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SPECIAL REPORT — PRODUCTION AND INVENTORY CONTROL

A Comparison of Due-Date
Selection Rules
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J.W.M. BERTRAND

Department of Industrial Engineering
Eindhoven University of Technology
Eindhoven, The Netherlands

Abstract: In sequencing and scheduling models it is usually assumed that due dates represent exogeneous
information. In many practical settings. however, due dates can be discretionary, or at least negotiable.
Relatively few studies have incorporated discretionary due dates, and even then the rules proposed for
due-date selection have seldom been developed from normative, analytic results. In this research we

return to very basic scheduling models in search of fundamental insights and relationships that suggest
guidelines for due-date selection in more complicated situations. We exploit some fundamental r.esults
from scheduling theory involving the single-machine model in order to compare three basic strateglgs for

due-date selection.

® Due dates are usually treated as “given” information
which takes the form of input to a scheduling problem; in
actual practice, however, the due date can be a decision vari-
able within the boundary of the scheduling problem.
Relatively few studies have incorporated discretionary due
dates (see, for example, [2], [3], and [5]), and even then
the rules examined for due-date selection have not been
developed from normative, analytic results. Our main pur-
pose is to focus attention on due-date selection, which is an
important and often overlooked decision process in sched-
uling problems involving deadlines.

Consider a model in which there are n jobs to be
processed by a single machine. Job j is characterized by a
ready time (r;) and a processing time (p;), both known in
advance. In the sratic single-machine model, all jobs are
simultaneously available, so that r; = 0. In the more general
dynamic model jobs become ready (schedulable) at different
points in time. We assume that jobs can be processed in a
preempt-resume mode. That is, the processing of a job can
be interrupted and resumed at a later time with no need to
repeat any work. Thus the total amount of time the job
spends in process must equal p;, although the interval

between the job’s initiation and its completion may well be’

Paper was handled by the organizers of the Special Report on Pro-
duction and Inventory Control, Professors William L. Berry and
Vincent A. Mabert.

longer than p;. The completion time of job j, which is
determined by scheduling decisions, is denoted C;.

The due date of job j (denoted d) is determined by a
particular selection rule. We consider three selection rules
that represent sensible ways of using available information
to set norms for flow allowances. (A job’s flow allowance is
the length of time from its ready time to its due date.) These
rules aré the following:

CON: jobs are given constant flow allowances, so that
i = rj + i_ .

SLK: jobs are given flow allowances that reflect equal
waiting times, or equal slack, so thatd; =r; +p; + 8.

TWK: jobs are given flow allowances that are proportional
to the total work theyrequire, so thatd;=r; + ap; .

Each rule contains a single parameter (a, B, or ) still to be
determined. :

In this context the role of a scheduling procedure is to
construct a schedule that meets some specified performance
objective. In sequencing against due dates, the primary
objective is usually to complete all jobs on time. When due
dates are discretionary, of course, this objective can be
met by allowing the due dates to be very loose. We
believe, however, that in an environment where due dates
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can be selected, an implicit objective is to assign due dates
to be as tight as possible. Tight due dates attract more
customers than loose due dates 1 a competitive market and
imply better customer service. Tighter due dates also tend

to produce lower in-process inventory levels, assuming that '

they induce relatively more shortest-first sequencing. Tight
due dates are therefore desirable in scheduling. To formalize
these considerations, we define the scheduling criterion to
be one of minimizing the average due date subject to the
feasibility requirement that all jobs must be completed on
time. Specifically, the quality of a given set of assigned due
dates is measured by the average value

n
d= Z di/n
j=1

in a schedule where ¢ <d; .

In principle. an optimal solution to this problem can be
found. For any schedule, the tightest possible set of feasible
due dates is given by d; = ;. Therefore d can be minimized
by asequencing procedure that minimizes the mean comple-
tion ‘time. For instance, in the case of a finite set of
simultaneously available jobs, the optimal procedure is
shorteést processing time (SPT) sequencing. In this case an
optimal set of due dates could be calculated by first con-
structing the SPT sequence and then setting d; = C; for each
job'in the sequence. Nevertheless, this solution implies that
‘the due date of each job is dependent on specific informa-
tion about every job. In more realistic, complex probiems it
is not practical to require such an extensive information
base for selecting due dates. A more practical approach is to
restrict attention to such schemes as TWK, SLK, and CON,

———————where-theselection-of a-due-date-depends-only-on-informa-

tion about the job itself (r; and p;) and on a tightness
parameter (o, B, 0r 7).0ur purpose. then, is to study these
three rules.in. order to determine therr relative etfectiveness
at minimizing d. In addition, the theoretically optimal value
of d.can be used as a benchmark in order to assess the rules’
absolute effectiveness.

Analysis of the Static Model

In the static version of the problem all jobs are simul-
taneously available at time zero. In this case the maximum
lateness.is minimized by sequencing the jobs according to
the Earliest Due-Date (EDD) priority rule. The EDD
sequence will yield a schedule with no late jobs, if such a
schedule exists. Therefore, in determining the parameters
for the due date rules, it is sufficient to assume that the EDD

sequence applies.

Under the CON due-date rule, ¢; = . In other words, all ‘

jobs have the same due date and every sequence is an EDD

sequence.- For all jobs to be completed on time, the due

dates must satisfy

d; 2 C;  for all jobs j,

2
W
~

)

<
il
=z
-
3

Thus the requirement that the last job be on time dictates
the smallest feasible value of v, and it is clear from the
conditions in (1) that the choice of a job sequence does not
affect . The average due date generated by the CON rule is

easily seen to be
n

7061\127:2 p; . @
B }=1
Under the SLK due-date rule, d; = p; + B. Jobs with
different processing times will have different due dates, and
the EDD sequence is equivalent to the SPT sequence. As-
sume that the jobs are indexed according to SPT. For all
jobs to be completed on time, the due dates must satisfy

d; = (; foralljobsj,
pitB8= G,

B = Max (G - py, ®

i
i1

p=Mx (T pi)
I i=1 ’
n-1

f="2p
i=1

Thus the requirement that the last job be on time dictates
‘the §mallest feasible value of §8, which is equal to.the time

" needed to process all jobs except the longest. It is also clear

from the conditions in (3) that.no sequence can produce a
smaller value of § than the SPT sequence. The average due
date generated by the SLK rule is given by
. n-1
Js[,](=i;+ﬁ=l_7+zpj- Y

i=1

Under the TWK due-date rule, d; = ap;. Again, the EDD
sequence is equivalent to the SPT sequence, and we assume
the jobs are indexed in that order. For all jobs to be
completed on time, the due dates must satisfy '

d; = C; foralljobsj,

ap; = G

i,

a

« = Mix(3 b o).

4 i=1

Max (G/p) ©)
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We know that 1 <a < #. but the maximum ratio satisfying
(5) can occur at any position in the sequence, depending on
the specific problem data. The average due date generated
by the TWK rule is given by

c??WK = ap =ﬁmax(i p,»/p,; ) (6)

J i=1

The following example illustrates the behavior of the due-
date rules:

Job -/ 1 2 3

i 1 2 16

First, consider the two-job problem consisting of the first
two jobs. From the formulas in (1) - (6) we obtain

g=1 a = 15

w .

y =
doon=3 dg =25 dpyg=225

Thus the TWK rule fares best and the CON rule worst. Next

consider the threejob problem formed when job 3 is added

to the job set. This time the formulas yield

" \dco&"‘ 19 dgix = 9.3 4 =95
‘Here, the SLK rule is best and the CON rule worst. Evidently,
it is possible that either TWK or SLK produces the best set
of due dates in a given static problem.

Some additional insight can be gained by analyzing special
cases. For this purpose we define the tightness ratio of rule
R as follows:

T(R)=dg/dopr »

where dopr is the average completion time under the opti-
mal (SPT) schedule. Below we summarize the behavior of
T(R) for certain very special static problems. (See Appendix
1 for detailed derivations.)

o lndisﬁnguishable jobs (p; = p forj=1,2,...,n). Intui-

tively we should expect that the three rules exhibit

comparable tightness in this case because the ability of
TWK and SLK to discriminate among the jobs according
to processing time ‘is of no help. In fact, it can be shown.
that in this case

_ T(TWK) = T(SLK) ='T(CON) = 2n/(n + 1) .

In ‘particular, the rules have identical tightness ratios.

Furthermore, as i becomes large the ratios approach 2.
e Dominantjob (p; =1 forj=1,2,..., n-1 and p,=
p>2,where n>>2). This case is only slightly different than
the previous case, but there is a perceptible difference in
the three tightness ratios. In particular asp becomes large,

the following limiting ratios hold:

T(TWK) =n-1 T(SLK)=1 T(CON)=#.
Therefore, the tightness ratios of TWK and CON can be
made arbitrarily large if sufficiently large values of n and

p are chosen.

e Distinctjobs (p; =j forj=1, 2,....n). This case lies.
at the opposite end of the spectrum, in a certaift sense.
from the first case. When we examine the limiting beha-
vior of the tightness ratios as # becomes large. we find

T(TWK) =1.5 7(SLKY=3  T(CON)=3.

Therefore the ratios lie between 1 and 3, but'in this case

TWK is systematically better than the other two rules.

The three special cases and the numerical example given
above suggest strongly that the CON rule is the least desir-
able of the three rules and that the choice between TWK
and SLK depends on specific conditions in the job set to be
scheduled. We can indeed state this relationship formally
(see Appendix 2 for proofs).

PROPERTY 1. dg1x < dgon (SLK dominates CON)

PROPERTY 2. dpygy< dgoy  (TWK dominates CON)
Thus in the static problem the CON rule is dominated by
the TWK and SLK rules in the sense that they allow for
tighter average due dates in a feasible schedule. Meanwhile,
no dominance exists in general between TWK and SLK. In
the next section the performance of the three rules is
studied in a number of test problems with randomly gener-
ated processing times.

s

Experiments with the Static Model

In order to get an indication of how the three rules perform
for a variety of job sets, several test problems were generated.
In the case of the static model, a problem instance consists
of a specification of n processing times. In each test problem
the processing times were sampled as integers from a particu-
lar probability distribution.

In the first set of test problems, the processing times
were drawn from an exponential distribution with mean
100. Problems of size #=5, 10, 20, 40, and 80 were created,
and for each problem size there were 20 replications. For
rule R the average due date (dg) was calculated in each test
problem. Then the mean of these values was computed for
the sample of 20 problems, and the frequency with which
TWK or SLK yielded the best sct of due dates was also
recorded. A summary of these results is given in Table 1,
where the mean flow allowance is expressed as a multiple of
the mean processing time.
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Table 2: Results for static problems with truncated
Table 1: Results for static problems with exponential samples. normal samples (mean = 100 and n = 5),

Problem  Mean Flow Allowance Frequency Best Standard Mean Flow Aliowance Frequency Best
Size TWK SLK CON OPT TWK SLK CON Deviation TWK SLK CON OPT TWK SLK CON
n='6 3.09 423 523 226 20 0O 0 c0=0 6.00 5.00 5.00 3.00 20 20 20
n=10 422 = 797 995 3.16 20 O o] c=100 298 443 549 233 20 ] 0
n=20  7.32 17.02 1951 5.60 20 O 0 o =200 300 4.62 595 229 20 0 o
#=40 14.76 37.74 -41.04 11.31 20 0 0 o =400 424 554 825 279 12 8 G
n=80 26.27 76.57 B80.69 20.60 20 0 o] o =800 637 870 13.02 448 13 7 0

The data in Table 1 indicate that TWK is by far the most

effective scheme for setting due dates among the three rules
compared on the exponential samples. Similar results were
cncountered -when processing times were drawn from uni-
form and normal distributions. With the exception of a
small number of test problems in which n < 10, there were
no problem instances encountered where SLK produced the
lowest average due date. Moreover, the tightness ratio for
TWK appeared to be quite insensitive to the problem size.
while the ratios for SLK and CON tended to increase with
larger problem sizes.

Nevertheless, as the analytic results for special cases will
suggest, there are problem structures in which TWK per-
forms less effectively. Another series of test problems was

“created in. which processing times were sampled from a

- normal distribution with a relatively large variance; when

“ordinary sampling produced a processing time less than or
‘equal to zero; the number was reset to 1. - Thus the actual

“problém data represented samples from a truncated normal
distribution: The relative proportion of jobs with processing
time ¢qual to one increases with the standard deviation used
in the primary, sampling routine. As this standard deviation
is increased, the problem data begin to resemble the domi-
nant job case considered earlier, at least in the sense that
several of the jobs have the minimum processing time. The
dominant job case was shown to be one in which TWK
performs poorly compared to SLK; therefore, it might be
expected that TWK would show less dominant . performance
in this second set of test problems than in the first. Table 2
shows a summary of the results for this set, with a problem
size of n=5, where the primary sampling process involved a
normal distribution with a mean equal to 100 and standard
deviation as shown. Again, the mean flow allowances are
shown as multiples of the mean processing time (which in
this case is always larger than 100 due to truncation).

The first entry in Table 2, where 0=0, corresponds to the
benchmark case of indistinguishable jobs, which was ana-
lyzed previously. When ¢=100, truncation occurs for about
16% of the processing time samples, but TWK still domi-
nated SLK and CON. As ¢ was increased further, the mean
flow allowances increased under all of the rules, Under TWK
there was considerably more variation in the tightness ratio
than under SLK. This behavior accounts for the fact that
SLK was frequently the better rule even though its mean
flow allowance remained larger. Nevertheless, at 0 =800
(where truncation occurs about 45% of the time), the TWK

rule still yielded a better mean flow allowance than SLK
and provided the tightest due dates in nearly two-thirds of
the test problems.

From the results in Tables I and 2 we conclude that
TWK is empirically dominant, if not theoretically dominant,
in randomly generated static problems. Compared to SLK
and CON, TWK generated average due dates that are rela-
tively less sensitive to problem size, which suggests that TWK
might adapt more effectively to situations where the work-
load varies. In addition, on the spectrum between the case
of all jobs with the same processing time and the case of
many jobs with the same (minimum) processing time, TWK
apparently retains its dominant performance except at 'the
very extremes of the spectrum. This feature suggests that
the TWK rule might exhibit a desirable kind of insensitivity.
when implemented in more complex settings.

Analysis of the Dynamic Model

In the dynamic version of the problem the jobs can have
different ready times,but we assume that the jobs can be
scheduled in a preempt-resume mode. In this case the maxi-
mum lateness is minimized by a preemptive version of the
EDD priority tule: the job being processed should always
be the job with the minimum due date among the ready
jobs. This means that preemption will occur whenever an
arriving job is assigned a due date earlier than that of the
job in process.

Under the CON due date rule, d; =7; + 7, and all jobs
have  the same flow allowance. As a consequence, the
earliest due-date order is identical to the earliest arrival
order, and preemption is never necessary. For all jobs to be
completed on time, the due dates must satisfy

Q,
it

r;

oty =2 G,

(M

2
f

Max (G- 1)) = Max(F) ,
J J

where £; denotes the flowtime of job j. In general, it is not
possible to derive an explicit formula for the maximum
flowtime, but it is not difficult to perform the necessary
calculations. Suppose that the jobs are numbered according
to their ready times, so that 7; < ;1. Then the completion
times are given by the following recursive relationship:

C; = Max(Cj_1, 7)) * P; -
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Furthermore, the flow times satisfy the following:

F =

$= Gy = Max(Gy ) £y

J
= Max(rj.y + Fjy. 7)) =1, +p;
= Max(Fj_y +r.1 -7, 0) +p;

Fuiit this recursive relation, the values of F; can be calcu-
lated successively and the maximum identified. The average
due date is then
d =7 ty= T+ Max(F)) . (8)
J
Under the SLK rule, d; = r; + p; + 8. In other words, all
jobs have the same waiting time allowance. The EDD
priority rule reduces to dispatching the jobs according to
the minimum value of (7; + p;), and so preemption may be
necessary. For all jobs to be completed on time the due
dates must: satisfy

dj=rj+pj+B>Cj,
. %

B = Max(G-ri=p;)-
-

No simple formula can be given for the maximum waiting
“time, but again direct calculations are straightforward. Since
_ .the EDD priority rule does not depend on B, an optimal
“schedule can be constructed by assuring that the available
“job with minimum (r; + p;) is always in process. As this
‘ schedule is constructed, the waiting times can be calculated
and the maximum identified. The average due date is then
dspx = r+ p+B=7r+ p+Max(Ci-r;—p;) - (10)
Under the TWK rule, d; = r; + ap;. In this case the EDD
rule cannot be implemented until « is known, in contrast to
the nature of the EDD rule under CON and SLK. Therefore,
it is not possible to construct an EDD schedule by proceed-
ing from time zero with a dispatching mechanism, and a
slightly more complicated scheduling procedure must be
utilized. For all jobs to be completed on time the due dates
must satisfy

il

d;

i rf+apj>cf’

(11

il

o = Max[(G;=r)/p)] -
J

Again, no simple formula can be given for the optimal
_parameter value in Equation (11), but a direct calculation is
possible. Think of each job as having a cost function g;(0),
representing the cost incurred when job ; is completed at
time C. In [1], an algorithm is given for minimizing the
maximum cost for the single-machine problem with pre-
emption. This algorithm can be implemented in the special
case for which g;(€) = (C - r;)/p;; the minimum value of the
maximum cost is just the value of a defined by (11). Once
this value has been calculated, the average due date is:

dowg =7 +op =r +pMax[(G;-r)/p;} . (12)
j
in the dynamic model there is no dominance ot tne kind
that occurs in Properties 1 and 2 for the static model.
Consider the example below:

j 1 2 3
Ty 0 2 4
Pj 4 3 2

Under the TWK rule, job 1 completes at the end of the
schedule (at time 9), so that o = 2.25 and dewk = 8.75.
Under SLK, the jobs are scheduled in numerical order, so
that 8 = 3 and dsp.x = 8. Under CON, the jobs are scheduled
in the same way; then vy =5 and doon=7. As the example
shows, the CON rule may be desirable in dynamic problems
even though it is dominated in the static model.

Experiments with the Dynamic Model

The dynamic model is more complicated than the static
model in the sense that a problem instance consists of a
specification of n ready times as well as n processing times.
Most computational studies "of dynamic single-machine
models reported in the literature rely simply on uniform
distributions for generating the ready times and processing
times for test problems. In this study, however, we describe
two fundamentally different scenarios for the dynamic
model, based on features of practical production control -
settings.

In a static problem the number of jobs is a reasonable
measure of problem difficulty, but for dynamic problems
the number of jobs is not as good a measure. Although a
problem instance may contain 7 jobs, in the dynamic model
the number of jobs competing to be the next at any point in
time may always be much smaller than n. Whereas the para-
meter n indicates how many due dates are set and approxi-
mately how many dispatching decisions are made, it-does
not quite capture the difficulty of those decisions. The diffi-
culty of a dispatching decision is related instead to the
number of schedulable jobs at the time the decision must
be made. Hence, we measure problem difficulty by quanti-
fying the workload - pattern underlying the dispatching
decisions. '

T~ We distinguish between two opposite types of workload
patterns that can be found in actual shops. The first type is
a random workload pattern, which arises when release dates
correspond to the occurrences of customer demands, which
themselves occur randomly. This pattern is characteristic
of production systems where the market is competitive and
jobs tend to be custom orders. The second type is a
controlled workload pattern, which arises when release dates
are selected with a goal of maintaining a fairly stable work-
load in the processing facility. This pattern is characteristic
of production systems where the market is captive or jobs
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tend to be internal orders for replenishment of stock. Clearly
the two types are different in that the controlled pattern
resitlts from a conscious effort to insulate the workload
from the randomness that characterizes external demand.
In the random pattern, variations in.demand intensity are
transmitted directly to the workload faced by the shop.
In order -to model the random workload pattern in our
test problems we represented the occurrence of ready times
~as a Poisson process. Specifically, the interval between
successive readv times was drawn from an exponential
distribution with mean 1/\. We also represented processing
times as samples from an exponential distribution with mean
equal to 100. Thus the workload varied probabilistically in
4 manner that could be described by an M/M/1 queueing
model. In particular, the mean workload, denoted W, that
occurs in such a system is given by the formula

W = 100X/(0.01 =}) . 13)

In addition, the mean utilization is equal to 100A.

In order to model the controlled workload pattern, we .

selected a job-releasing scheme of the following form:

Whenever the work[oad in the shop falls to Wy, a new job is
released. _

* The behavior of the actual workload under this rule can
be described by a “‘saw-tooth” graph similar to the one
shown in Fig. 1. The workload drops to its minimum level
Wy, at which time a new arrival is triggered. The arrival of
job j"win‘créas'es the workload by p;, and then the workload
again falls toward its minimum level. The mean workload in
this shop will be W, + p/2. Setting this quantity equal to
the mean workload given in (13) yields

(14)

Thus Equation (14) allows the parameter W, to be chosen

Wo= (150 = 0.50)/(0.01 = X) .

so that the mean workload is the same under the controlled ‘

and random patterns. We selected the following parameter
values for the test problems:

Data set 1 2 3

~ Utilization (random pattern) 0.80 0.85 0.90
We (controlled pattern) 350 517 850
Meart number of jobs in system 4.00 5.67 9.00 -

Although ‘the mean workload is the same in the problems
of a given data set, we should still expect to find some
~differences in the behavior of average due dates in the
random and controlled scenarios because system utilization
under the controlled workload pattern is always 100%.
Each data set consisted of 20 problems for the random
workload pattern and 20 problems for the controlled work-
load pattern. Each test problem contained 80 jobs. (We did
not study the effect of problem size because the 80-job
problem can be viewed as simply an extended version of a
20-0b or 40-job problem.)
The tightness of the due dates under rule R is measured

4
Workload]
P
P Pa
Wo- p;~
N fhry T4 Time

‘Fig. 1. An example of the controlled workload pattern.

by the average flow allowance (dg— r)ina given test prob-
lem. The mean of these values in the 20 test problems
(expressed as a multiple of the mean processing time) is given
in the tables. The optimal rule in the dynamic model is the
Shortest Remaining Processing Time discipline [4]:

The results of the test problems are summarized in
Tables 3 and 4. The results in Table 3 indicate that TWK is\z!
by far the best rule for the random workload pattern: its ;
mean flow allowance was considerably less than the mean
for SLK or CON, and it produced the tightest due dates in .
all 60 problems. In Table 4 the observations were quite‘;

a

Table 3: Results for dynamic problems with exponential

samples and random workload.

Utiliza- Mean Mean Flow Allowance Frequency Best

. No. of .
tion Jobs TWK SLK CON OPT  TWK SLK CON
0.80 400 4.43 9.04 1014 199 - 20 O 0
0.85 5.67 b5.63 10.37 1139 241 20 O 0
0.90 9.00 6201179 12.76 249 20 0 0

Table 4: Results for dynamic problems
with exponential samples and controlled workload.

Frequency Best
TWK SLK CON

Mean Flow Allowance
TWK SLK CON OPT

Mean Workload
{No. of Jobs)

4.00 526 453 8.79 2.17 3 17 0
5.67 651 6.23 10.09 2.69 7 13 ¢}
9.00 828 951 1349 352 17 3 0
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different. In the controlled workload pattern the SLK rule
emerged as the best rule in test problems with relatively
light workloads. The TWK rule, however, produced due’}
dates that were less sensitive to workload, and this charac-

teristic led TWK to again emerge as the better rule when
the workload was increased.

There are some systematic factors occurring in the case
o the controlled workload pattern that help explain these
tesults. Under CON there is no preemption, and it follows
that the completion time of job j is given by G =r; + Wo +
p;. Therefore, A = Wy + Max(p;) and we obtain:

gCON =r+ Wo +M?1X(pj) .

Under SLK there is also no preemption (because 7; +p; >
ri_1 t'pj_1-in our controlled workload model), so that G;=
.t Wo +p;, as in the case of CON. However, for SLK

this ‘means § = W, and
JSLK =r_+ﬁ+ WO .

Thus. SLK dominates CON in the controlled workload
pattern.

Under TWK, however, preemption may occur. Let p*
denote the processing time of the shortest job that does not
preempt other jobs while it is in the system. For this job,
Ci=nt ,Wo_ +p*, and it follows that ap*> Wy +p* Thus
- the parameter must satisfy

it follows that

dywg =1 + p(l + Wo/p®)

and

drwk - JSLK:WO(I;—p*) /p*. (15)
In other words, TWK will be dominated by SLK ifp*< r.
that is, if a job with processing time less than the mean has
a waiting time of at least W,. Intuitively, this sufficient
condition is more likely to hold when the workload is light
than when it is heavy, because there will be fewer available
jobs in queue under a light workload that are candidates for
preemption. Therefore, it might be. anticipated that SLK
tends- to. dominate TWK under light workloads but not
under heavy workloads. This is precisely the behavior
exhibited in Table 4.

In addition. the likelihood of preemption under TWK is
somewhat a function of the variance of the processing
times. When the variance is small there is more of a chance
that p* < p; by (15) this condition means SLK will domi-
nate TWK. (However, if the variance is sufficiently small
then the rules become indistinguishable.) Because the ex-
ponential distribution might be considered a distribution
with a high variance, the results in Table 4 may not be
viewed as representative. In order to further explore the
variance effect we repeated the experiments with processing

times drawn from a normal distribution with mean 100 and
standard deviation 25. [In this case, Equation (13) must be
replaced with the formula corresponding to the queue M/G/1,
and Equation (14) must be modified appropriately.] Again,
we found that SLK dominated TWK, except under heavy
workloads. In this set of test problems the “‘crossover”
workload at which TWK becomes better is heavier than in
the case of the exponential samples. We also noticed in the
corresponding random workload problems that CON was
sometimes the best rule, although TWK was still most_
frequently best. More significantly, perhaps, the results in ’
Tables 5 and 6 indicate that when the variance of processing .
times is small there is relatively little difference among the.
rules TWK, SLK, and CON.

UGS 1 Wi, 230,

Table 5: Results for dynamic problems
with normal samples and random workload.

Utiliza- Mean No. Mean Flow Allowance Frequency Best
tion. of Jobs ~TWK SLK CON OPT TWK SLK CON
0.90 4.28 7.20 7.70 7.72 3.08 6.2 .2
095 9.59 10.06 10.70  10.756 4.24 16 - 2 2
099 52.09 10.44 1099 11.07 456 20 O 0

Table 6: Results for dynamic problems
with normal samples and controlled workioad.
Averaged Mean Flow Allowance Frequency. Best
workloa -

(No. of Jobs) TWK SLK CON OPT TWK .SLK CON

428 6.65 531 590 4.02 0 20 0
9.59 12.35 10.61 11.18 7.71 (4] 20.° 0
52.09 4853 £3.10 53.64 30.31 20 o 0

a

Summary and Conclusions

A common assumption in scheduling research is that due
dates are given. In many production environments, however,
it is appropriate to treat due dates as decision variables
which are determined within the production control system.
In this paper we have utilized a basic scheduling model in
order to gain some insight into the problem of selecting due
dates. Specifically, the problem was formulated in terms of
making due dates as tight as possible, subject to the con-
straint that all jobs complete on time, in the context of the
single machine model with dynamic job arrivals.

We investigated three basic rules for setting due dates:
CON (in which flow allowances are constant), SLK (in
which waiting time allowances are constant), and TWK (in
which flow allowances are proportional to processing times).
Of these rules, only CON fails to discriminate among the
jobs on the basis of their processing times. This property
might intuitively suggest that the CON rule is notas effective
as the other rules. In fact, we demonstrated analytically

June 1981, AlLE TRANSACTIONS

129




that the CON rule is dominated in the static model and also
in. the dynamic model with controlled workload. Even in
the remaining scenarios (i.e., the dynamic model with random
wortkload) there were few problem instances where CON
" was desirable. We conclude from this pattern of results that
processing time information is relevant in due-date selection,
and that a rule for determining the flow allowance of ajob
should be based (at least in part) upon the job’s length.

We discovered that the TWK rule produced tight due
dates most of the time but very loose due dates some of the
tiine. As a consequence, TWK frequently exhibited better
average performance than SLK, although in unfavorable
circumstaiices TWK could be considerably worse. From this
pattern” we conclude that the proportional strategy for
setting flow allowances under TWK (as opposed to- the
additive strategy under SLK) may produce relatively good
average performance, but it is also susceptible to poor
performance under “‘worst case” conditions. In particular,
an unfavorable job mix for the TWK rule appears to be
several equivalently short jobs together with a small number
of very long jobs. In this situation, the relatively long wait—}
ing time allowance that is given to one of the short jobsi
must also be given (in the same proportion) to each of the}
‘long jobs. The pattern of results for the TWK rule (i.e.,good
“mean’’ performance but poor “maximum” performance) is
analogous to the flow-time performance of the SPT sequenc-
ing rule in job shops. This analogy further suggests that the
pure TWK rule might have to be modified in practice, in

“order. to provide some measure of protection against the
" undesirable performance that might occasionally result
under the “pure rtule. '

We examined two workload scenarios and found that the
comparison between the TWK rule and SLK rule was
difference under random workloads than under coniroiied
workloads. We conclude from this result that in complexuﬁz
production control systems it might be desirable to develop -
a strategy for “due-date selection that depends on the
strategy for order releasing, since the latter will affect work- ‘;\

- load behavior. -

From the observations given above, certain topics arise
as relevant for future research. One topic is the development
of a suitable modification of the pure: TWK rule to provide
the kind of protection discussed above. Another topic is the
investigation of the relationship between due-date selection
and workload control. Thirdly, the same kind of problem
can be studied in the context of a more complicated model.
In this connection, we note that the single-machine model is
convenient because a zero-tardiness schedule can be found
readily. In more complex models, this optimizing module
might well have to be replaced by a heuristic scheduling
routine; and it might also be convenient to treat the tight-
ness of the due dates as a constraint instead of a criterion.

Appendix 1

o Indistinguishable jobs (pj=plorj= 1,2,...,01).
Under OPT, the due dates (completion times) will be p,

2p.3p,. .., "p
dopr = (P 2 k)/n =(n+1)p/2:
k=1

Under each of the rules CON, SLK, and TWK, the due
date of each job will be np. Thus

dg = np.
Therefore the tightness ratio dg Jdopr =20 [(n + 1).
e Dominant job (p; =1forj=1,2,...,n-1 and p, =p>
2, where n > 2).

Under OPT the due dates (completion times) are as
follows:

d;=j forj= l,v2,...,n—1andd,,=n-1+p.

Therefore,
dopt =[Z k+(n-1 +p£|/n = [n(n-1)/2+(n-1+p)]/n
k=1 ‘

=(n?+ n+2p -2)/2n.

Under CON, we obtaindgon =dj=n—1+p. As a conse-
quence, :

dcon/dopr = 2n(n-1+ p)(n® +n+2p=2).

Asp > this ratio approaches 2np/2p. Hence

1

lim (dcon/dopt) =7 .

pe

Under SLK, we obtain §=n - 1. Since p = (n - 1 +p)/ n,it
follows that

Jsix = (1= +(n-1+p)n=(* -1+p)/n.
As a consequencé,

dsix/dopr =2 —1+p)/(n*+ n+2p=2).
For p - o this ratio approaches 2p/2p. Hence

lim (dsx/dopr) =1 -

pre
Under TWK, we obtain a=n — 1. Thus

Frwg =(n-1D(n-1+p)/n=(n* =2n+np+1 -p)in .‘
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As a consequence,
dewx/dopr = 2n* =2n+np+1-p)/ (n? +n+2p-2).
For p = oo, this ratio approaches 2(n- 1)p/2p. Hence

lim (JTWK/JOPT) =n -1.
porw

e Distinct jobs (p; =/ forj=1,2,..., )
Under OPT, the due dates (completion times) will be
given by

dy= 142+, .47 =G+ 12,

Therefore

Jop'f[ > k("€+1)/2] /n =(n+)(n+2)/ 6.
r=1

Under CON, we obtain JCON =y=n(n +1)/2. As a con-
sequence,

JC()N/J()pT'?(')n(Ir +1)2n+ D) (n+2)=3n/ (n+2),
lim(dcon/dopr) =3 .
n—>eo

Under SLK, we obtainf=1+2+...+(n = 1)=n(n-1)/2.
Since p = (n + 1)/2, it follows that

dsix = [Mn=1)+(n+1)] /2= (n2 +1)/2.
Tsix/dopr = 6(n* + 1)/2(n+1) (n+2)
=32+ 1)/ (n + 1)(n+2),

lim{dsyx /dopr) =3 -

n-oo

Under TWK, we obtain a = C,/p, =n(n+1)/2n=(n* 1)/
2. Thus
Tpwi= (14 D2]2 =+ 1)*/4.

As a consequence,

dywk /dopr = 6(n+1)2/4(n+1)(n+2)= 1.5(n+ 1)/(n+2),

lim(dywk /dopr) = 1.5 .

n—eo
Appendix 2
_ n-1 n
® Proof of Property 1: p+ Y p; < > P
j=1" i=1

The inequality is obviously valid if and only if

PSpPn-

Since SPT job ordering applies, p,; is the longest pro-.--

cessing time, and this inequality will always hold. 0
. j n

@ Proof of Property 2: p Max( E pilp; }< Z Ty
i i=1

Jj=1

Since SPT applies, 2‘.’;=1p,- < jp;. Thus the property holds
if

I;M’f‘x(fpj/l’j) <Y
! =1
j=1

This is clearly an equality.  ©
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