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The relations from which Young's modulus may be computed from mechanical flexural
and longitudinal resonance frequencies have been established by an empirical method using

two sets of steel bars.

Both sets contained rectangular and eylindrical specimens.

For

longitudinal vibration of evlindrical specimens, the agreement between the empirieal eurves
and Baneroft's corresponding theoretical relation was within experimental error if Poisson’s

ratio for both sets is taken to be 0.292.

For flexural vibrations, the agreement between the

empirical curve and the eorresponding theoretical relation developed by Pickett is also with-
in experimental error for about the same value of Poisson's ratio for the reetangular speci-
mens of both sets: but for eylindrical specimens, the empirical values are somewhat lower

than those predicted by the theory.

1. Introduction

In a previous paper, [1] ! an empirical relation was
established from which the shear modulus could be
caleulated from the torsional resonance frequency
using uniform steel bars of different rectangular cross
sections.  The empirical relation was compared with
corresponding theoretical approximations.  The pur-
pose of the present paper is to establish similar rela-
tions from which Young’s modulus may be deter-
mined from the flexural and longitudinal mechanical
resonance frequencies for bars of round and rectangu-
lar cross section.  These empirical relations are also
compared with corresponding theoretical equations
when feasible,

As in the previous work, advantage is taken of the
fact that these resonance frequencies can be deter-
mined to an accuracy which, when combined with
comparable accuracy of dimensions, is sufficient to
yvield empirical results good to four significant
ficures,

In faect, it is this inereased accuracy to which
modern experimental techniques have advaneced
dynamic elastic measurements that has made it
possible to check in a more precise manner the
theoretical results of such analysts as Rayleigh,
Kelvin, Poisson, and Stokes [2].

As usually happens in such eases, this inereased |

experimental accuracy has, in turn, led to a refine-
ment and extension of the theory. Some equations
had lain dormant for many vears because, though
presumably “complete’” and “correct,” they were
nevertheless expressed in so general a form that
numerical solutions for most real cases were too
cumbersome to be of practical value. Such equa-
tions have recently been solved for given boundary
conditions. These solutions have often taken ad-

I Figures in brackets indicate the liternture references at the end of this paper,
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vantage of modern computing devices. A particular
case in point is the set of Pochhammer-Chree equa-
tions, relating the most general case of elastic waves
in rods to their elastic moduli. These equations,
almost forgotten for more than 50 years, were solved
by Baneroft [3] for the case of longitudinal waves
and by Hudson [4] for flexural waves. A recent
article by Davies [5] presents a comprehensive re-
view and bibliography of the advances in this field
up to the present time.

For Young’s modulus, the problem of establishing
an empirical relation is complicated by the fact that
the eross sectional correction for both flexural and
longitudinal vibrations depends upon Poisson’s ratio
as well as the dimensions. This is in contrast with
shear for which the cross sectional correction is
independent of Poisson’s ratio.  Consequently, the
results to be presented here are more limited than
those previously given for shear since these results
apply mainly to those materials having Poisson’s
ratios approximately equal to those used here,
Furthermore, when comparing the empirical with
theoretical relations, any error in the value of Pois-
son’s ratio assigned to the specimens would result in
a corresponding error in the comparison of the cor-
rection factors. This error would increase as the
ratio of eross section to length increased.

2. Experimental Procedures

2.1. General

The basic experimental approach consists in de-
termining the flexural and longitudinal resonance
frequencies of specimens of known mass and dimen-
siong, and assuming their uniformity of Young’s
modulus and density, to derive the empirieal relation
needed for the determination of Young's modulus
from the mechanical resonance frequency. Data to



be presented later will show that the assumption of
uniform density and Young’s modulus is quite
justified.

2.2. Specimens

Two separate sets of steel specimens were used in
this investigation. Each set of specimens was cuf
from its own parent piece to insure the greatest
possible uniformity of intrinsic Young's modulus
and density from specimen to specimen within each
of the two sets.

One source was a eylindrical bar of cold drawn
steel about 1 in. in diameter, designated as SAE No.
1020. Originally 18 specimens, I-5 through 1-22,
ranging in length from about 3 to 12 in. were cut [rom
the parent stock. Subsequently some of these rods
were further shortened or machined to square cross
section to extend the range of the experimental data.
All of the specimens from this source are henceforth
classified as set 1. Exact dimensions and other
related data for set T are given in table 1.

TasrLe 1. Data for specimens of set I+

Speci- | Length | Density | f(long)b | fiflex)b kfl e | /oy i i
men I p | empirieal | empirieal
| [
e glemd cps cps
5, 050 7. 849 50, 253 41, 310 0. 12565 0. (1851 | 2.1234
5, 118 7.850 | 49,608 | Li%s 12396 L0857 | 2. 0807
5, 354 i F-7 L1 | | 180 | 1, D908
&, Bah 1. . = b P s 1. 9206
7. 511 16, 605 L0847 D029 1. 5424
7. H%d 16, 341 . 8366 La0as 1. 5320
7. 760 15, 743 . DR176 AR 1 5077
10, 117 06272 . 9965 1. 3085
10. 224 7. 846 i L a0 . BGG 1. 3024
14, 790 7. 851 380 L 04289 . 085 1. 1475
14,958 7.853 17,180 L4241 . hos2 1. 1447
14, 968 7.80 17, 185 WISt . 9984 1. 1438
15, 118 17, m4 . 04196 1.
15,235 16, 883 L0164 . BUSE »
19, 736 ‘ 14, 037 L3214 . BUsh | 1 b
149, 985 | 12,875 03174 . Oash L 08
22. 951 11, 13 . 02766 e | 1. D
25, 641 10, 038 02475 . 9003 1.
20, 087 L2116 L ae7 1.
a0, 201 ‘ 02101 . 9995 i
30, 500 7.8562 1,220 . 02080 L onG 1. 0353
a0, 554 7. 850 1,225 02076 o Hues | 1. 0350
5177 7,840 26,704 | . 10020 1. 7649
6, 942 | T84 | ... _.._.| 16,415 L7473 .. 1. 4445
14. 968 7. 850 17, 188 4,043 L3464 . DOSE 1. 1016
19.736 | 7.848 ‘ 13, 039 2,870 . 02627 5991 1, 0R10
25, 641 T.847 | 10,038 1,421 | 02023 L9992 1, 0360

+ All specimens except those followed by a letter are 2.5378 em in diameter,
Those followed by a letter are 1.79-cm square.
b Fundamental lonTitudinal and flexural resonance frequencies,
e k=radins of gyvration of the eross sectional area about an axis perpendicular
to the plane of vibration .
for round specimens k=14 diam =0.63445 em,
for square specimens k=edge/+/12=0,51846 cm,
for eylindriecal specimens, DA=2k11
where D=diameter of specimen and A=wavelength of longitudinal wave,

The other source of specimens was a bar of 2-in.
square stock of hot rolled and annealed tool steel
designated by the trade name “Stentor.” The
original specimens from this source were the same
12 pieces (IT-1 through I1-12) of equal lengths but
different rectangular cross sections that were used

in the investigation for shear modulus [1]. As for
set I, some of these specimens were further reduced
in dimensions or machined to circular cross section,
All specimens from the second source are classified
as set I and data for these specimens are given in
table 2.

The dimensions of both sefs of specimens are
accurate to #.001 em. The density was calculated
from the mass and the dimensions of the specimens.
The average density for the specimens of set 1 was
7.851 g/em?®, and that of set IT was, as previously
given [1], 7.814 g/em®. The standard deviation of
this measurement was 0.002 g/em?® for both sets.
This small variation in density is good evidence for
the intrinsic uniformity of the specimens of each set.
Although the density variations are within the error
of the measurement, the mass and dimensions of
each particular specimen were used in most ealeula-
tions rather than the average value of density. The
density of some randomly selected specimens of both
sets was also checked by weighing in air and while
immersed in liguid and was found to agree with the
above values within the error of their determination.

Actually, for the specimens of set I1, the density,
p, by the immersion technique was found to be
7.816 g/em?®. Subsequent determination of p, caleu-
lated from the mass and volume of two specimens
machined to a higher degree of accuracy than the
others (specimens IT-4r; and I1-4r,), agreed with the
value obtained by immersion and is believed to be
the most reliable value for the specimens of set I1.

2.3. Method

The mechanical longitudinal and flexural resonance
frequencies of both sets of specimens were deter-
mined by the dynamie method previously deseribed
[1]. Briefly, one of the mechanical resonance
frequencies of the specimen is excited by an electro-
magnetic driver.,  The inereased amplitude of vibra-
tion of the specimen at resonance is detected by a
cryvstal pickup whose output, together with a signal
of the same frequency, produces a Lissajou pattern
on a eathode-ray oscilloscope.  The different types of
vibrations are obtained by appropriate placement of
the driver and pickup with respect to the specimen.

As with torsional vibrations the longitudinal and
flexural resonance frequencies were exeited and
detected by more than one method.

In the first method the specimens were supported
on foam rubber in the vieinity of the nodaf points
and driven through air by a tweeter type driver. A
crystal pickup placed lightly against the proper part
of the specimen detected the vibrations. Both
longitudinal and flexural vibrations could be ob-
tained by this method.

The second method could be used only to obtain
flexural vibrations and was most appropriate for the
lichter specimens. This method consisted in sus-
pending the specimens from two cotton fibers, one
fiber being attached to a phonograph record cutfing
head as the driver and the other fiber being attached
to a erystal pickup. Unlike the ecase for torsion, it
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TavLe 2.

Data for specimens of set IT

Reetangular specimens
Specimen » Flatwise Edgewise
Length Width Depth Density | e e e e T2
{ 1w d P |
| kit fillex) T kil b Sf(flex) T
om e cm glem ops ! eps eps
JI-1 15, 202 4. 1406 3, 1406 7.817 0. 05681 G411 1.2015 | 0, 05681 G411 1. 215 17, 046
11-2 15. 202 &, 1483 2. 5405 7.819 . (M825 5370 1. 1036 L (5b6H liEitt 1. 2010 17, (53
I3 15. 202 4. 1433 1. 9056 7.814 SRR 4154 1.1112 L 5060 GRS 1. 2623 17, G2
114 15, 202 a. 1488 1. 5875 T.RIT U015 do88 | LUTTS L agh £400 1, 2608 17, 065
“1I-5 145, 202 a4, 1433 1. 43060 7. 814 L2716 S0 1. 06a 5 L D505 a7 1. 2026 17, ity
11-6 15202 | 4. 1433 1. 2708 7. 816 L2413 p.tirg 1. 0514 L Da06g G306 1. 2615 17, U6t
I-7 15,202 3. 1433 1. 1120 T.812 022 2523 1. (M03 L5069 it 1.2921 7,0m
-8 15,202 PR H] 0. 9530 7.812 L O1810 2172 1. 0304 L Oab6n Hiaed 1. 2041 17, 067
110 15,202 o, 1433 LTI 7.813 A0S 1820, £ 1,084 L I5B6Y GEIEH] 1. 2016 17,075
I1-10 15, 202 4. 1433 L G363 7.815 L1208 1464, 4 1.0118 L Q506N 400 1. 2912 17, 070
11-11 | 15, 202 4, 1433 ATTS 7.811 RUGEL 1101.1 1. 00| . D5i6g (iR 1. 2019 17, 070
1I-12 15202 31433 L3172 7.814 L D602 7430 1. 0028 L 050G G306 1, 027 17, 064
I1-2a 7,882 2. 5405 7.814 CUWB06 | 16, 041 1. G0 11613 19, 203 (I LU —
11-2h 7.0 2, 5405 T.817 L 10463 20, 432 1. 8207 12045 22, 034 22082 1
11-3a 7. 56 1. G065 7.818 720 14, 454 L. 4255 2028 2), 495 2 0732
11-3b 7249 1. 8055 TRIT L7580 16, 052 1. 484 12519 21, 789 RABF s e
11-10a 15.202 | 2. 0674 (), s | 7. 816 OF20s 1460.7 1. 0147 L 3007 4475 1. 134 L
11-10h 15. 202 (0. G20 Ri% 1T | T.814 . 01220 e = e s B - 17, 100
Cylindrical specimens
Length | Diameter Density kile fillax) T fllong) EA
i ] D a
|
P S — - ) | |———— e
II-1r 14. 364 3.1252 7.816 LRI S i 1. 2384 18, 0467 0. 8978
11-2ar 7.315 2 iy 7,812 L (18350 17,102 1. 5429 35, 320 . 944
11-3hr . 447 1.8124 7.812 L 07020 17, 140 | 1. 3882 40, 145 - 5T
I-4r; 14, B | 1. 2845 7. 816 218G 2708, & 1. 0404 17, 714 « (G
1I-4ry 1.2843 7. 816 02180 2708, 3 ‘ L 407 17,715 U

14, 668 |

& Letter following specimen number indicates that the specimen has been
redimensioned. Number denotes original specimen, A second letter indicates
8 second change in dimension,

b k=radins of gyration of the cross sectional area about an axis perpendicular to

was not necessary for the points of suspension to be
at opposite faces of the specimen.

A third method, combining certain features of the
first two, consisted in suspending the specimens from
two cotton fibers as in the second method but
driving them through air with a tweeter and detect-
ing the vibrations with a erystal pickup as in the
first method. This third method could be used to
obtain both flexural and longitudinal vibrations and
was satisfactory for heavy as well as light specimens.
The highest resonance frequencies could be obtained
most readily by this method.

The accuracy of the resonance frequencies obtained
by the last two methods was usually somewhat
better than that obtained by the first method.
However, by any of these methods, the accuracy of
the resonance frequencies was usually better than 1
part in 4,000 [1].

The fundamental longitudinal and flexural reso-
nance frequencies for the speeimens of sets 1 and 11
are given respectively in tables 1 and 2. Inasmuch
as the specimens of set I are rectangular in cross
section, two separate flexural resonance frequencies
occeur about both longitudinal planes of symmetry
(flatwise and edgewise). The fact that the edgewise
flexural frequency is the same for specimens I11-2
through I1-12 is of considerable significance as will

For rectangnlar specimens in flatwise vibrations,
A12.
Binee, for the fundamental longitudinal

the plane of vibration.

ke=d| ‘1'12; for wise vibration k=
e For eylindrieal specimens, k=1)/4.

resonance frequency, A=2, kil=d/2x,

be explained. Table 3 gives frequencies of overtones
of longitudinal resonance vibrations of four speci-
mens of set I and one specimen of set 11,

It may be observed that longitudinal resonance
frequencies of over 50,000 ¢ps are recorded for both
fundamentals and overtones. These remarkably

TarrLe 3. Overtones of logitudinal resonance vibrations of several
cylindrical specimens

Frequency | Dix=r/l Boen
Fundamental (n=1) 8525 0. 04202 (0. 9095
et T Ist overtone  (n=2) 17027 . 08405 . bos2
S e ie 2d overtone  (n=3) 25491 . 12607 . 9063
Specimen I-20 134 overfone  (n=4) 33508 S 16800 0036
4th overtone  (a=5) 42218 . 21012 . GO00
Fundamental (n=1) 8442 . 4160 . D006
Qet T 1st overtone (n=2) 16858 . 08321 . D981
7 2 overtone  (n=3) 25238 . 12481 . 0961
Specimen 1-21
SRer ad overtone  (n=4) HAG60 L 16642 . 9935
ith overtone (n=3a) 41500 . 20802 . SO0
Fundamental (n=1} 8587 04232 L9997
Set I 15t overtone (n=2) 17154 . 08464 . Buss
Specimen 1-19 ) 2d overtone  (n=3) 25683 L 12606 . G966
3d overtone  (n=4) J4146 . 16528 . 4938
Het 1 Fundamental (n=1) 1287h . 6348 . DORG
Specimen I-10 Lst overtone  (n=2) 25692 . 12696 . BO67
Set 1T Fundarmental (n=1) 18057 | . 10878 L U978
Specimen 11-171 180 overtone  (n=2) 35823 21756 . 0808
Skec 2d overtone  (n=3) G284 L 32634 L9741

s For set I specimens, = 5152 m/see; for set II specimens, fo=5199 m/see.
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high values of resonance frequency which can be
excited and detected by a method sometimes de-
seribed as “sonie,” are explained by the nature of
the specimens and also by the fact that the response
of both driver and pickup, though reduced, persists
at frequencies considerably above their rated upper
frequency limit. This reduced response is amplified
and detected as a recognizable pattern on the scope.

Sinece the upper frequency response obtained is
more than 2! times higher than the nominal upper
limit of the sonic range and will probably go higher
as experimental techniques improve, it is TFelt that
the term, “mechanical resonance methods,” would
be more appropriate than “sonic methods” to de-
seribe the experimental procedure used.

3. Calculations, Results, and Discussion

3.1. Longitudinal Resonance Frequencies for Cylin-
drical Specimens of Sets I and II

The following relations for this type of vibration
are recalled. First, a rod vibrating in this manner
satisfies the condition that

l=n)\/2 (1)

where [=length of specimen, n=order of resonance
frequency. For the fundamental, n=1, for the first
overtone n=2, etc., A=wavelength of the vibration
in the specimen. "This leads to the well-known
relation between the velocity of the longitudinal
wave, #, and the longitudinal resonance frequency,
Tus

:gLr‘}fﬂ

o

(2)

The subseript after the [ indieates the order of the
resonance frequency.

For an infinitely thin specimen of length /, »
becomes the “rod velocity,”” ». Rayleigh’s Tamiliar
approximation, given below, shows the amount
by which #, in a specimen of finite circular cross
section is reduced from .

i l:l _|_(7rnm ) :I )

where p=Poisson’s ratio and r=radius of the rod.

The relation showing the effect of cross section is
often expressed in terms of p/p, as a function of
D/x, D being the diameter of cross section. This
convention will be followed here. From eq (1) it
is seen that D/x=unr/l.

Empirical values of »/s, can be conveniently eal-
culated after the value of 1, has been determined.
We consider first the specimens of set 1. Substitu-
tion of the appropriate values for the longest speci-
men, [-22, (having the lowest #/I) in eq (3) shows
that »=0.99962,. Specimens 1-19, 1-20, and
I-21 are sufficiently long to give an average for
the ratio, #/y, from eq (3) equal to that for specimen
1-22. At the low values of r/l associated with these
specimens, the choice of a proper value of g is no
problem, since any reasonable variation about the

selected value of 0.3 (say from 0.26 to 0.32) will
have only a negligible effect on the result. Also,
at such low wvalues of »/l any difference between
Rayleigh’s and corresponding equations, such as
Baneroft’s, will also be negligible. Therefore, the
average value of »,=5152 m/sec, obtained by sub-
stituting the values for these four longest specimens
in eq (2) and dividing by 0.9996, is taken to be the
rod velocity for the specimens of set I.  The empirical
values of #/p, for the remainder of the specimens of
set I are then found from the following equation

i 2bfn .

U= T52n )
These #/p, values are given numerically in table 1 and
graphically, as a function of D/ in figure 1.

The empirical values of »/p, for the specimens of
set IT are found in the same manner. The reference
specimens in this case, having the lowest value of
rl/l, were 11-47, and II-47.. These are recalled to
be the specimens that were more accurately machined.
The purpose of this was to obtain a more reliable
base value. For these specimens, »/5,=0.9996,
re="5199 m/see, and empirical values for the (1(]1(_’[
specimens are found from the equation

2/ f
fas i
o=t (4a)
S A199% :
- ——=.
BANCROFT,1+25 |
L "\ RAYLEIGH L= 25 d
990— X g =
b empRGA. [\
985 |- AND iy
| BANCROFT, (1 - 292
Y il
L N
\
980 |~ o =4
L BANCROFT, 1+ 30 i
o-FROM FLINB-AMENTN_l
| s-FROM OVERTONES -
| »-FROM FUNDAMENTAL |
+-FROM OVERTONES _| 01 U
o975 f— dil
- \ II) ol
\ El
b= . IIII
70 . ' : (S
) 20 20 40
o'

Froure 1.  Effect of the ratio of diameter (D) to wavelength (N)
on the ratio of the velocity of the longitudinal wave (v) to the
rod velocity (vo) for two sels of eylindrical steel specimens.

Theoretical curves are included for comparison.,
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Numerical values of »/p, for these specimens are
given in table 2 and are plotted along with those of
set 1 in figure 1,

For both gets of specimens, »/p, for higher values
of D/\ was obtained both by vibrating the shortest
specimens at their fundamental resonance frequency
and also (since D/A=un »/l) by vibrating some speci-
mens at higher overtones.  The data Jm these over-
tones are found in table 3.

It is observed from figure 1 that not only do the
empirical points fall on the same curve, within experi-
mental error, whether determined from the funda-
mental or overtones of either set of specimens, but
also the points for both sets of specimens also fall
on this same curve.

Since », and the density, p, are known, Young's
modulus, £, can be determined for each set of speci-
mens from the equation,

B=n*p (5)

-2084 kilobars,

for set I, E=2084X%10" dynes/cm?
and for set 11, /£=2113 kilobars.
Bancroft’s [3] numerical solution of the Poch-
hammer-Chree equation for longitudinal waves has
already been mentioned. His values for p=0.25
and p—0.30 are plotted, along with values based on
Rayleigh's equation for p=0.25, in figure 1. Ban- |
croft’s solution is seen to reduce 2/p, by a greater
amount than Rayleigh’s for a given value of w. |
Since Baneroft’s solution is considered more exact
than Rayleigh’s, comparison of the empirical points

will be made with Baneroft. Graphical inter-
polation between Bancroft’s values for p=0.25 and
£=0.30 at D/A=0.25 shows the empirical curve to

agree with Bancroft for the case where p=0.292.
That is, if the w of the specimens of sets [ mul 11 is
0.292, then agreement of the empirical with Ban-
eroft’s solution would be within the error of the
measurement.

It would be desirable then to obtain an independ-
ent value of x as a further cheek.  The method that
appeared most feasible for this was to determine
the shear modulus, @, from the torsional resonance
frequency and then, since £ is already known, to
compute g from the well-known relation between
Ll and G for isotropie materials,

E N
#72—0—1' (6)
For the specimens of set 1L, ¢ is already known from
the previous investigation [1] to be 822.1 kilobars,
For the specimens of set I, however, it was not pos-
sible (at first) to detect the torsional resonance fre-
quency of the round bars by any of the variations of
the method previously deseribed.”  To eircumvent

# Bubsequently, by the use of an improved driver and suspension of the speei-
mens from strings as already described, the torsional resonance frequencies were
obtained for eylindrical bars of sets I and 11, The average values of (¢, ealeulated

from these resonances, were in agreement with those given in the text,

5355695—60——2

this difficulty, three of the specimens were machined
to square eross section.  This was in fact the original
reason for squaring some of the round specimens of
set 1. (These squared bars incidentally provided
additional specimens for which longitudinal and flex-
ural resonance frequencies could be determined. It
can be seen from table 1 that for specimens of this
size, the effect of cross section in reducing the rod
veloeity is of the same order of magnitude as for
circular ecross section.)  For square specimens the
torsional resonance frequency, and hence @, can be
obtained in the manner deseribed in the previous
paper [1].

Two of the longer and one relatively short speci-
men were selected. A square rather than rectangular
cross section was chosen because the shape factor for
square cross section is believed to he more accurate
[1] and would therefore lead to a more accurate
value of 6.

The value of & obtained for specimens I-12a,
I-15a, and I-18a, of set I, were 820.5, 821.6, 820.5
respectively, with an average of 820.9 kilobars.

Substituting the known values of /£ and ¢ for
both sets of specimens in eq (6) vields the following
values for p: For set I, x=0.269 and for set II,
u=0.285,

The physical constants obtained for sets I and 11T
are now summarized in table 4.

It appears far more likely that the value of

=0.292 is closer to the frue value for both sets of
specimens than the values obtained from eq (6).
This belief is supported by the following evidence.

Tasre 4. Physical constants of twa different sets of steel
specimens

Set T et 11
“rod veloeity™ ~mjsee.. 5152 5199
p. donsity - .glem?. . 7.851 7.816
I, Young's modulus _-kilobars.__ 2084 2113
7, shear modulus, — kilohars. . 820. 9 §22.1
u, Poisson's ratio______ T 0, 265 » 0.285»

From Bancroft, p=0.262 for both

v Derived from &
sels.

and ¢ values and eq (6).

The value of p for steel usually found in the
literature is around 0.29. Markham [6], for instance,
measured £ and & for 10 diff erent types of steel by an
ultrasonic method and, from these elastic moduli,
caleulated w. His values for g varied between 0.286
and 0.292 with an average of 0.289, Analysis of
Markham’s data shows that the variation in values
of u given for the different types of steel can be
accounted for completely by precision in measure-
ments of /£ and @, given by Markham, rather than by
any differences in the values of I and ¢ themselves.
Therefore, the average value of x=0.289 for all the
steels may be taken as characteristic of each of them.
Thus 1t appears that though £ and ¢ may be differ-
ent for different types of steel, these elastic moduli
vary concomitantly so that g remains constant.

If £=0.292 is correct for the specimens of sets 1
and 11, then a possible explanation for the lower
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values of p obtained from eq (6) lies in the fact that
a preferred crystal orientation develops in the steel
during the process of manufacture. Consequently,
the assumption of macroscopic isotropy resulting
from a completely random crystal orientation is not
entirely fulfilled, and eq (6) which is based on this
assumption, is not entirely valid for these specimens.
Frankland and Whittemore [7] have demonstrated
that the average E for specimens of “black’ sheet
steel cut perpendicular to the direction of rolling is
significantly different from the average [ of speci-
mens cut parallel to the direetion of rolling. In
this connection, it is noteworthy that for the speci-
raens of set I, in which the process of repeated cold
working of the parent gtock results in a more pro-
nounced erystal orientation, the value of u departs
by a greater amount from the “correct’” value, than
for the specimens of set II, where the process of
annealing of the parent stock largely restores the
random ecrystal orientation. Indeed, the value of
in the specimens of set II from eq (6) is in good
agreement with the values found in the literature
and with that based on Baneroft in this investigation,

Also, it appears from the fact that the empirical
points of #/p, for sets T and 11 lie on the same line,
that the value of g for both sets of specimens is the
same. This does not prove that the value of u
based on Baneroft is “correct” but it does make it
improbable that sets I and 11 should have different
values as the results based on eq (6) would indicate,
for it would be a most unlikely coincidence that any
error resulting from interpolation from Baneroft
should lead to the same value of g, if the u of both
sets of specimens were actually different.  Further-
more, the agreement in g for both sets of specimens
is in accordance with Markham's data.

The alternative possibility to explain the diserep-
ancy in g, is that the values based on eq (6) are
correct, and that Baneroft's correction for cross
section and consequently, the value of g based on it
are incorrect. Inasmuch as this alternative involves
the (at least partial) rejection of Baneroft’s
theoretical equation as well as the value of g for
steel found in the literature, both widely accepted,
its correctness appears most unlikely.

3.2. Longitudinal Resonance, Rectangular
Specimens

The longitudinal resonance frequencies of the
rectangular specimens of both sets are listed in
tables 1 and 2 but will not be considered here. 1t is
planned to discuss these in a subsequent paper. 1t
will merely be noted here that specimen I1-10 b,
having a small nearly square cross section, had a
considerably higher resonance frequency (17,100
cps) than the other specimens of the same set.
Substituting the resonance frequency and length for
this L,pemmon in eq (2) yields a value of »=5199
m/sec in agreement with », for this set. This value
would be expected for a round specimen of the
same k/l.
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3.3. Flexural Vibrations, Szts I and II

Flexural vibrations are probably of more practical
importance than longitudinal as a means of de-
termining Young’s modulus because flexural vibra-
tions can usually be excited more easily than longi-
tudinal. This is especially true for thin specimens.
Thus, for these thin specimens where any error in I
due to an error in the correction for cross section
would be minimized, the longitudinal resonance
frequency is relatively difficult to obtain, whereas
the flexural resonance frequency becomes experi-
mentally easier to excite. Henee a reliable relation-
ship from which £ may be determined from the
flexural resonance frequency becomes important.

Hudson’s [4] numerical solution of the Poch-
hammer-Chree equations for flexural waves has
already been mentioned. Unfortunately, no com-
parison can be made between Hudson's results and
the empirical ones, beeause no simple or clear-cut
relation has been found to exist between the length
of a traveling flexural wave in a very long bar and
the length of bars vibrating in flexural resonance.
Consequently, one relies on a direct relation between
Young's modulus and the flexural resonance fre-
(uency.

Goens [8] has solved Timoshenko's [9] equation
relating Young's modulus to the flexural resonance
frequency for bars of different cross section. Pickett
[10] has further simplified Goen’s solution. Goen’s
solution can be expressed in the following form:

)W;') J
~ _l: lem {jl @)

where f, in this case, is the flexural resonance fre-
quency; £ is the radius of gyration of the cross sec-
tional area about an axis perpendicular to the plane
of vibration. For a rectangular cross sectionk=1/4/12
t being the dimension in the direction of vibration.
(The depth and width interchange as ¢ depending on
whether the vibration is flatwise or edgewise.) For a
circular cross section, k=r/2; m is a constant which

has higher values for higher overtones, for the
fundamental m=4.730; 7 is a correction factor

which varies with &/l and g Pickett used subseripts
for m and 7" since both factors vary with the order
of vibrations. Sinee only the fundamental flexural
resonance frequeney is considered here, the subseripts
are dropped.

For eylindrical bars eq (7) becomes

’“’] o, (7a)

and for rectangular bars eq (7) becomes

E—0.9464 [”T’]p T

r—1.2619

(7b)



Pickett "'l\'(“w algebraic equations relating 7' to
kil for u= 0 ¢, and %. In addition he gives numerical
solutions of lhvw equations for particular values of
kI and (rl ll])'lk based on these solutions.  The graphs
for u=15 and Y%, the two values which span the range
of mterest for steel, are reproduced in figure 2 from

Pickett's numerical values. 7" approaches 1 as I/l
approaches 0 for all values of .
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Frovre 2. Ewmpicvical and theoretical curves showing the effeel
of k/L on the correction factor, T, for flexural vibrations,
k1 i5 the ratio of the radius of gyration of the cross sectional area about an axis

werpendicular to the plane of vibration to the length of the speeimen, Sets [ and
1 represent two separate sets of steel bars,

According to eq 7b, for a given value of £, the
flexural resonance frequencies of rectangular speci-
mens are independent of the dimension perpendicular
to the plane of vibration. Pickett shows in the
appendix of his paper, which deals with the problem
more rigorously, that in the extreme cases of an
infinitely thin bar or an imnfinitely wide slab, this
dimension (perpendicular to the plane of vibration)
does slightly affect the flexural resonance frequency.
However, for the specimens used in this investiga-
tion, this correction would be insignificant.

This means that if the specimens of set IT are
really uniform with respeet to /£ as well as p, then
the edgewise flexural resonance frequency of speci-
mens [1-2 through T1-12 should all be equal, since
the only variable for these specimens is the dimension
perpendicular to the plane of vibration. The degree

of agreement in this frequency is a eritical indieation
of the intrinsic uniformity of the specimens, Thp
variation in_ frequency is insignificantly small,
shown in table 3. Therefore, the apw‘lmmm mu-,t.
be uniform with respect to F as well as p! The
importance of this result ean hardly be overempha-
sized, since the uniformity of the specimens with
respect to £ and p is the foundation of the entire
empirical approach.

For the specimens of set I no such conelusive check
on the uniformity of /¢ is possible, so that the uni-
formity of p must serve as indireet evidence of the
uniformity of £, However, the evidence just pre-
sented for the specimens of set 1T makes it more
likely that the same situation holds for the specimens
of set 1.

The empirical values of 7" are obtained by substi-
tuting the base value of / for each get of specimens,
eiven in table 4, and the other appropriate param-
eters for each specimen, 21l of which are known from
tables 1 and 2, in eq 7a or 7h.

It 1s interesting to compare the values of /£ which
result from a determination hased on eq 7a and 7h,
using 7' obtained directly from Pickett, with the
base values of £ used above. For this purpose,
only those specimens of each set are used which have
the lowest values of k// because for these, as was the
case for longitudinal vibrations, it can be seen [rom
the theoretical curves in figure 2 that an error in
tht‘ choice of g would cause rm]\‘ i negligible error
in 7. Values of K for these specimens of low k/ A
are given below:

Set I, average of specimens [-19, 1-20, 1-21, and
1222085 kilobars;
[I, average of specimens 11-4r; and IT-4r,—
2113 kilobars;
Set IT, average of specimens [1-11 and T1-12-
kilobars,

-2115

These values are seen to be in excellent agreement,
with those based on longitudinal vibrations and
given in table 4. The values based on longitudinal
vibrations are used in establishing the empirical
values of 7" because the equations on which they are
based are established by long usage.

The empirical values of 7" are given numerically
in tables 1 and 2 and are plotted as a function of
/l in figure 2. The average value of 7" obtained
from the edgewise flexural resonance frequency for
specimens 11-2 through 11-12 of set IT provide a
single point which is designated in the figure. Figure
3 shows the same data in an expanded form.

The values for 7 from Pickett, for g=0.29 given
in figure 3, were obtained by a quadratic interpola-
tion [rom Pickett’s s equations for u=0, 1/6, and 1/3?

1 The actual equation used for this interpolation was:
T=1470.02 (14-0.0752 p40.8100 u*) (k(D2

(,.) 1201 (140207 u-+2.178 48 (kD1
134 170,06 (140, 14081 u+1,536 uf) (kD)2
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traling (a), separation of empirical correcivon factor for round
and rectangular spectmens, and (h), departure of all empirical
points from theoretical (solid) curve for p=0.29.

Frovne Expanded method of showing data in figure 2 illus-

Bquare symbols represent rectangular specimens; round symbols represent
evlindrieal specimens; hollow symbols, set I; solid symbaols, set IT; symbols with
crosses, special group (footnote 4},

The computations involved in obtaining 7" for a
given value of u from this equation are obviously
more cumbersome than from the corresponding one
given in the ASTM Book of Standards, pt. 3, p. 1355,
1955 (C215-55T). However, the equation given in
the ASTM is inadequate necessitating the use of the

equation given here.

Inspection of figures 2 and 3 shows the empirical
oints to fall on two distinetly separate curves,
he points determining these curves are not grouped

on the basis of which set of specimens they are
comprised but rather on the basis of whether the |
specimens are eylindrical or rectangular.  All of the
points forming the upper curve are derived from the
rectangular specimens of sets I and 11, while all of
the points forming the lower curve are derived [rom
the eylindrical specimens of both sets.

Inasmuch as the empirical curves are developed
without any assumption for the value of g, these
data support the conclusion drawn previously [rom
longitudinal vibrations; namely, that the speci-
mens of both sets have the same value of pu.

However, the separation of the empirical points
into two curves, one for evlindrical and one for
rectangular specimens, is unexpected; for, according
to Pickett, the value of 7" at any given k/l should
depend only upon g and not upon whether the bars

are circular or rectangular in cross section.*  Actu-
ally, Pickett recognizes that an assumption is
involved in the equality of 7' for specimens of circular
and square cross section.

Sinee the two empirical curves do diverge, especi-
ally at higher values of £/I; it is relevant to inquite
which empirical curve is in better agreement with
Pickett's theoretical relation. An estimate of the
probable values of u for the two curves may be made
on the basis of their relative positions from Pickett’s
curves for p=1% and g=1%. Such an estimate leads
to a value of g for the upper curve of around 0.26 to
0.30 while for the lower curve g appears to be around
0.17 to 0.19. Inasmuch as the p value so estimated
for the upper curve is in agreement with the literature
as well as earlier parts of this investigation, while the
similar estimate for the lower curve leads to an
absurdly low value of u for steel, one concludes that
the empirical curve for rectangular specimens is in
better agreement with Pickett than the empirical
curve for cylindrical specimens. It also appears
that Pickett's eurve for =14 would give reasonably
good values of 7' for eylindrical specimens having an
actual value of p=0.29.

Inspection of figure 3 also shows that the empirical
curve for rectangular specimens departs from the
theoretical curve for p="'% by an increasing amount
as I/l inereases,  For the eylindrical specimens the
curve appears to level off to a value slightly above
Pickett’s eurve for p= 4.

4, Summary

1. Empirical relations have been developed from
which Young's modulus may be determined from the
longitudinal and  flexural resonance frequencies.
Two sets of steel bars were used as specimens.  Both
sets were composed of cylindrical and rectangular
specimens.  These empirical rvelations have been
compared with corresponding theoretical ones.  The
acceuracy of the empirical determinations are such
that numerical comparisons with the theory to four
significant figures are justified.

2. For longitudinal vibrations, the empirically
determined curve for the eylindrical specimens,
agrees with the corresponding theoretical one (based
on Baneroft’s numerical solution of the Pochham-
mer-Chree equations for this particular boundary
condition) if a value of Poisson’s ratio of 0.292 is
assumed for both sets of specimens. This value is
in agreement with that found in the literature for
steel,

3. For flexural vibrations two separate empirical
curves develop.  One curve is formed by the rectan-
gular specimens of both sets and a second curve is

4 This unexpected result was further tested using an entirely different group of
six specimens all cut from the same soft steel. Special care was taken to have the
specimens homogeneons and isotropic. The six specimens were divided into
three pairs, each pair having the same length and the same value of k. One
specimen of ench pair was cireular and the other square in cross section.

If Pickett's assumption of the equality of the correction factor T for square
and eylindrical bars of the same k1 is correct, then each of the above pairs should
have the same flexural resonance frequency. However, the frequencies of each
pair were found to differ from each other by an amount in agreement with the
empirieal resnlts already obtained for sets 1 and II. Points representing these
specimens are included in figure 3,
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formed by the cylindrical specimens of both sets.
The curve formed by the rectangular specimens is in
fair agreement with the corresponding theoretical
relation (based on Timoshenko, Goens, mul Pickett)
il a value of Poisson’s ratio about 0.292 is again as-
sumed. However, the empirical curve formed by the
evlindrieal spw:ilm-ns wnu]l(l agree with the theoreti-
cal one only if a Poisson’s ratio of about 1 is assumed
for them. Since this value is obviously too low for
steel, based on the literature and the present study,
it is concluded that the experimental results agree
with the theory for rectangular specimens but that
Pickett’s' equations give too high a value for the
correction factor for (‘\'llll(lll("'!l specimens,

The authors express their appreciation for the
invaluable help n} J. B. Wachtman, both for in-
formation of a general background nature and also
for clarifying many particular problems which arose
during the course of the investigation.

Wasninaron, D.C, (Paper 64A2-37)

155

5. References

. Spinner and R. €. Valore, Jr., Comparizon of theo-

retical and empirical relations between the shear mod-
ulus and torsional resonance frequencies for bars of
rectangular eross section, J. Research NBS 60, p. 459
(1958) RP2861.

. Kolsky, Stress waves in solids, Preface (Oxford at the

('-1=||'t'11|l¢-rt Press, Oxford, England, 1953).

D. Baneroft, The veloeity of longitudinal waves in eylin-

drieal bars, Phys, Rev. 59, p. 588 (1941).

G, E. Hudson, Dispersion of elastic waves in solid circular

evlinders, Phys. Rev. 63, p. 46 (1943).

. M. Davies, Stress waves in solids, Surveys in Me-

chanics edited by G. K. Batehelor and R. M. Davies,
pp. 64-137. (Cambridge University Press, 1956.)

M. F. Markham, Measurement of elastic constants by the

ultrasonie pnl-« method, Brit. J. Appl. Phys. Suppl.
No. 6, pp. 536 to 563 (I'LH
. M. Frankland and H. L. W Iull(‘morv, Tests of cellular

:'-'lll'.‘t'?i- steel flooring, J. Research NBS 9, 136 (1932)

RIP463.

1%, Goens, Uber die Bestimmung des Elastizitatsmoduls

von Staben mit Hilde von Biegung Schwingungen,
Ann. der Phys,, B, Folge, Band 11, pp. 649 to 678
(1931).

8. P. Timoshenko, On the transverse vibrations of bars of
uniform eross seetion, Phil. Mag. Ser. 6, 43, pp. 125 to

131 (Jan. 1922).

+. Pickett, Equations for computing elasfic constants

from flexural and torsional resonant frequencies of
vibration of prisms and cylinders, Proe. ASTM 45,
pp. 846 to 865 (1945).



	jresv64An2p_147
	jresv64An2p_148
	jresv64An2p_149
	jresv64An2p_150
	jresv64An2p_151
	jresv64An2p_152
	jresv64An2p_153
	jresv64An2p_154
	jresv64An2p_155
	jresv64An2p_156

