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Abstract In many applications, the cumulative distribution
function (cdf) FQN of a positively weighted sum of N i.i.d.
chi-squared randomvariables QN is required.Although there
is no known closed-form solution for FQN , there are many
good approximations. When computational efficiency is not
an issue, Imhof’smethod provides a good solution. However,
when both the accuracy of the approximation and the speed
of its computation are a concern, there is no clear preferred
choice. Previous comparisons between approximatemethods
could be considered insufficient. Furthermore, in streaming
data applications where the computation needs to be both
sequential and efficient, only a few of the available meth-
ods may be suitable. Streaming data problems are becoming
ubiquitous and provide the motivation for this paper. We
develop a framework to enable a much more extensive com-
parison between approximate methods for computing the cdf
of weighted sums of an arbitrary random variable. Utilising
this framework, a new and comprehensive analysis of four
efficient approximate methods for computing FQN is per-
formed. This analysis procedure is much more thorough and
statistically valid than previous approaches described in the
literature. A surprising result of this analysis is that the accu-
racy of these approximate methods increases with N .
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1 Introduction

The cumulative distribution function (cdf) FQN of a posi-
tively weighted sum of i.i.d. χ2

1 random variables QN ,

QN =
N∑

i=1

diW
2
i , di > 0, Wi ∼ N (0, 1), (1)

has no known closed-form solution. An approximation of
FQN is used in goodness-of-fit tests (Moore andSpruill 1975)
and various other applications (Zhang and Chen 2007; Jaya-
suriya 1996; Bentler and Xie 2000). Our particular interest
is change detection in streaming data (Bodenham 2014).
In offline situations where computational resources are not
an issue, Imhof’s method (Imhof 1961), which inverts the
characteristic function numerically, should be the preferred
choice. It can be considered exact (Solomon and Stephens
1977; Johnson et al. 2002) since it provides error bounds
and can be used to compute FQN (x), for some quantile
value x , to within a desired precision. Similar numerical
methods such as Farebrother’s method (Farebrother 1984)
could also be used, but some (Sheil and O’Muircheartaigh
1977; Davis 1977; Davies 1980) lack the precision-bounding
feature of Imhof’s method. However, Imhof’s method and
Farebrother’s method are both iterative, which affects their
speed of computation, as shown in Sect. 6.4. Besides being
iterative, these methods all require the entire vector of coef-
ficients (d1, . . . , dN ) to be stored in order to compute the
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approximate cdf. As described in Sect. 2, this may not be
possible in a streaming data context.

Perhaps, the earliest approximatemethod,which has come
to be known as the Satterthwaite–Welch method (Welch
1938; Satterthwaite 1946; Fairfield-Smith 1936), involved
matching the first two moments of QN with the first two
moments of a Gamma distribution. See Box (1954, Sect. 3)
for a discussion on the history of this method. The Hall–
Buckley–Eagleson (Hall 1983; Buckley and Eagleson 1988)
and Wood F (Wood 1989) methods match the first three
moments of QN to other distributions in a similar fash-
ion. The Lindsay–Pilla–Basak method (Lindsay et al. 2000)
matches the first 2n moments of QN to a mixture distribu-
tion. These four moment-matching methods are described in
Sect. 3 and are implemented in the R package momentchi2
(Bodenham 2015).

The method described in Solomon and Stephens (1977)
takes the Satterthwaite–Welch method a step further by
matching the first threemoments of QN to a random variable
aXb,where X ∼ χ2

1 . It is accurate in both the upper and lower
tails, but requires the solution of two simultaneous non-linear
equations, perhaps via an iterative method. An interesting
method using Laguerre polynomials is described in Castaño-
Martínez andLópez-Blázquez (2005), but is also iterative and
requires the setting of certain control parameters.

While the methods discussed here have superseded those
published previously (e.g. Patnaik 1949; Jensen andSolomon
1972), a good review of older methods can be found in John-
son et al. (2002). Although not considered here, a review of
the current state-of-the art for weighted sums of non-central
chi-squared random variables can be found in Duchesne and
Lafaye DeMicheaux (2010), and methods for computing the
cdf of a single non-central chi-squared random variable are
described in Farebrother (1987), Ding (1992) and Penev and
Raykov (2000). An earlier version of this work appeared in
the unpublished PhD thesis of Bodenham (2014).

2 Approximations in a streaming data context

If we wished to simply compute a single evaluation of FQN ,
for some vector of coefficients d = (d1, d2, . . . , dN ), then
we have already described a plethora of methods fromwhich
to choose. Amongst these, since Imhof’s method is essen-
tially exact it would probably be the preferred choice. There
are, however, situations when Imhof’s method might not be
suitable. For instance, one might wish to compute FQN (x),
for QN defined in Eq. (1), and then soon afterwards compute
FQN+1(x

′), where

QN+1 = QN + dN+1W
2
N+1. (2)

Imhof’s method requires the whole vector of weights d in
order to compute FQN+1(x

′), but in a streaming data context

(discussed in the next paragraph) N might be very large, and
so storing the whole coefficient vector (d1, . . . , dN , dN+1)

would be undesirable. Finally, Imhof’s method is also iter-
ative, since it runs until a specified precision is obtained.
This is also unappealing, since iterative methods have the
potential to be slow and computationally expensive. Given
this construction, Imhof’s method is clearly not suitable for
deployment.

Streaming data algorithms (e.g. Gama et al. 2010; Boden-
ham and Adams 2013) require methods that are both fast
and only require a small, fixed number of parameters and
data to be stored. Amongst the methods discussed above, the
moment-matching methods of Satterthwaite–Welch, Hall–
Buckley–Eagleson, Wood and Lindsay–Pilla–Basak are the
only options that meet these criteria and are described in
Sect. 3 below. The first three of these methods only require
a single evaluation of a particular cdf and the storage of a
fixed number of parameters that can be easily sequentially
updated. The Lindsay–Pilla–Basak method is more com-
putationally intensive, but has the potential to give more
accurate results by matching higher-order moments. There
are other approximate methods (e.g. Solomon and Stephens
1977) besides these four, but they all have shortcomings
(e.g. require too much memory, too expensive to com-
pute) that would render them unsuitable for streaming data
applications.

Our motivating application for computing FQN is as part
of a sequential change detector for the variance of a process;
see Bodenham (2014, Chap. 8) for methodological back-
ground, and Ye et al. (2002) for an application in computer
network security. Suppose we are interested in making infer-
ence on the sequence z1, z2, . . . , zN which are observations
generated from random variables Z1, Z2, . . . , ZN , and the
weighted variance is defined as

Vc,N =
N∑

i=1

ci
[
Zi − Z̄

]2
, (3)

where c = (c1, c2, . . . , cN ) are some weights, and Z̄ is
the (possibly weighted) mean of Z1, . . . , ZN . If the Zi are
i.i.d normal, then it can be shown that Vc,N is distributed as
some QN . This formulation is similar to the exponentially
weighted moving variance described inMacGregor and Har-
ris (1993). In a streaming data scenario, it would be infeasible
to use a method such as Imhof’s which requires the storage
of the whole vector c, particularly when N becomes large.
In sequential change detection, N increases until a change
is detected. The size of the change would then depend on
the application; in cybersecurity problems of interest to us,
we expect N to be between 100 and 1000. Streaming data
algorithms need to have low and fixed memory requirements
and be computationally inexpensive.
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3 Efficient approximate moment-matching
methods

As the name suggests, these methods involve matching the
moments of QN to those of another distribution, and using
that distribution’s cdf to approximate FQN . In order to do this,
the moments of QN need to be computed. However, instead
of computing the moments directly, it is easier to first com-
pute the cumulants of QN and then obtain the moments from
the cumulants. In fact, the first threemethods described below
directly use the computed cumulants, and do not require com-
putation of the moments.

3.1 Computing cumulants and moments

The cumulants of QN , a weighted sum of i.i.d. χ2
1 random

variables as in Eq. (1), are denoted by κr (QN ) and can be
computed using the formula

κr (QN ) = 2r−1(r − 1)!
N∑

i=1

(di )
r , r = 1, 2, . . . . (4)

where d = (d1, d2, . . . , dN ) are the weighting coefficients.
This can easily be shown using the properties of cumulants
and recalling that for a χ2

1 random variable X , κr (X) =
2r−1(r −1)! [e.g. Box (1954)]. In a sequential context, when
QN becomes QN+1, the cumulants can be easily updated by

κr (QN+1) = κr (QN ) + 2r−1(r − 1)! · (dN+1)
r . (5)

For the remainder of this chapter, we shall only be concerned
with QN , and so shall write κr = κr (QN ). The moments of
QN , denoted mr = mr (QN ), can be computed from the
cumulants using m1 = κ1 and

mr = κr +
r−1∑

i=1

(
r − 1

i − 1

)
κimr−i , r = 2, 3, . . . . (6)

Since the first three methods described below only require
the first two or three cumulants of QN , these are explicitly
provided here:

κ1 =
N∑

i=1

di , κ2 = 2
N∑

i=1

(di )
2, κ3 = 8

N∑

i=1

(di )
3. (7)

3.2 Satterthwaite–Welch approximation

Equating thefirst twomoments ofQN with aΓ (̂k, θ̂ )variable
yields

k̂ = 1

2
κ2
1/κ2, θ̂ = κ2/κ1. (8)

If we use FΓ (k,θ) to denote the cdf of a Γ (k, θ) distribution,
then the Satterthwaite–Welch approximation uses FΓ (̂k,θ̂ ) to
approximate FQN . In the references [e.g. Box (1954)], the
Γ (k, θ) distribution is often written as a scaled χ2

1 distribu-
tion.

3.3 Hall–Buckley–Eagleson approximation

We provide a brief outline of the method which is fully
described in Buckley and Eagleson (1988). First, Q′

N is used
to denote QN normalised as in

Q′
N = QN − E[QN ]√

Var[QN ] = κ
−1/2
2 (QN − κ1). (9)

Second, if ν is defined as

ν = 8κ3
2/κ

2
3 , (10)

and Xν ∼ χ2
ν ≡ Γ (ν/2, 2), then it can be shown that Q′

N
and (Xν −ν)/

√
2ν have the same first three central moments.

If Y ∼ QN and y is an observation of Y , the Hall–Buckley–
Eagleson approximation of FQN (y) is obtained by

FΓ (ν/2,2)

(√
2ν ·

[
κ

−1/2
2 (y − κ1)

]
+ ν

)
. (11)

3.4 Wood F approximation

Wood’s F method (Wood 1989) matches the first three
moments of QN with another distribution that has a prob-
ability density function of the form

f (x |α1, α2, β) = βα2xα1−1(β + x)

B(α1, α2)
, (12)

where

B(α1, α2) = Γ (α1)Γ (α2)

Γ (α1 + α2)
(13)

is the beta function. Although in Wood (1989) it is referred
to as an F distribution, the density in Eq. (12) can be better
described as that of a G3F or corrected F distribution (Pham-
Gia and Duong 1989; Johnson et al. 1995). The parameters
α1, α2, β can be defined in terms of the cumulants κ1, κ2, κ3
computed in Eq. (4) above (e.g. using Gröbner bases):

r1 = 4κ1κ
2
2 + κ3

(
κ2 − κ2

1

)
, r2 = κ1κ3 − 2κ2

2

α1 = 2κ1
(
κ1κ3 + κ2

1κ2 − κ2
2

) /
r1

α2 = 3 + 2κ2
(
κ2 + κ2

1

)/
r2

β = r1/r2 (14)
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It is noted in Wood (1989) that if X is distributed according
to the density in Eq. (12), then

α2

α1β
X ∼ F(2α1, 2α2), (15)

where F(2α1, 2α2) is a standard F-distribution with para-
meters 2α1 and 2α2. Therefore, if Y ∼ QN , and y is an
observation of Y , the Wood F approximation of FQN (y) is
obtained by

FF(2α1,2α2)

(
α2

α1β
y

)
. (16)

This approximation can be used as long as both r1, r2 > 0,
which is guaranteed inmany cases (Wood1989).When either
r1 = 0 or r2 = 0 (it is proved inWood (1989) that neither can
be negative), thenWood (1989) recommends using either the
Satterthwaite–Welch approximation, or another two-moment
approximation.

3.5 Lindsay–Pilla–Basak approximation

The method described in Lindsay et al. (2000) approximates
FQN using FQ̃N

, a finite mixture of n Gamma cdfs FΓ (k,θi ),

FQ̃N
=

n∑

i=1

πi FΓ (k,θi ), (17)

where eachπi ≥ 0 and
∑

i πi = 1, and the 2n+1 parameters
k, θ1, θ2, . . . , θn, π1, π2, . . . , πn are to be determined. These
parameters are computed by following a sequence of steps
thatmakeuse of results concerningmomentmatrices (Uspen-
sky 1937,Appendix II). The sequence inLindsay et al. (2000)
is complicated, so we extract the main steps here (without
proofs). The first step is to compute the first 2n cumulants
κ1, κ2, . . . , κ2n of QN using Eq. (4), and then use the recur-
sive formula in Eq. (6) to compute the first 2n moments
m1,m2, . . . ,m2n of QN . The second step is to define, for
a variable α, the functions δr (α) as

δr (α) = mr∏r
i=1 (1 + (i − 1)α)

, r = 1, 2, . . . , 2n, (18)

and δ0(α) = 1. These functions are then used to create the
(r + 1) × (r + 1) pseudo-moment matrices �r (α), defined
as

�r (α) = {
δi+ j (α)

}
i=0,1,...r
j=0,1,...r

, r = 1, 2, . . . , n. (19)

For example,

�2(α) =
⎛

⎝
δ0(α) δ1(α) δ2(α)

δ1(α) δ2(α) δ3(α)

δ2(α) δ3(α) δ4(α)

⎞

⎠ (20)

=
⎛

⎜⎝
1 m1

m2
(1+α)

m1
m2

(1+α)
m3

(1+α)(1+2α)
m2

(1+α)
m3

(1+α)(1+2α)
m4

(1+α)(1+2α)(1+3α)

⎞

⎟⎠ .

(21)

The third step is to find certain roots λ̃1, λ̃2, . . . λ̃n such
that

det�r (̃λr ) = 0, r = 1, 2, . . . , n. (22)

For r = 1, there is a unique positive root λ̃1 = m2/(m2
1) − 1.

For r > 1, one can use a bisection method (e.g. Everitt
2012) to solve for the root λ̃r ∈ [0, λ̃r−1) of the equation
det�r (α) = 0. Eventually, λ̃n is obtained. The fourth step
is to define the matrix Mn (̃λn, t),

Mn (̃λn, t)=

⎛

⎜⎜⎜⎜⎜⎝

1 δ1(̃λn) · · · δn−1(̃λn) 1
δ1(̃λn) δ2(̃λn) · · · δn (̃λn) t
δ2(̃λn) δ3(̃λn) · · · δn+1(̃λn) t2

...
...

...
...

δn (̃λn) δn+1(̃λn) · · · δ2n−1(̃λn) tn

⎞

⎟⎟⎟⎟⎟⎠
.

(23)

Note that Mn (̃λn, t) is the same as �n (̃λn) but with the last
column replaced by (1, t, . . . , tn)′. This matrix is used to
compute the nth degree polynomial Sn(λ, t), where

Sn(λ, t) = det Mn (̃λn, t) =
n∑

j=0

c j t
j , (24)

for some c j ∈ R and j = 0, 1, . . . , n. In order to obtain the
value of the coefficient c j , one can replace the last column of
Mn (̃λn, t) (the powers of t), with the basis vector e j+1 (the
( j + 1)th component equals one, all others are zero), and
compute the determinant of this modified matrix. With the
coefficients computed, the n roots of Sn(λ, t) = 0, denoted
μ1, μ2, . . . , μn , can be found [the roots are real and distinct
(Uspensky 1937, Appendix II.4)]. The fifth step is to use
these roots μi to solve the system of linear equations

⎛

⎜⎜⎜⎝

1 1 · · · 1
μ1 μ2 · · · μn
...

...
...

...

μn−1
1 μn−1

2 · · · μn−1
n

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

π1

π2
...

πn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1
δ1(̃λn)

...

δn−1(̃λn)

⎞

⎟⎟⎟⎠

(25)
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to compute the mixture proportions π1, π2, . . . , πn . Since
the matrix on the left of Eq. (25) is a Vandermonde matrix,
it is non-singular (Macon and Spitzbart 1958), and so this
system of linear equations has a unique solution. Finally, we
define k = (̃λn)

−1 and θi = λ̃n · μi , for i = 1, 2, . . . , n,
and now can compute the approximate cdf FQ̃N

in Eq. (17).
Note that the Lindsay–Pilla–Basak method agrees with the
Satterthwaite–Welch method for n = 1.

It should be remarked that Robbins and Pitman (1949)
also attempt to obtain an approximation using a method of
mixtures, but by computing the characteristic function rather
than using the method of moments.

3.6 Sequential implementation

As described in Sect. 2, one might wish to compute FQN (x)
and then soon afterwards compute FQN+1(x

′), for QN+1 =
QN+dN+1W 2

N+1. Note that x and x
′ maybe different values.

This can be done easily and efficiently using one of the four
moment-matching methods described above. When comput-
ing FQN (x), we store the cumulants κ1(QN ), κ2(QN ), …,
κ(QN ), where the value of  depends on the method we
are using (e.g. for Hall–Buckley–Eagleson,  = 3). Now,
one can simply use the new coefficient dN+1 and Eq. (5)
to update κr (QN ) to κr (QN+1), for r = 1, 2, . . . . These
updated cumulants, together with x ′, are all that is needed
to compute FQN+1(x

′). Note that this method only requires
the storage of the  cumulants, regardless of the value of
N , which makes this method suitable for a streaming data
context.

4 Evaluation of approximate methods for
computing FQN in the literature

In previous work on approximations for computing the
cdf FQN of weighted sums of chi-squared random vari-
ables QN (Imhof 1961; Solomon and Stephens 1977;
Wood 1989; Lindsay et al. 2000; Castaño-Martínez and
López-Blázquez 2005), it was common to estimate the
performance of an approximate method by demonstrat-
ing its accuracy for a selected sample of M distributions
QN ,d1 , QN ,d2 , . . . , QN ,dM , where for k = 1, 2, . . . , M ,

QN ,dk =
N∑

i=1

di,kW
2
i , di,k > 0, Wi ∼ N(0, 1), (26)

and dk = (d1,k, d2,k, . . . , dN ,k). Recall that the cdf of a ran-
dom variable X is defined by

FX (x) = Pr(X ≤ x). (27)

In this article, values x in the domain of the cdf FX will
be called quantile values, and values FX (x) will be called
probability values. For each QN ,dk , the quantile values x j,k
are found such that, for k = 1, 2, . . . , M ,

FQN ,dk
(x j,k) = p j , j = 1, 2, . . . , L , (28)

for a specific set of probability values p j . Then a table of
errors ε j,k , where, for k = 1, 2, . . . , M ,

ε j,k = |G(x j ) − FQN ,dk
(x j )|, j = 1, 2, . . . , L , (29)

is presented for one or more approximate methods, where G
is the cdf produced by the approximate method. According
to the literature, the method with the smallest set of errors is
then considered to be the best approximate method.

This may seem to be a reasonable approach, but the exe-
cution in previous works leaves something to be desired. In
Imhof (1961), Solomon and Stephens (1977), Wood (1989),
Lindsay et al. (2000), Castaño-Martínez andLópez-Blázquez
(2005), each analysis only considers a selection of between
M = 8 and M = 18 distributions QN for a selected set
of coefficients and number of terms. Results established for
an approximation procedure based on the analysis of such
a small selection should be viewed with caution. So, while
previousworksmayhave established the accuracy for the par-
ticular selections considered, those results cannot reasonably
be assumed to hold for all possible QN . Moreover, previous
works only considered QN with fewer than N = 10 terms,
so it is natural to wonder how approximate methods perform
for distributions QN with significantly larger N . This is par-
ticularly relevant in the context of streaming data problems.

There is a possible explanation for why previous works
only consider a limited selection of distributions QN in their
analyses. When these approximate methods were first con-
sidered in the 1950s and 1960s (e.g. Box 1954; Imhof 1961),
calculating the probability values p j may have been difficult,
especially with computing in its infancy. Therefore, only a
limited table of results was produced. When later methods in
the 1970s and 1980s (e.g. Solomon andStephens 1977;Wood
1989) were developed, it would have been natural to use the
performance analysis of earlier methods as the benchmark,
and so a table of errors ε j,k was again compiled for a small
(in some cases the same) sample of distributions. Unfortu-
nately, this method of evaluating performance has continued
unchanged (e.g. Lindsay et al. 2000; Castaño-Martínez and
López-Blázquez 2005), even though computers that are able
to complete a much more thorough analysis are now readily
available. In Sect. 5, we outline such an analysis, which will
seem natural following the discussion in this section.

It should be mentioned that while we shall use Fare-
brother’s method in combination with a bisection procedure
(e.g. Everitt 2012) to compute the exact quantile values [i.e.
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Eq. (28)] in Sect. 6, it was not indicated in previous works
how the exact quantile values were obtained for performance
calculations.

5 A new method for evaluating the performance of
an approximate method for a cdf of a weighted
sum of random variables

This sectiondiscusses the issueof evaluating theperformance
of approximation methods for the cdf of a weighted sum of
random variables. This procedure is then used in Sect. 6 to
analyse the performance of approximate methods for the cdf
of a weighted sum of chi-squared random variables. In this
section, RN is a weighted sum of i.i.d. unspecified random
variables (not necessarily chi-squared as QN ). It is assumed
that a method exists for computing the true probability value
FRN (x) for quantile value x , to arbitrary accuracy. However,
the methodmay be too computationally or memory intensive
for routine application.

5.1 Performance of an approximate method for a
particular distribution RN,d

Suppose a method provides approximate probability values
G(x) for a weighted sum of random variables RN . Suppose
further that we wish to determine how close G is to the true
cdf FRN , for a particular distribution RN ,d with weights d =
(d1, d2, . . . , dN ). For a set of probability values

{p1, p2, . . . , pL} , (30)

suppose that the “exact” quantile values

{x1, x2, . . . , xL} (31)

can be computed to an arbitrary precision, perhaps at a prac-
tically unacceptable computational cost, so that

|FRN (x j ) − p j | < ξ, ξ 	 1, j = 1, 2, . . . , L . (32)

In this case, we shall say that the quantiles are accurate to
precision ξ , when we mean that the true cdf will evaluate the
quantile to within ξ of the corresponding probability value.
The errors of the approximate method G, denoted by ε j , are
then defined as

ε j = |G(x j ) − FRN (x j )|, j = 1, 2, . . . , L . (33)

The smaller the ε j , the better thatG approximates FRN for the
probability values p j . By a simple application of the triangle
inequality,

|G(x j ) − p j | < ε j + ξ, j = 1, 2, . . . , L , (34)

is obtained. Therefore, if the x j can be computed to ensure
ξ 	 ε j for all j , it is then only necessary to look at the values
|G(x j ) − p j | to obtain a good approximation for ε j .

5.2 Estimating the accuracy of an approximate method
for RN , for a particular N

The first step to more comprehensively evaluating the per-
formance of an approximate method for distributions with N
terms is to randomly generate a large sample ofM coefficient
vectors dk = (d1,k, d2,k, . . . , dN ,k), where

d1,k, d2,k, . . . , dN ,k ∼ D, k = 1, 2, . . . , M, (35)

for some distribution D, so that FRN ,dk
is the cdf of

RN ,dk =
N∑

i=1

di,kYi , Yi ∼ Y, k = 1, 2, . . . , M, (36)

for some distributionY . The next step is to select awide range
of probability values {p1, p2, . . . , pL}, and then to compute
the quantile values

{x1,k, x2,k, . . . , xL ,k}, k = 1, 2, . . . , M, (37)

so that for some precision ξ , with ξ 	 1,

|FRN ,dk
(x j,k) − p j | < ξ, j = 1, 2, . . . , L . (38)

Finally, the errors ε j,k are computed as

ε j,k = |G(x j ) − FRN ,dk
(x j )|, (39)

for j = 1, 2, . . . , L and k = 1, 2, . . . , M . The set of errors
for probability value p j is defined as

E j = {
ε j,k |k = 1, 2, . . . , M

}
, j = 1, 2, . . . , L . (40)

While it would now be easy to compute max E j and declare
this to be a reasonable upper bound for the error when com-
puting p j , provided that M is large, the following procedure
is preferable because it establishes a probabilistic result.
Define ε̄ j to be the sample mean, s2ε j the sample variance,

and q2ε j the scaled sample variance of E j by the equations:

ε̄ j = 1

M

M∑

k=1

ε j,k, (41)

s2ε j = 1

M − 1

M∑

k=1

[
ε j,k − ε̄ j

]2
, (42)

q2ε j =
(
M + 1

M

)
s2ε j . (43)
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Suppose that ε∗
j is the error for FRN ,d∗ , with coefficient vec-

tor d∗ generated as in Eq. (35). If we assume that the error
values in E j are i.i.d. according to some distribution, then
Chebyshev’s inequality with the sample mean and variance
Saw et al. (1984) gives us, for any δ > 0,

Pr
(
|ε∗

j − ε̄ j | > δqε j

)
≤ 1

δ2
+ 1

M

(
1 − 1

δ2

)
. (44)

If we set the the right-hand side of Eq. (44) to be

αδ,M = 1

δ2
+ 1

M

(
1 − 1

δ2

)
, (45)

then Eq. (44) implies

Pr
(
ε∗
j > ε̄ j + δqε j

)
≤ αδ,M , (46)

⇒ Pr
(
ε∗
j ≤ ε̄ j + δqε j

)
> 1 − αδ,M . (47)

Then ε̄ j +δqε j provides an upper bound for 100(1−αδ,M )%
of all possible errors obtained when computing p j using the
approximate method. In other words, the probability that the
error exceeds the upper bound is less thanαδ,M . For example,
when δ = 10 and M = 10,000 then αδ,M ≈ 0.01, or δ = 32
and M = 10,000 gives αδ,M ≈ 0.001, and so then ε̄ j + δqε j

provides an upper bound for 99.9% for all errors.
The same procedure could be followed to obtain a

bound for the error of computing p j for every p j ∈
{p1, p2, . . . , pL}, and so an estimate of the error for an
approximatemethod of computing probability values for dis-
tributions QN is obtained, for a particular N .

The assumption that the errors in E j are i.i.d. may
seem restrictive, but in fact the errors need only be weakly
exchangeable. Finally, although Saw et al. (1984) give a
slightly sharper bound for the inequality in Eq. (44), its
expression is far more complicated and does not significantly
change the bound for our purposes here.

6 Results

A simulation is performed by computing M = 10,000
sets of coefficients di,k ∼ U (0, 1) for cases where N =
10, 20, 50, 100, and then computing the quantile values x j,k
corresponding to probability values p j ∈ P , where

P = PL ∪ PM ∪ PU

PL = {0.001, 0.05, 0.01}
PM = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
PU = {0.95, 0.99, 0.999} . (48)

For the purposes of discussion below, let us define the
lower tail to be the probability values in PL and the upper
tail to be probability values in PU . Values in PM will be
referred to as middle probability values. Assuming that the
coefficients are sampled from U (0, 1) is not particularly
restrictive; if a particular application uses coefficients that
are known to be bounded, they can be rescaled to the range
(0, 1). Farebrother’s method is used to ensure that the quan-
tiles are accurate to ξ = 10−8 as in Eq. (38). Imhof’s
method could also have been used, but the implementation
of Farebrother’s method in the R package CompQuadForm
(Lafaye de Micheaux 2011) appears to allow a greater preci-
sion to be specified. The analysis is then performed using δ =
32 to obtain an upper bound with confidence αδ,M ≈ 0.001
(see Eq. (45)). The accuracy of each of the four moment-
matching methods in Sect. 3 is computed for all p j , and the
methods are compared side by side in Sect. 6.1. TheLindsay–
Pilla–Basak method is computed for n = 4 (that is for the
first eight moments), and so will be abbreviated to LPB4.
In Sect. 6.4, we then investigate the relative speeds of each
method. Note that none of the sampled coefficient vectors dk
yielded degenerate cases (as mentioned in Sect. 3.4) for the
Wood F approximation.

6.1 Accuracy

The accuracy of the Satterthwaite–Welch (SW), Hall–
Buckley–Eagleson (HBE), Wood F (WF) and Lindsay–
Pilla–Basak with n = 4 (LPB4) approximate methods is
shown in Figs. 1 and 2, for a wide selection of probability
values and a range of values of N . The horizontal axes indi-
cate the value of N , while the vertical axes show the number
of digits of accuracy; the value shown is − log10(ε̄ j + δqε j )

[see Eq. (47)]. Figure 1 groups the values by method, while
Fig. 2 groups the values by probability value.

Figure 1 illustrates several points. The first feature of inter-
est is that the methods generally increase in accuracy as N
increases. There are a couple of exceptions (e.g. p j = 0.999
for the LPB4), but any decrease is minor. This seems to sug-
gest a trend which would continue for N ≥ 100 (indeed,
similar figures showing results for N = 200, 500 and 1000
confirm this). Following this observation, if method A has
number of digits of accuracy a for number of terms N ′, we
shall say that method A is accurate to a decimal places for
N ≥ N ′. As far as we are aware, this observation that the
accuracy of these approximate methods generally increases,
as the value of N increases, has not been noted before and is
not apparent or implied from the construction of the meth-
ods. As already mentioned, previous analyses only focused
on distributions QN for a limited range of N .

If the results shown inFig. 1 for each individualmethod are
now examined, it can be seen that SW is accurate in the upper
and lower tails to at least two decimal places for N ≥ 100.
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Fig. 1 Error of Satterthwaite–Welch, Hall–Buckley–Eagleson, Wood F and Lindsay–Pilla–Basak approximations for varying number of terms
N , grouped by method

Fig. 2 Error of Satterthwaite–Welch, Hall–Buckley–Eagleson, Wood F and Lindsay–Pilla–Basak approximations for varying number of terms
N , grouped by probability value

The HBEmethod is accurate to two decimal places for all p j

for N ≥ 50 and to three places for almost all values in the
upper and lower tails for N ≥ 100. The WF method is also

accurate to two decimal places for p j for N ≥ 50 and is accu-
rate in the upper tail to three digits for N ≥ 50. The LPB4
method is accurate to four decimal places for almost all prob-
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Fig. 3 Error of the Normal approximation, compared to the Satterthwaite–Welch approximation, grouped by method

ability values (only exceptions are a few middle probability
values) for N ≥ 50 and has close to five digits of accu-
racy for the upper and lower tails for N ≥ 100. Note that
Fig. 1 is meant to illustrate the general behaviour for each
method across a range of probability values, as N increases.
In the supplementary material, this figure has been split into
three separate figures, displaying the upper,middle and lower
probability values, for readers who may be interested in the
behaviour for a particular probability value.

Figure 2 shows that over the different probability values,
SW is the least accurate, while LPB4 is clearly the most
accurate, andWF and HBE appear to be essentially matched,
although for most probability values WF has a slightly better
accuracy than HBE (one exception is for p j = 0.975 and
N = 50).

Note that if Imhof and Farebrother’s methods were
included in Figs. 1 and 2, since they are essentially exact
(they will iterate until the desired accuracy is achieved), the
result would be horizontal lines at the level of the accuracy
specified.

One reviewer raised the question of how these methods
perform for very small probability values. An investigation
into the accuracy of these methods for small probability val-
ues in the set {10−4, 10−5, . . . , 10−10} is included in the
supplementary material, which shows that the Wood F and
Lindsay–Pilla–Basak methods perform well for probability
values in this range, but that the Hall–Buckley–Eagleson
method should not be used in this case.

Another reviewer raised the question of how these meth-
ods perform for coefficients that are not U (0, 1)-distributed
or are not i.i.d.. A section in the supplementary material
shows similar performance to that in Fig. 1 for coefficients

that are Beta(2, 5)-distributed, for coefficients that are sam-
pled from a mixture of distributions, and for coefficients
that are highly correlated. These results indicate that the
actual distribution of the coefficients is not too important
when considering the results in Fig. 1. Finally, other sec-
tions in the supplementary material show similar results
for which the variables are χ2(ν) for ν > 1, rather than
χ2(1), and that the accuracy of the methods increases when
N = 200, 500, 1000.

6.2 Comparison to the normal approximation

Although the normal approximation is not considered to be
as good as the four approximations considered above, it is
interesting to investigate how it compares to SW, the simplest
of the approximations above.

The normal approximation is computed in a similar man-
ner to SW. Equating the first two moments of QN with a
N(μ̂, σ̂ 2) variable yields

μ̂ = κ1, σ̂ = √
κ2, (49)

following the definition of the cumulants κ1 and κ2 in
Sect. 3.1. Then FN(μ̂,̂σ 2) is used to approximate FQN .
Figure 3 shows that SWappears to be one decimal placemore
accurate than the normal approximation. The only exception
is for p j = 0.999, where the two methods appear to have
similar accuracy. Even though bothmethods are two-moment
approximations, and the computational complexity is virtu-
ally the same, SW’s use of aGammacdf provides a significant
increase in accuracy over the normal approximation.
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Fig. 4 Error of Satterthwaite–Welch, Hall–Buckley–Eagleson, Wood F and Lindsay–Pilla–Basak approximations for a small number of terms N ,
grouped by method. Note that results are not provided for LPB4 for N = 2, 3

6.3 Accuracy for small number of terms N

It is worth investigating the accuracy of these methods for
the cases where N ∈ {2, 3, ..., 10}. The results of this inves-
tigation are shown in Fig. 4 and show that SW, HBE andWF
will generally give between 0 and 2 digits of accuracy, while
LPB4 generally gives at least 2 digits of accuracy. These
results suggest that when N < 10, these methods should be
used with caution. Note that for N = 2, 3 there are choices
of coefficient vector dk which result in the LPB4 method not
being able to provide an approximation [fails to find roots λ̃r
for Eq. (22)], so values for N = 2, 3 for LPB4 are omitted.

If one were only interested in computing the cdf for a
fixed, small N , then, as one of the reviewers has suggested,
Imhof’s method should be used. However, if the number of
terms N were increasing, as in a change detection scenario
(see Sect. 2), it would be better to use one of the moment-
matching methods for all N .

6.4 Speed of computation

Table 1 shows that while the SW, HBE and WF methods
have similar speeds (of the same order), LPB4 is significantly
slower. This could be due to the iterative methods needed in
steps 3 and 4 of the algorithm (as described in Sect. 3.5)
and the matrix algebra in several steps. Besides the matrix
operations, the LPB method needs to employ root-finding
algorithms (which can be very efficient, but are still iterative).
For comparison purposes, the speeds of the normal approxi-
mation, Imhof’s method and Farebrother’s method have also

Table 1 The time taken (in seconds) for each method to compute M =
17× 10,000 probability values for QN with N = 100, and the relative
speed to HBE

Method Time Relative speed (to HBE)

Normal 1.18 0.45

SW 1.56 0.60

HBE 2.62 1.00

WF 3.14 1.19

Imhof 110.18 42.05

LPB4 892.62 340.69

Farebrother 28,793.98 10,990.07

been included. The normal approximation is slightly faster
than SW, but is much less accurate. Surprisingly, Imhof’s
method is faster than LPB4, but is still over 40 times slower
than HBE. LPB4 is over 300 times slower than HBE. Fare-
brother’s method is significantly slower than any of the other
methods, but it is unclear if this is due to a few problematic
cases, or if this is a general property of the algorithm. How-
ever, the table shows its performance over 10,000 samples,
which gives an indication of its average behaviour.

The four algorithms (SW,HBE,WFandLPB) and the nor-
mal approximation were written in R, while Imhof’s method
and Farebrother’s are implemented in C++ in the R package
CompQuadForm (Lafaye de Micheaux 2011). Note that the
implementation in C++, a compiled language, may explain
why Imhof’s method is faster than LPB4. The speed test
was done on an Apple iMac with an Intel Core i5 (3.2 GHz)
processor (4 cores) and 8 GB of RAM.

123



Stat Comput (2016) 26:917–928 927

7 Conclusion

While Imhof’s method is essentially exact, it is not suitable
for a streaming data scenario, where it is necessary for algo-
rithms to (a) not store all the coefficients of QN , and (b) have
efficient computation. In such situations, moment-matching
methods such as the four described in Sect. 3 may be very
useful.

Choosing between these methods is not a simple matter
of choosing the most accurate. One also needs to consider
the speed of computation, and, to a lesser extent, the ease of
implementation.While Figs. 1 and2 show theLindsay–Pilla–
Basakmethod to be extremely accurate, it is also significantly
slower to compute (see Table 1) and laborious to implement
(Sect. 3.5). If it is not necessary to have four decimal places
of accuracy, other methods could be used.

Of the remaining three methods, the Hall–Buckley–
Eaglesonmethod is perhaps the best alternative. It is one dec-
imal place more accurate in the tails than the Satterthwaite–
Welch method, yet is only marginally slower (see Sect. 6.1
and Table 1), and is essentially as accurate as the Wood F
method, without needing to worry about degenerate cases
(see Sects. 6.1 and 3.4). For this reason, the Hall–Buckley–
Eagleson method is recommended for most practitioners.

This recommendation is based on the observation, reve-
aled by Figs. 1 and 2 and not previously described in the liter-
ature, that the accuracy of the four moment-matching meth-
ods generally increases as the number of terms N increases.

However, as described in Sect. 6.1 and shown in the sup-
plementary material, for very small probability values, either
the Wood F or the Lindsay–Pilla–Basak method should be
used.

Furthermore, Sect. 5 provides a new statistical framework
for evaluating the accuracy of an approximate method for
computing FRN , the cdf of a weighted sum of random vari-
ables RN (for any distribution).

Acknowledgments The work of Dean Bodenham was fully supported
by a Roth Doctoral Fellowship provided by the Department of Mathe-
matics, Imperial College London. All figures were created in R using
the ggplot2 package (Wickham 2009). The authors would like to thank
the anonymous referees for their comments and suggestions which
improved the manuscript.

Open Access This article is distributed under the terms of the Creative
CommonsAttribution4.0 InternationalLicense (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to
the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Bentler, P.M., Xie, J.: Corrections to test statistics in principal Hessian
directions. Stat. Probab. Lett. 47(4), 381–389 (2000)

Bodenham, D.A., Adams, N.M.: Continuous monitoring of a computer
network using multivariate adaptive estimation. In: IEEE 13th
International Conference on Data Mining Workshops (ICDMW)
2013, pp. 311–318. (2013)

Bodenham, D.A.: Adaptive estimation with change detection for
streaming data. PhD thesis, Imperial College London (2014)

Bodenham, D.A.: momentchi2. (2015) http://cran.r-project.org/web/
packages/momentchi2/

Box, G.E.P.: Some theorems on quadratic forms applied in the study of
analysis of variance problems, i. effect of inequality of variance in
the one-way classification.Ann.Math. Stat. 25(2), 290–302 (1954)

Buckley, M.J., Eagleson, G.K.: An approximation to the distribution of
quadratic forms in normal random variables. Aust. J. Stat. 30(1),
150–159 (1988)

Castaño-Martínez, A., López-Blázquez, F.: Distribution of a sum of
weighted central chi-square variables. Commun. Stat. Theory
Methods 34(3), 515–524 (2005)

Davies,R.B.:AlgorithmAS155: the distributionof a linear combination
of χ2 random variables. J. R. Stat. Soc. Ser. C 29(3), 323–333
(1980)

Davis, A.W.: A differential equation approach to linear combinations
of independent chi-squares. J. Am. Stat. Assoc. 72(357), 212–214
(1977)

Ding, C.G.: Algorithm AS 275: computing the non-central χ 2 distrib-
ution function. J. R. Stat. Soc. Ser. C 41, 478–482 (1992)

Duchesne, P., Lafaye De Micheaux, P.: Computing the distribution of
quadratic forms: further comparisons between theLiu-Tang-Zhang
approximation and exactmethods. Comput. Stat. DataAnal. 54(4),
858–862 (2010)

Everitt, B.: Introduction to Optimization Methods and Their Applica-
tion in Statistics. Springer Science & Business Media, New York
(2012)

Fairfield-Smith, H.: The problem of comparing the results of two exper-
iments with unequal errors. J. Counc. Sci. Ind. Res. Aust. 9,
211–212 (1936)

Farebrother, R.W.: Algorithm AS 204: the distribution of a positive
linear combination of χ2 random variables. J. R. Stat. Soc. Ser. C
33(3), 332–339 (1984)

Farebrother, R.W.: Algorithm AS 231: the distribution of a noncentral
χ2 variable with nonnegative degrees of freedom. J. R. Stat. Soc.
Ser. C 17, 402–405 (1987)

Gama, J., Rodrigues, P.P., Spinosa, E.J., de Carvalho, A.C.P.L.F.:
Knowledge Discovery fromData Streams. Chapman&Hall/CRC,
Boca Raton (2010)

Hall, P.: Chi squared approximations to the distribution of a sum of
independent random variables. Ann. Probab. 11(4), 1028–1036
(1983)

Imhof, J.P.: Computing the distribution of quadratic forms in normal
variables. Biometrika 48(3/4), 419–426 (1961)

Jayasuriya, B.R.: Testing for polynomial regression using nonparamet-
ric regression techniques. J. Am. Stat. Assoc. 91(436), 1626–1631
(1996)

Jensen, D.R., Solomon, H.: A Gaussian approximation to the distrib-
ution of a definite quadratic form. J. Am. Stat. Assoc. 67(340),
898–902 (1972)

Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Dis-
tributions, vol. 2. Wiley, Hoboken (1995)

Johnson,N.L., Kotz, S., Balakrishnan,N.: ContinuousMultivariateDis-
tributions, 3rd edn. Wiley, New York (2002)

Lafaye de Micheaux P (2011) CompQuadForm. cran.r-
project.org/web/packages/CompQuadForm

Lindsay, B.G., Pilla, R.S., Basak, P.: Moment-based approximations of
distributions using mixtures: theory and applications. Ann. Inst.
Stat. Math. 52(2), 215–230 (2000)

MacGregor, J.F., Harris, T.J.: The exponentially weighted moving vari-
ance. J. Qual. Technol. 25(2), 106–118 (1993)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://cran.r-project.org/web/packages/momentchi2/
http://cran.r-project.org/web/packages/momentchi2/


928 Stat Comput (2016) 26:917–928

Macon,N., Spitzbart,A.: Inverses ofVandermondematrices.Am.Math.
Mon. 65, 95–100 (1958)

Moore, D.S., Spruill, M.C.: Unified large-sample theory of general chi-
squared statistics for tests of fit. Ann. Stat. 3, 599–616 (1975)

Patnaik, P.B.: The non-central χ2 and F-distribution and their applica-
tions. Biometrika 36(1/2), 202–232 (1949)

Penev, S., Raykov, T.: A Wiener germ approximation of the noncentral
chi square distribution and of its quantiles. Comput. Stat. 15(2),
219–228 (2000)

Pham-Gia, T., Duong, Q.P.: The generalized Beta and F distributions in
statistical modelling. Math. Comput. Model. 12(12), 1613–1625
(1989)

Robbins, H., Pitman, E.J.G.: Application of the method of mixtures to
quadratic forms in normal variates. Ann. Math. Stat. 20(4), 552–
560 (1949)

Satterthwaite, F.E.:An approximate distribution of estimates of variance
components. Biom. Bull. 2(6), 110–114 (1946)

Saw, J.G., Yang, M.C.K., Mo, T.C.: Chebyshev inequality with esti-
mated mean and variance. Am. Stat. 38(2), 130–132 (1984)

Sheil, J., O’Muircheartaigh, I.: Algorithm AS 106: the distribution of
non-negative quadratic forms in normal variables. J. R. Stat. Soc.
Ser. C 26(1), 92–98 (1977)

Solomon, H., Stephens, M.A.: Distribution of a sum of weighted chi-
square variables. J. Am. Stat. Assoc. 72(360a), 881–885 (1977)

Uspensky, J.V.: Introduction to Mathematical Probability. McGraw-
Hill, New York (1937)

Welch, B.L.: The significance of the difference between two means
when the population variances are unequal. Biometrika 29(3/4),
350–362 (1938)

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer,
New York (2009)

Wood, A.T.A.: An F approximation to the distribution of a linear com-
bination of chi-squared variables. Commun. Stat. Simul. Comput.
18(4), 1439–1456 (1989)

Ye, N., Borror, C., Zhang, Y.: EWMA techniques for computer intru-
sion detection through anomalous changes in event intensity. Qual.
Reliab. Eng. Int. 18(6), 443–451 (2002)

Zhang, J.T., Chen, J.: Statistical inferences for functional data. Ann.
Stat. 35(3), 1052–1079 (2007)

123


	A comparison of efficient approximations for a weighted sum  of chi-squared random variables
	Abstract
	1 Introduction
	2 Approximations in a streaming data context
	3 Efficient approximate moment-matching methods
	3.1 Computing cumulants and moments
	3.2 Satterthwaite--Welch approximation
	3.3 Hall--Buckley--Eagleson approximation
	3.4 Wood F approximation
	3.5 Lindsay--Pilla--Basak approximation
	3.6 Sequential implementation

	4 Evaluation of approximate methods for computing FQN in the literature
	5 A new method for evaluating the performance of an approximate method for a cdf of a weighted sum of random variables
	5.1 Performance of an approximate method for a particular distribution RN, d
	5.2 Estimating the accuracy of an approximate method for RN, for a particular N

	6 Results
	6.1 Accuracy
	6.2 Comparison to the normal approximation
	6.3 Accuracy for small number of terms N
	6.4 Speed of computation

	7 Conclusion
	Acknowledgments
	References


