, since the deposition flux is much

smaller in the wet season due to lower particle concentra-

tions.

Another factor that might have an influence is the seasonal

variations in leaf area index (LAI). The LAI has been ob-

served to increase during the dry season with as much as

25% from the annual mean (Myneni et al., 2007). A larger

LAI means more area for particles to deposit on. Hence, a

larger dry season LAI could increase the dry season particle

deposition velocities, thereby also counteracting the effect of

higher dry season percentage of accumulation mode parti-

cles. The difference in impact of particle rebound in dry and

wet conditions, respectively, is probably of less importance

since particle bounce off primarily affects coarse particles,

which are very low in numbers, and therefore do not have a

large influence on particle fluxes measured with CPC.

3.4.8 Aerodynamic resistance and surface transfer

velocity

The surface transfer velocity can be defined as

vts =
1

1
vt

−ra

(5)

where ra is the aerodynamic resistance.

Fig. 11. Median values of vt over constant friction velocity inter-

vals in the dry season (red circles) and wet season (blue triangles),

and linearly fitted curves to the dry season (solid red line) and wet

season (dashed blue line) data. The figure represents data collected

between 12:00 and 17:00 LT. The vertical bars represent 25 and 75

percentiles. The values of the medians and the percentiles have in

each bin been calculated over a minimum of 14 half-hour values.

In this study, we have made a rough estimate of the aero-

dynamic resistance by using relations given in Seinfeld and

Pandis et al. (1998) with assumed values on the roughness

length and the displacement height as 1.8 m and 25.8 m, re-

spectively (Harris et al., 2004). ra is high at nighttime and

low in daytime (Fig. 12a). Figure 12b shows median diur-

nal cycles of vt and vts . Obviously the difference between

vt and vts is very small. This can also be realized only by

studying Eq. (5) for a reasonable range of values of vt and

ra in this study. Equations (3–4) describing the transfer ve-

locity as functions of friction velocity were not converted to

surface transfer velocity. It also seems preferable not to con-

vert vt to vts when not necessary, since the estimations of ra

in this study are only rough estimations, however, probably

accurate enough to state that vt ≈ vts . Therefore, we suggest

that Eqs. (3–4) can be used for estimating the surface transfer

velocity in models.

4 Summary and conclusions

Aerosol number fluxes and CO2 fluxes were measured with

the eddy covariance method over the Amazon rain forest

in 2008 in both the dry and wet season. The measure-

ments were performed at the top of the 53 m high tower K34

in the Cuieiras Reserve, Manaus, Brazil. Aerosol number

fluxes measured during the dry season, when the impact from

biomass burning is higher, are compared with fluxes mea-

sured in the much cleaner conditions prevailing in the wet

season. The key results and main conclusions are:
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Fig. 12. (a) Rough estimation of the median diurnal cycle of aerodynamic resistance in the dry season (solid red line) and wet season (dashed

blue line). (b) vts (solid lines) and vt (dashed lines) in the dry (red) and wet season (blue).

– The median aerosol number concentration was

1352 cm−3 in the dry season and 466 cm−3 in the wet

season.

– Particle transfer velocities peak around noon or in early

afternoon at values of 1–2 mms−1 both in the dry and

wet season. The daytime particle transfer velocities

generally have very similar values in the two seasons.

– The particle transfer velocity vt increases linearly with

increasing friction velocity in both seasons. The rela-

tions are described by vt = (2.63u∗ + 0.04)× 10−3 in

the dry season and vt = (2.78u∗ −0.04)×10−3 in the

wet season.

– Particle transfer velocities are low in this study in com-

parison to measurements made over boreal forests. This

is likely due to dominance of accumulation mode par-

ticles and low numbers of nucleation mode particles in

the Amazon boundary layer, both in the dry and wet sea-

son. Another important reason is the low wind speeds

in the tropics compared to the midlatitudes. When con-

sidering the fact that wet deposition is a very important

deposition process over tropical rain forests and adding

the low particle transfer velocities found in this study, it

can be stated that the relative contribution of dry depo-

sition to total deposition of particles is much lower over

tropical rain forests than over boreal forests, and instead

comparable to many marine regions.

– Net particle deposition prevails in daytime both in the

dry and wet season. This deposition flux is much larger

in the dry season than in the wet season. The much

larger deposition flux in the dry season is a result of the

higher dry season aerosol number concentration.

– In the dry season, nocturnal particle fluxes behave very

similar to nocturnal CO2 fluxes. Particle fluxes are very

low in magnitude throughout the night but after sun-

rise upward particle fluxes appear. These appear be-

fore the nocturnal inversion has been defeated and are

therefore not likely a result of entrainment. Nor does

local pollution seem to be a likely explanation for these

upward fluxes, since associated wind sectors have been

excluded. Emission of natural biogenic particles from

the forest, however, is a possible explanation. The up-

ward flux appears at the same time as the CO2 emission

flux. It is possible that particles are emitted throughout

the night but stay within the canopy, which is decoupled

from the atmosphere above, until turbulence mixes them

up in the morning, similarly to what is observed for

CO2. It is also possible that they are emitted throughout

the day, but then are masked by the larger deposition

flux.

Hence, this study has shown that particle transfer veloc-

ities are very similar in the dry and wet season, which in-

dicates that the change in aerosol number size distribution

between the two seasons is not enough to result in a sig-

nificant change in average deposition velocity. It would be

interesting to make the same dry/wet season comparison in

the southern part of the Amazon rain forest where the impact

from biomass burning on the dry season aerosol population

is much larger.

Upward particle fluxes with the magnitude of

0.5×106 m−2 s−1 , like the observed morning upward

flux in this study, would only increase the particle concen-

tration with 18 particles per cm3 and hour in a 100 m thick

boundary layer. However, since nocturnal respiration is

known to be underestimated by eddy covariance measure-

ments, it is likely that also nocturnal particle emission is

underestimated.
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Saatchi, S. S., Hashimoto, H., Ichii, K., Shabanov, N.V., Tan, B.,

Ratana, P., Privette, J. L., Morisette, J. T., Vermotek, E. F., Roy,

D. P., Wolfe, R. E., Friedl, M. A., Running, S. W., Votava, P.,

El-Saleous, N., Devadiga, S., Su, Y., and Salomonson, V.: Large

seasonal swings in leaf area of Amazon rain forest, P. Natl. Acad.

Sci. USA, 104, 4820–4823, 2007.

Nemeruyk, G. E.: Migration of salts into the atmosphere during

transpiration, Soviet Plant Physiol. 17, 560–566, 1970.

Nilsson, E. D., Rannik, Ü., Buzorius, G., Kulmala, M., and

O’Dowd, C.: Effects of the continental boundary layer evolu-

tion, convection, turbulence and entrainment on aerosol forma-

tion, Tellus, 53B, 441–461, 2001.

Oliveira, P. H. F., Artaxo, P., Pires, C., Lucca, S., Procopio, A.,

Holben, B., Schafer, J., Cardoso, L. F., Wofsy, S. C., and Rocha,

H. R.: The effect of biomass burning aerosols and clouds on the

CO2 flux in Amazonia, Tellus, 59B, 338–349, 2007.

Pryor, S. C., Larsen, S. E., Sørensen, L. L., Barthelmie, R. J.,

Grönholm, T., Kulmala, M., Launiainen, S., Rannik, Ü., and
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